Holy Cross College (Autonomous), Nagercoil - 629004

Kanyakumari District, Tamil Nadu.

Nationally Accredited with A^+ by NAAC IV cycle – CGPA 3.35

Affiliated to

Manonmaniam Sundaranar University, Tirunelveli

DEPARTMENT OF MATHEMATICS (SF)

TEACHING PLAN (PG) EVEN SEMESTER 2024-2025

Vision

To empower women globally competent with human values and ethics acquiring academic and entrepreneurship skills through holistic education.

Mission

- 1. To create opportunities which will ensure academic excellence in critical thinking, humanistic and scientific inquiry.
- 2. To develop application-oriented courses with the necessary input of values.
- 3. To create a possible environment for innovation, team spirit and entrepreneurial leadership.
- 4. To form young women of competence, commitment and compassion.

PEOs	Upon completion of M. Sc. Degree Programme, the graduates will be able to:	Mapping with Mission
PEO1	apply scientific and computational technology to solve social and ecological issues and pursue research.	M1, M2
PEO2	continue to learn and advance their career in industry both in private and public sectors.	M4 & M5
PEO3	develop leadership, teamwork, and professional abilities to become a more cultured and civilized person and to tackle the challenges in serving the country.	M2, M5 & M6

PROGRAMME OUTCOMES (POs)

POs	Upon completion of M.Sc. Degree Programme, the graduates	Mapping with
	will be able to:	PEOs
PO1	apply their knowledge, analyze complex problems, think	PEO1 & PEO2
	independently, formulate and perform quality research.	
PO2	carry out internship programmes and research projects to develop	PEO1, PEO2 &
	scientific and innovative ideas through effective communication.	PEO3
PO3	develop a multidisciplinary perspective and contribute to the	PEO2
	knowledge capital of the globe.	
PO4	develop innovative initiatives to sustain eco friendly environment	PEO1, PEO2
PO5	through active career, team work and using managerial skills guide	PEO2
	people to the right destination in a smooth and efficient way.	
PO6	employ appropriate analysis tools and ICT in a range of learning	PEO1, PEO2 &
	scenarios, demonstrating the capacity to find, assess, and apply	PEO3
	relevant information sources.	
PO7	learn independently for lifelong executing professional, social	PEO3
	and ethical responsibilities leading to sustainable development.	

PROGRAMMESPECIFICOUTCOMES(PSOs)

PSO	Upon completion of M.Sc. Degree Programme, the graduates of Mathematics will be able to:	PO Addressed
	acquire good knowledge and understanding, to solve specific theoretical	POI & PO2
PSO-1	& applied problems in different area of mathematics & statistics	
	understand, formulate, develop mathematical arguments, logically and	
PSO-2	use quantitative models to address issues arising in social sciences,	PO3 & PO5
	business and other context /fields.	
	prepare the students who will demonstrate respectful engagement with	
PSO-3	other's ideas, behaviors, beliefs and apply diverse frames of references to	PO6
	decisions and actions	
	pursue scientific research and develop new findings with global	PO4 & PO7
PSO-4	impact using latest technologies.	
	possess leadership, teamwork and professional skills, enabling them to	
PSO-5	become cultured and civilized individuals capable of effectively	PO5 & PO7
	overcoming challenges in both private and public sectors.	

Teaching Plan

Department	:	Mathematics (SF)
Class	:	I M.Sc. Mathematics (SF)
Title of the Course	:	Core IV: Advanced Algebra
Semester	:	II
Course Code	:	MP232CC1

Course Code	L	Т	Р	Credits	Inst. Hours	Total Hours	Marks		
						nours	CIA	External	Total
MP232CC1	5	1	-	5	6	90	25	75	100

Learning Objectives

1. To study field extension, roots of polynomials, Galois Theory, finite fields, division rings, solvability by radicals.

2. To develop computational skill in abstract algebra.

Course Outcomes

CO	Upon completion of this course, the students will be able to.	Cognitive
	Opon completion of this course, the students will be able to:	level
CO -1	exhibit a foundational understanding of essential concepts, including field extensions, roots of polynomials, Galois Theory, and finite extensions	K1 (R)
CO - 2	demonstrate knowledge and understanding of the fundamental concepts including extension fields, Galois Theory, automorphisms and finite fields	K2 (U)
CO - 3	compose clear and accurate proofs using the concepts of field extension, Galois Theory and finite field	K3 (Ap)
CO - 4	examine the relationships between different types of field extensions and their implications by applying algebraic reasoning	K4 (An)
CO - 5	evaluate the validity of statements and theorems in field theory by providing proofs or counter examples	K5 (E)
CO - 6	develop novel results or theorems in field theory, potentially by exploring extensions of existing theories	K6 (C)

Unit	Module	Topics	Teaching Hours	Teaching HoursCognitive levelPedagogy		Assessment/ Evaluation	
Ι							
	1	Extension Fields, dimension, subfield- Introduction and definition, Theorems based on extension fields	4	K2 (U)	Introductory session, Lecture with illustration	Questioning, Recall steps, concept with examples	
	2	Definition and Theorems on algebraic over a field F, Theorems on algebraic extension	4	K4 (An)	Flipped classroom	Group discussion	
	3	Interpretation of Extension fields such as finite extension, algebraic extension	5	K3 (Ap)	Lecture with illustration, Peer tutoring	Slip Test	
	4	Transcendence of e, Problems	5	K5 (E)	Problem solving	Brainstorming	
Π							
	1	Definition- roots of polynomials, multiplicity of roots, Remainder theorem	3	K1 (R)	Lecture using videos	Evaluation through short test	
	2	Theorems based on roots of polynomials,	4	K2 (U)	Flipped classroom	concept definitions, concept with examples	

Total contact hours: 90 (Including lectures, assignments and tests)

		Existence theorem of splitting fields				
	3	Theorems based on isomorphism of fields, Theorems based on splitting field of polynomials	4	K2 (U)	Blended learning	Quiz using Nearpod
	4	Uniqueness theorem of splitting fields	3	K3 (An)	Context based	Slip Test, Quiz using gooogle forms
	5	Definition- derivative of polynomials, Simple extension, Theorems on simple extension	4	K3 (Ap)	Reflective Thinking	Brainstorming
III						
	1	Definition -Fixed Field, Group of automorphism,	4	K2 (U)	Demonstrative	concept with examples, Questioning
	2	Theorems on Fixed Field, Theorems on Fixed Field	4	K2 (U)	Lecture Method	Evaluation through short test
	3	Theorems on Group of Automorphism, Theorems on Normal Extension	5	K3 (Ap)	PPT	Group discussion
	4	Theorems on Galois Group, Construct theorems on Normal Extension and Galois Group, Problems	5	K5 (E)	Problem solving	concept explanations
IV						
	1	Definition -Finite Fields, Characteristic of F with examples	4	K4 (An)	Introductory session	concept with examples, Assignment

	2	Theorems based on Finite Fields and Characteristic of F	5	K2 (U)	Context based	concept explanations, Quiz using Slido
	3	Finite field and Cyclic group	5	K4 (An)	Brainstorming	concept explanations, Evaluation through short test
	4	Wedderburn's Theorem on finite division ring	4	K3 (Ap)	Lecture Method	Group discussion
V						
	1	Solvability by radicals – Introduction, Solvable and Commutator group	3	K2 (U)	Lecture Method	concept with examples
	2	Lemma and Theorem based on solvable by radicals, General polynomial definition and theorem	3	K2 (U)	Demonstrative	Group discussion
	3	Definitions -algebraic over F and Frobenius theorem	4	K3 (Ap)	Demonstrative	Seminar
	4	Internal quaternions and Lagrange identity	4	K4 (An)	Computational thinking	Evaluation through short test
	5	Left-Division algorithm, Four- Square Theorem	4	K2 (U)	Lecture Method	Quiz using Mentimeter

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Em/ En/SD): Solve practical problems in networking and communication Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil Assignment: Finite Fields Seminar Topic: Frobenius theorem

Sample questions

Part A

- 1. Name the complex number which is not algebraic.
 - a) algebraic b) transcendental c) rational d) algebraic integer
- 2. Identify the condition: The element $a \in K$ is a root of $p(x) \in F[x]$ of multiplicity *m* if $(x-a)^m | p(x)$ whereas

a) $(x-a)^{m+1} | p(x)$ b) $(x-a)^{m+1} \nmid p(x)$ c) $(x-a)^{m+1} | p(x)+1$ d) $(x-a)^{m+1} \nmid p(x)+1$

- 3. Complete: K is a ______ of F if K is a finite extension of F such that F is the fixed field of G(K, F).
- 4. Name the fields having only a finite number of elements

a) finite fields b) infinite fields c) splitting fields d) commutative field

5. Say True or False: Every polynomial of degree n over the field of complex numbers has all its n roots in the field of real numbers.

Part B

- 1. If L is an algebraic extension of K and if K is an algebraic extension of F then L is an algebraic extension of F.
- 2. If F is a field of characteristic $p \neq 0$, then prove that the polynomial $x^{p^n} x \in F[x]$, for $n \ge 1$, has distinct roots.
- 3. If K is a finite Extension of F, then prove that G(K,F) is a finite group and its order, o(G(K,F)) satisfies $o(G(K,F)) \le [K:F]$.
- 4. Prove that any two finite fields having the same number of elements are isomorphic.
- 5. Let C be the field of complex numbers and suppose that the division ring D is algebraic over C. Then prove that D = C.

Part C

- 1. Prove that the number e is transcendental.
- 2. Prove that any two splitting fields of the same polynomial over a given field F are isomorphic by an isomorphism leaving every element of F fixed.
- 3. State and prove fundamental theorem of Galois theory.
- 4. Prove that a finite division ring is necessarily a commutative field.
- 5. Prove that every positive integer can be expressed as the sum of squares of four integers.

Head of the Department Dr.J.Anne Mary Leema **Course Instructor**

Dr.C.Jenila

Real Analysis II

Department	:	Mathematics (S.F)
Class	:	I M.Sc. Mathematics
Title of the Course	:	Core Course V: Real Analysis II
Semester	:	I
Course Code	:	MP232CC2

Course	L	L	L	Т	Р	S	Credits	Inst.	Total Hours		Marks	
Coue						110015		CIA	External	Total		
MP231CC2	5	1	-	-	4	6	90	25	75	100		

Learning Objectives:

To introduce measure on the real line, Lebesgue measurability and integrability, Fourier Series and Integrals.
 To get the in-depth study in multivariable calculus.

Course outcomes

со	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	recall and describe the basic concepts of measure, integration of	PSO - 1	K1 &K2
	functions, Fourier series on real line and multivariable differential		
	calculus, implicit functions and extremism problems.		
CO - 2	compare Boral measure with Lebesgue measure and the total	PSO - 2	К3
	derivatives with partial derivatives.		
CO - 3	determine the matrix representation and Jacobian determinant of functions.	PSO - 1	K3
CO - 4	analyze the properties of measurable functions, Riemann and Lebesgue Integrals, convergence of Fourier series and extrema of real valued functions.	PSO - 2	K4
CO-5	test measurable sets and measurable functions.	PSO - 2	K5

I Init	Module	Tonic	Teaching	Cognitive	Vanage	Assessment/
Omt	Mouule	Торіс	Hours	level	I euagogy	Evaluation
Ι		Lebo	esgue Mea	sure		
	1.	Introduction - Outer Measure	2	K ₁ , K ₂	Lecture with illustration	Questioning
	2.	Measurable sets and Lebesgue measure–A non measurable set	5	K ₁ , K ₂	Interactive PPT	Short test
	3.	Borel and Lebesgue Measurability	5	К3	Lecture method	Class test
II		The Le	besgue In	tegral		
	1.	Riemann Integrals	2	K2	Brainstorming	Assignment
	2.	The Lebesgue integral of a bounded function over a set of finite measure	5	K2, K3	Flipped classroom	Online Quiz using Quizziz
	3.	The integral of a nonnegative function - The general Lebesgue integral.	5	К4	Collaborative learning	Differentiate between Riemann and Lebesgue Integrals
III		Fourier Serie	s and Fou	rier Integra	ls	
	1.	Introduction - Orthogonal system of functions - The theorem on best approximation	4	К2	Brainstorming	Quiz using Slido
	2.	The Fourier series of a function relative to an orthonormal system - Properties of Fourier Coefficients - The Riesz-Fischer theorem	5	K2, K4	Lecture with illustration	Solving Exercise Problems
	3.	The convergence and representation problems for trigonometric series - The Riemann-Lebesgue lemma - The Dirichlet integrals - An integral representation for the partial sums of Fourier series	5	K2, K4	Blended Classroom	Explaining the steps of the theorems
	4.	Riemann's localization theorem - Sufficient conditions for convergence of a Fourier series at a particular point –	4	K4	Seminar Presentatio n	Questioning

	5.	Cesaro summability of Fourier	4	K4	Seminar	Class Test
		series- Consequences of Fejes's			Presentatio	
		theorem - The Weierstrass				
		approximation theorem.				
IV		Multivariable	Different	tial Calculus	1	1
	1.	Introduction - The directional derivative - Directional derivative and continuity	3	K1 & K2	Interactive PPT	Quiz using Slido
	2.	The total derivative - The total derivative expressed in terms of partial derivatives	3	K3	Lecture with chalk and talk	Problem Solving
	3.	The matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of chain rule	3	К3	Blended Classroom	Questioning
	4.	The mean-value theorem for differentiable functions - A sufficient condition for differentiability	3	K2	Seminar Presentation	Short test
	5.	A sufficient condition for equality of	3	K3, K4	Seminar Presentation	Slip Test
		mixed partial derivatives - Taylor's			Flesentation	
		theorem for functions of R ⁿ to R ¹				
V		Implicit Functions	and Extr	emum Prob	lems	
	1.	Introduction - Functions with non-	4	K3	PPT using	Q & A
		zero Jacobian determinants – The			Gamma AI	
		inverse function theorem				
	2.	The implicit function theorem	3	K2, K4	Flipped Classroom	Concept explanations
	3.	Extrema of real valued functions of one variable	3	K2, K4	Seminar Presentation	Questioning
	4.	Extrema of real-valued functions of severable variables-Extremum problems with side conditions.	4	K4	Seminar Presentation	Slip test

Course Focussing on: Skill Development

Activities (Em/ En/SD): Problem-solving, Seminar Presentation, Quiz Competition

Assignment: Solving Exercise Problems

Seminar Topic: Fourier Series and Fourier Integrals, Multivariable Differential Calculus Sample Questions:

Part A

1.Say true or false: Union of two measurable sets is measurable.

2. Say true or false: Every step function is a simple function.

3. The length of the vector $\bar{x} = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n is _____

4. If $u = u_k$, the kth unit coordinate vector, then $f'(c, u_k)$ is called a _____.

5. If a function **f** has continuous partial derivatives on a set **S**, we say that **f** is ______ on **S**.

Part B

1. Prove that every Borel Set is measurable.

2. If f is bounded and Riemann integrable on [a, b] then prove that it is measurable and $\mathbf{R} \int_{a}^{b} f \, dx = \int_{a}^{b} f \, dx$.

3.State and prove Bessel's inequality.

4.Assume **f** is differentiable at **c** with total derivative T_c . Then prove that the directional derivative f'(c; u) exists for every **u** in \mathbb{R}^n and we have $T_c(u) = f'(c; u)$.

5.Let A be an open subset of \mathbb{R}^n and assume that $f: A \to \mathbb{R}^n$ has continuous partial derivatives $D_i f_i$ on A. If $J_f(\mathbf{x}) \neq 0$ for all \mathbf{x} in A, then prove that \mathbf{f} is an open mapping.

Part C

1. Prove that outer measure of an interval equals its length.

2.State and prove (i) Lebesgue's Convergence Theorem and (ii) Fatou's Lemma.

3. Let $\{\varphi_0, \varphi_1, \varphi_2, \dots\}$ be orthonormal on I, and assume that $f \in L^2(I)$. Define two sequences of functions $\{s_n\}$ and $\{t_n\}$ on I as follows $:s_n(x) = \sum_{k=0}^n c_k \varphi_k(x), t_n(x) = \sum_{k=0}^n b_k \varphi_k(x)$ where $c_k = (f, \varphi_k)$ for $k = 0, 1, 2, \dots$ and b_0, b_1, b_2, \dots are arbitrary complex numbers. Then prove that for each n, we have $||f - s_n|| \le ||f - t_n||$.

4.Assume that one of the partial derivatives $D_1 f$, ..., $D_n f$ exists at c and that the remaining n-1 partial derivatives exist in some n-ball B(c) and are continuous at c. Then prove that **f** is differentiable at **c**.

5. State and prove Inverse function theorem.

Dr.J.Anne Mary Leema

Dr.J.Anne Mary Leema

Head of the Department

Course Instructor

Semester	: II
Name of the Course	: Partial Differential Equations
Course code	: MP232CC3
Major Core	: VI

Course Code	L	Τ	Р	S	Credits	Inst. Hours	Total Hours		Ma	arks
								CIAE	xternal	Total
PM2023	5	1	-	-	4	6	90	25	75	100

Objectives:

- 1. To formulate and solve different forms of partial differential equations
- 2. Solve the related application oriented problems

Course Outcomes

СО	Upon completion of this course the student will be able to	PSO Addressed	CL
CO-1	recall the definitions of complete integral, particular integral and singular rintegrals.	PSO-2	R
CO-2	learn some methods to solve the problems of non-linear first order partial differential equations. homogeneous and non- homogeneous linear partial differential equations with constant coefficients and solve related problems.	PSO-1	U

	analyze the classification of partial differential equations in three		
CO-3	independent variables – cauchy's problem for a second order	PSO-3	An
	partial differential equations.		
CO-4	solve the boundary value problem for the heat equations and the wave equation.	PSO-4	Ар
CO-5	apply the concepts and method sinphysical processes like heat transfer and electrostatics.	PSO-5	Ap

Total contact hours:90 (Including lectures, assignments and tests)

Unit	Modul e	Topics	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι		Non-linear P	artial Diffe	erential Equations of	First Order	
	1	Introduction, Explanation of complete integral, particular integral and singular integral	2	K2(U)	Brainstormin g	Questioning
	2	Explanation of terms,compactible system of first order equations,Examples related to compactible system	3	K3(Ap)	Blended Learning	Evaluation through Quiz
	3	Explaining Charpit's Method .	3	K2(U)	Lecture using videos	Evaluation through short test
	4	Problems related to charpit's method	2	K3(Ap)	Intractive method	Evaluation through MCQ
	5	Solving problems using charpit's method	3	K3(Ap)	Peer teaching, Group Discussion	Evaluation through slip test

		Problems related to	_		Problem	Evaluation
	6	charpit's method	3	K3(Ap)	solving	through Assignment
п	Ц	amaganaaus Linaar Pe	rtial Diffa	rontial Equation wit	h Constant (oofficient
	11		a uai Diile	ential Equation with		Joenneient
	1	Homogeneous and non- homogeneous linear equation with constant coefficient, Solution of finding homogeneous equation with constant coefficient.	2	K2(U)	Blended Learning	Questioning
	2	Method of finding complementary function, Working rule for finding complementary function ,Alternative working rule for finding complementary function	2	K2(U)	Lecture using PPT	Evaluation through Assignment
	3	Some examples for finding Complementary function	3	K2(U)	Flipped classroom	Evaluation through slip Test
	4	General method and working rule for finding the particul integral of homogeneous equation and some example	3	K3(Ap)	Lecture using chalk and talk	Evaluation through MCQ
	5	Examples to find the particular integral	3	K3(Ap)	Heuristic method	Evaluation through quiz
III	Non-	homogeneous Linear	Partial Dif	ferential Equations	with Constan	t Coefficient
	1	Definition, Reducible and irreducible linear differential operators, Reducible and irreducible linear partial differential equations with constant coefficient, Determination of complementary function	2	K2(U)	Lecture using PPT	Questioning

	2	General solution and particular integral of non-homogeneous equation and some examples of type1	3	K2(U)	Heuristic method	Evaluation through true or false	
	3	Some examples of type2	3	K3(Ap)	Interactive method	Evaluation through MCQ	
	4	Some problems related to type3	3	K3(Ap)	Peer teaching, Group Discussion	Evaluation through slip test	
	5	Examples related to type4, Miscellaneous examples for the determination of particular integral	4	K5(E)	Blended Learning	Evaluation through Assignment	
IV	IV Classification of P.D.E. Reduction to Canonical(or normal) Forms						
	1	Classification of Partial Differential equations of second order – Classification of P.D.E. in three independent variables	2	K2(U)	Analytic method	Evaluation through quiz	
	2	Cauchy's problem for a second order P.D.E. Characteristic equation and Characteristic curves of the second order P.D.E.	2	K2(U)	Lecture using PPT	Evaluation through slipTest	
	3	Laplace Transformation .Reduction to Canonical(or normal) forms.(Hyperbolic type)	4	K3(Ap)	Flipped classroom	Evaluation through Assignment	
	4	Laplace Transformation ,Reduction to Canonical (or normal) forms.(Parabolic type)	4	K3(Ap)	Heuristic method	Evaluation through MCQ	
	5	Laplace Transformation .Reduction to	3	K5(E)	Peer teaching, Group	Evaluation through short Test	

		Canonical(or normal) forms.(Elliptic type)			Discussion	
V			Boundar	ry Value Problem	·	
	1	A Boundary value problem, Solution by Separation of variables, Solution of one dimensional wave equation, D'Alembert's solution, Solution of two dimensional wave equation	3	K2(U)	Interactive method	Evaluation through Quiz
	2	Vibration of a circularmembrane, Examples related to vibration of a circularmembrane	4	K3(Ap)	Lecture using PPT	Evaluation through slipTest
	3	Solution of one dimensional heat equation, Problems related to solution of one dimensional heat equation	4	K2(U)	Blended Learning	Questioning
	4	Solution of two dimensional Laplace's equation	3	K5(E)	Peer teaching, Group Discussion	Evaluation through quiz
	5	Solution of two dimensional heat equation	3	K3(Ap)	Analytic method	Evaluation through Assignment

 $Course\ Focussing\ on\ Employability/\ Entrepreneurship/\ Skill\ Development\ :\ Skill\ Development$

Activities (Em/ En/SD): Solving the Problems, Group discussion, Seminar, Online Assignment

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues: Nil

Assignment : Cauchy's problem for a second order P.D.E.

Characteristic equation and Characteristic curves of the second order P.D.E, Solution of two dimensional heat equation.

Seminar Topic: Laplace

Transformation ,Reduction to Canonical (or normal) forms.(Parabolic type)

Sample Questions

PART –A

1. The system of two given PDE is compatible possess ------

(a) no solution (b) Two solution (c) Infinitely many solutions (d) Unique solution

2. If $u_1, u_2, ..., u_n$ are solution of the homogeneous linear PDE F(D, D') z = 0 then ------is also a solution, where $C_1, C_2, ..., C_n$ are arbitrary constants.

3. What is the complementary function of the partial differential equation $(D^2 - D'^2 + D - D') z = 0$ is ------

4. Classify the PDE 2r + 4s + 3t - 2 = 0.

5. What is the D'Alembert's solution for wave equation.

PART- B

- 1. Find a complete integral of px + qy = pq
- 2. Solve $(D^2+DD'-6D'^2)z = y \sin x$

3. Solve $(D^2 - DD' - 2D'^2 + 2D + 2D')z = \sin(2x + y)$

4. Find the characteristics of 4r + 5s + t + p + q - 2 = 0.

5. Obtain the steady state temperature distribution in a rectangular metal plate of length a

and width b ,the sides of which are kept at temperature 0^{0} C the lower edge is kept at

 100^0 C and the upper edge kept insulated.

PART-C

1. Show that the equations f(x,y,p,q) = 0, g((x,y,p,q) = 0 are compatible if

$$\frac{\partial(f,g)}{\partial(x,p)} + \frac{\partial(f,g)}{\partial(y,q)} = 0$$
. Verify that the equations $p = P(x,y), q = Q(x,y)$ are Compatible

$$\inf \frac{\partial P}{\partial v} = \frac{\partial Q}{\partial x}$$

2. Solve $r - t = tan^3 x tan y - tan x tan^3 y$

3. Solve $(D^2-DD'-2D)z = sin (3x + 4y) + x^2 y$

4. Reduce the equation $\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form and hence solve it.

5.A thin rectangular plane whose surface is impervious to heat flow has at t =0 an arbitrary distribution of temperature f(x,y). Its four edges x =0 ,x= a ,y=0,y=b are kept at zero temperature .Determine the temperature at a point of the plate as t increases.

Head of the Department

Course Instructor Dr. J. Nesa Golden Flower

Mathematical Statistics

Class	: I M. Sc Mathematics
Title of the Course	: Elective Course III: a) Mathematical Statistics
Semester	: II
Course Code	: MP232EC1

Course Code	L	Т	Р	Credits	Inst. Hours	Total Hours		Marks	
							CIA	External	Total
MP232EC1	3	1	-	3	4	60	25	75	100

Objectives

- 1. To enhance knowledge in mathematical statistics and acquire basic knowledge about various distributions.
- 2. To understand about mathematical expectations, moment generating function technique and the Central Limit Theorem.

Course outcomes

СО	Upon completion of this course, the students will	PSO	Cognitive
	be able to:	addressed	level
CO – 1	recall the basic probability axioms, conditional probability, random variables and related concepts	PSO – 1	K1
CO – 2	learn the transformation technique for finding the p.d.f of functions of random variables and use these techniques to solve related problems	PSO – 3	K2
CO – 3	compute marginal and conditional distributions and check the stochastic independence	PSO – 4	К3
CO – 4	employ the relevant concepts of analysis to determine limiting distributions of random variables	PSO – 3	K2
CO – 5	design probability models to deal with real world problems and solve problems involving probabilistic situations	PSO – 5	К3

Teaching plan

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Торіс	Teaching Hours	TopicTeaching Cognitive levelPedagogy		Assessment/ Evaluation
Ι					
	Introduction to Statistics	1	K1(U)	Introductory session	Simple definitions
	Sampling Theory	3	K2(R)	Lecture using Chalk and talk	Diagnostic test
	Transformations of Variables of the Discrete Type	2	K2(U)	Problem solving	Class Test
	Transformations of Variables of the Continuous Type	4	K2(U)	Interactive PPT	Quiz
	The t and F Distributions	2	K2(U)	Computational Thinking	Problem Solving
II					
	Limiting Distributions	3	K1(U)	Lecture using Chalk and talk	Evaluation through short test
	Stochastic Convergence	3	K2(U)	Lecture	Map knowledge
	Limiting Moment Generating Functions	3	K3(A)	Problem Solving	Practical Exercises

	The Central Limit Theorem	3	K2(U)	Lecture	Class Test	
III						
	Point Estimation	3	K2(U)	PPT	Short essays	
	Measures of Quality of Estimators	2	K3(Ap)	Project Based	MCQ Using Slido	
	Confidence Intervals for Means	3	K4(An)	Flipped Classroom	MCQ Using Nearpod	
	Confidence Interval for Difference of Means	2	K4(An)	Problem Solving	Slip test	
	Confidence Interval for Variances	2	K3(A)	Blended Learning	MCQ Using Nearpod	
IV						
	Statistical Hypothesis	3	K2(U)	Context Based	Short summary	
	Certain Best Tests	3	K4(An)	Lecture Method	Short Summary	
	Uniformly Most Powerful Tests	3	K3(A)	Problem Solving	Problems to Solve	
	Likelihood Ratio Tests	3	K3(A)	Project Based	Seminar	
V						
	Chi-Square Tests	3	K4(An)	Demonstration	Problems to Solve	
	The Distributions of Certain Quadratic Forms	3	K3(A)	Lecture	Evaluation through problems	

A of	Test of Equality Several Means	3	K3(A)	Problem solving	Recall Steps
No No	oncentral χ^2 and oncentral F	3	K4(An)	Lecture method	MCQ

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Solving the Problems, Group discussion, Seminar, Online Assignment, Peer Teaching.

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues: Nil

Assignment: Chi-Square Tests, Noncentral χ^2 and Noncentral F

Seminar Topic: Best Tests, Ratio Test

Sample questions (minimum one question from each unit)

Part A

1. A function of one or more random variables that does not depend on one or more parameter is called....

A. Static B. Dynamic C. Statistic D. Continuous

2. Which of the following best describes limiting distributions?

- A. The probability distribution of a random variable at a fixed point.
- B. The distribution of a sequence of random variables as they converge.
- C. The distribution of independent random variables.
- D. The variance of a random variable as it approaches infinity.
- 3. What does "point estimation" in statistics refer to?

A. Estimating a range of values for a population parameter

B. Estimating the standard deviation of a sample

C. Estimating a single value for a population parameter

D. Estimating the probability of an event

4. If C is a subset of a sample space that leads to a rejection of hypothesis, then C is called

A. Critical region	B. Power Set	C. False region	D. Discontinuous
--------------------	--------------	-----------------	------------------

5. A homogenous polynomial of degree 2 in n variables is called

A. bilinear form	B. Quadratic form
C. Normal	D. Monic Polynomial

Part B

1. Explain Transformation of variable of discrete type.

2. Let $F_n(u)$ denote the distribution function of a random variable U_n whose distribution depends up on the positive integer n. Also let U_n converges stochastically to the positive constant c and let Pr ($U_n < 0 = 0$ for every n. Then prove that the random variable $\sqrt{U_n}$ converges stochastically to \sqrt{c} .

3. Explain confidence intervals foe means.

4. Test the hypothesis $H_0: f(x) = \frac{e^{-1}}{x!}, \quad x = 0, 1, 2, ...$ against the alternative simple hypothesis $H_1: f(x) = \left(\frac{1}{2}\right)^{x+1}, \quad x = 0, 1, 2, ...$ where $X_1, X_2, ..., X_n$ denote a random sample from a distribution which has a p.d.f f(x) that is positive on non-negative integers.

5. Explain Chi-Square test.

Part C

- 1. Discuss t and f distribution.
- 2. State and prove Central Limit Theorem.
- 3. Explain confidence intervals for variance.
- 4. State and prove Neyman-Pearson Theorem.
- 5. Explain Noncentral λ^2 and Noncentral F.

Head of the Department

Dr. J. Anne Mary Leema

Course Instructor

Dr. B. ShekinahHenry

Department
Class: Mathematics (S.F)
: I M.ScSemester: IIName of the Course: Operations ModellingCourse Code: MP232EC4

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total Hours		Marks	
							nouis	CIA	External	Total
MP232EC4	3	1	-	-	3	4	60	25	75	100

Learning Objectives

- 1. To analyze different situations in the industrial/ business scenario involving limited resources
- 2. To finding the optimal solution within constraints.

Course Outcomes

со	Upon completion of this course the students will be able to:	PSO addresse d	
1.	Build and solve Transportation and Assignment problems using appropriatemethod	PSO - 2	K ₁ (R)
2.	Learn the constructions of network and optimal scheduling using CPM and PERT	PSO - 3	K ₂ (U)
3.	Ability to construct linear integer programming models and solve linear integerprogramming models using branch and bound method	PSO - 3	K5(E)
4.	Understand the need of inventory management.	PSO - 4	K ₄ (An)
5.	To understand basic characteristic features of a queuing system and acquire skills in analyzing queuing models	PSO - 1	K ₃ (Ap)

.		Module Topic		Cognitive		Assessment/
Unit	Module	Торіс	Hours	level	Pedagogy	Evaluation
Ι		Transporta	ation Model	s and its Var	riants	
	1.	Transportation Models and its Variants	2	K1 & K2	Brainstorming	Questioning
	2.	Definition of the Transportation Model –	2	К3	Lecture with illustration	Short Test
	3.	Non-Traditional Transportation Mode	3	K1 & K3	Problem Solving	Quiz using Quizizz
	4.	Transportation Algorithm, The Assignment Model	3	K5	Lecture with Illustration	Class test
	5.	Transportation Algorithm – The Assignment Model	2	K4	Collaborative learning	Assignment
II			Network A	nalysis		<u> </u>
	1.	Network Analysis	2	K1	Lecture with illustration	Questioning
	2.	Minimal Spanning Tree Algorithm	3	К3	Lecture Discussion	Short summary of the algorithm
	3.	Shortest Route Problem	2	K2 & K3	PPT using Gamma AI	Assignment
	4.	MaximumFlow Model	2	K3 & K4	Seminar Presentation	Recall steps
	5.	CPM –PERT	3	К3	Seminar Presentation	Class test
III		1	Inventory 7	heory	I	<u> </u>
	1.	Inventory Theory- Introduction	1	K1 & K2	Brainstorming	Quiz
	2.	Basic Elements of an Inventory Model	2	K3	Interactive PPT	Assignment

	3.	Deterministic Models	3	K4	Lecture Discussion	Short Test
	4.	Single Item Stock Model With And Without Price Breaks	3	К5	Blended Learning	Concept Explanation
	5.	Multiple Item Stock Model With And Without Price Breaks	3	K6	Collaborative learning	Peer review writing
IV		Р	robabilistic	Models	l	
	1.	Probabilistic Models: Continuous Review Model- Single Period Models.	4	K1 & K2	Lecture with illustration	Differentiate between various modes
	2.	Continuous Review Model	4	K3 & K4	Flipped Classroom	MCQ
	3.	Single Period Models	4	K4 & K5	Problem Solving	Open book test
			<u>I</u>			
V			Queuing T	heory		
	1.	Queuing Theory- Introduction	2	K1 & K2	Seminar Presentation	MCQ
	2.	Basic Elements of Queuing Model	2	K4	Seminar Presentation	Solving exercise problems
	3.	Role of Poisson and Exponential Distributions	2	K4 & K5	Seminar Presentation	Questioning
	4.	Pure Birth andDeath Models	2	K2 & K3	Seminar Presentation	Slip Test
	5.	Specialised Poisson Queues - (M/G/1):GD/∞/∞)	2	K2 & K5	Seminar Presentation	Quiz
	6.	Pollaczek - Khintechine Formula	2	К4	Seminar Presentation	Evaluation through short test

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Seminar Presentation, Quiz

Assignment: Problems based on Inventory and Queuing model.

Seminar Topic: Queuing Theory

Sample questions

Part A:

1. Which is known as Knapsack problem.

a) Principle of optimality b) flyaway kit problem c) Cargo loading problem

2. Project scheduling by PERT-CPM consists of _____ basic phases.

a) 2 b) 3 c) 4 d) 5

3. An ______ in a project is usually viewed as a job requiring time and resources for its completion.

4. In a single server model(M/M/1): $(GD/\infty/\infty)$, the $W_q =$ ------

5. The measure of L_s in machine servicing model is

a)
$$L_q + \frac{\lambda_{eff}}{\mu}$$
 b) $L_q + \lambda_{eff}$ c) $L_q + \mu \lambda_{eff}$ d) $\mu + \lambda_{eff}$

Part B:

6. Find the optimal solution to the cargo loading problem.

7. Write the Formulation of CPM by linear programming approach.

8.Explain the factors which may also influence the way the inventory

model is formulated.

9. Obtain the probability $P_n(t)$ of Departure Process.

10. Explain pure birth and death process.

Part - C

11.A Contractor needs to decide on the size of his work force over the next 5weeks. He estimates the minimum force size b_i for the 5 weeks to be 5,7,8,4 and 6 workers for i=1,2,3,4 and 5 respectively. Find the optimum sizes of the work force for the 5 – week planning horizon.

12. Given the following information

Activity	0-1	1-2	1-3	2-4	2-5	3-4	3-6	4-7	5-7	6-7
Duration	2	8	10	6	3	3	7	5	2	8

Draw the network diagram. Find critical path. Determine Total Float and free Float

- 13.Explain Single item static model.
- 14.Derive the difference- differential equations of (M/M/1): $(GD/\infty/\infty)$.

15. Derive P.K formula

Head of the Department:

Course Instructor:

Dr. J.Anne Mary Leema

Dr. J.Anne Mary Leema

Introduction to MS Excel 2007

Department	:	Mathematics
Class	:	I M.Sc.
Title of the Course	:	Introduction to MS Excel
2007Semester	:	II
Course Code	:	MP242SE1

Course Code	т	т	D	S	Credits	Inst. Hours	Total	Marks		
	L	I	r				Hours	CIA	External	Total
MP242SE1	4	-	-	-	3	4	60	25	75	100

Objectives

1. To familiarize the students with Excel's basic features.

2. To acquire skills for data analysis using MS Excel.

Course outcomes

On the	e successful completion of the course, students will be able to:	
1.	understand the Excel interface including the ribbon, worksheets and cells	K2
2.	enter and format data effectively including text, numbers and formulas	K3& K4
3.	use basic functions like SUM, AVERAGE and COUNT for simple calculations	K3 & K4
4.	manage data effectively through organization, sorting and filtering	K3 & K4
5.	create various chart types including bar charts, line graphs, pie charts, and scatter plots to visually represent data.	K4 & K5

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
I	Getting	g Started with Excel 20	07			
	1.	Introduction to Excel 2007 User Interface, Title Bar, Office Button, Quick Access Toolbar,	3	K2	Context Based	Quiz Questioning in the classroom
	2.	Ribbon, Command Tabs, Contextual Tabs, Command Sets Dialog Box Launchers.	3	К2	Flipped Classroom	Group Discussion
	3.	Mini Toolbar, Live Preview, Key Tips, Super ToolTips, Name Box, Formula Bar, Work Area.	3	К3	Lecture method	MCQ
	4.	Zoom Controls, creating a New Workbook, using a Blank Workbook Template, Saving a Workbook.	3	К3	Cooperative Learning	Peer Teaching
	5.	Closing the Current Workbook, Opening an Existing Workbook , Closing MS Excel.	3	К3	PPT	Online Assignment
Π	Worki	ng with Data and Data '	Tables			
	1.	Introduction, Entering Data using AutoFill, AutoFill a Text Series, AutoFill a Number Series.	3	К2	Flipped Classroom	Group Discussion
	2.	Creating Your Own Custom List, Using Merge & Center, Turning on Text Wrapping.	3	К3	Demonstration	Group Discussion

	3.	Changing Number Formats, Increasing or decreasing decimals in Numeric Data.	3	К3	Experimental learning	Assigning Exercises
ш	Wor	king with Data and Data Ta	ables			
	1.	Sorting Data, Sorting Data using Some Predefined Criteria, Sorting Data by Defining Custom Sort Criteria.	3	К3	Reflexive thinking	Discussion
	2.	Filtering Data, Linking Data, addinga Hyperlink, editing a Hyperlink, Removing a Hyperlink.	3	К3	Context based	Slip Test
	3.	Creating a Table, creating a Table froma Blank Introduction to MS Excel 2007 Cell Range, Creating a Table froman Existing Data Range.	3	K5	Project based	Assignments
	4.	Editing a Table, formatting a Table, sorting a Table, Filtering a Table	3	К3	Demonstration	Experiments
IV	Using	Formulas and Functions		1	I	I
	1.	Introduction, Understanding Formulas, Operators in Excel 2007, Operator Precedence.	3	К2	Lecture method With Illustration	Short Test
	2.	Creating a Formula, editing a Formula, Defining Range Names, Assigning a Range name, Selecting a Range, Editing a range Name.	3	К6	Experimental Learning	Assigning Exercises

	3.	Referencing Rangesin Formulas, Referencing Cells from Other Worksheets.	3	K3	Blended Learning	MCQ
	.4,	Using Relative andAbsolute Cell References, Understanding Functions, Some Common Excel Functions.	3	К3	Context based	Peer Teaching
	5.	Applying a Function, editing a Function, Calculating Total of Cell Data with AutoSum.	3	K4	Reflexive thinking	Oral Test
V	Work	king with Charts				
	1.	Introduction, creatinga chart, Changing the Chart Layout, Changing the Chart Styles.	3	K5	Experimental Learning	Presentation
	2.	Changing the Chart Type, adding a ChartTitle, Adding Axis Titles.	3	К3	Project Based	Preparation of Question Bank by students
	3.	Adding Data Labels, adding a Legend, Adding Gridlines.	3	K4	Project Based	Seminar Presentations

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (SD): Create a chart from real data, Sorting and filtering Relay, Data Entry and formattingchallenge. Assignment: Working with Data and Data Tables

Sample questions (minimum one question from each unit)

Part A

- 1. How will you save a current workbook in Excel 2007?
- 2. What does the Text Wrapping feature in Excel 2007 do?
- 3. What is a hyperlink in Excel, and how can it be used?

- 4. What does the AutoSum function in Excel 2007 do?
- 5. How do you add a chart title in Excel 2007?

Part B

- 1. Explain the purpose and functionality of the Ribbon in Excel 2007.
- 2. Describe the process of turning on Text Wrapping and its significance.
- 3. What are the steps to create a table from an existing data range, and what are its key features?
- 4. Describe the steps for creating, editing, and referencing a formula in Excel 2007.
- 5. Explain how to change the chart type and chart styles in Excel 2007.

Part C

- 1. Discuss the importance of Contextual Tabs, Dialog Box Launchers, and Super ToolTips in Excel 2007.
- 2. Describe in detail how to use AutoFill in Excel 2007 for text and number series. Include examples and benefits.
- 3. Discuss sorting and filtering data in Excel 2007. Provide steps, differences, and practical examples.
- 4. How does Excel 2007 facilitate data analysis using formulas, range names, and AutoSum? Provide a detailed explanation and examples.
- 5. How can changing chart layouts, styles, and gridlines improve data visualization in Excel 2007?

Head of the Department Dr. J. Anne Mary Leema Course Instructor Dr. B. ShekinahHenry

Functional Analysis

Department	:	Mathematics (SF)
Class	:	II M.Sc.
Title of the Course	:	Core X Functional Analysis
Semester	:	IV
Course Code	:	MP234CC1

Course Code	L	Т	Р	Credits	Inst. Hours	Total Hours		Marks	
							CIA	External	Total
MP234CC1	6	-	-	5	6	90	25	75	100

Objectives:

1. To provide students with a strong foundation in functional analysis, focusing on spaces, operators and fundamental theorems.

2. To develop student's skills and confidence in mathematical analysis and proof techniques.

Course Outcome

CO	Upon completion of this course the students	PSOs	Cognitive	
	will be able to :	addressed	level	
CO - 1	able to demonstrate comprehension of the definitions and basic properties of Banach and Hilbert spaces	PSO - 1	K1(R)	
CO - 2	able to apply the Hahn Banach theorem to extend continuous linear functionals on subspaces to the whole space	PSO -2	K3(A)	
CO - 3	describe the concept of adjoint operators in Hilbert spaces and recognize properties of self-adjoint, normal, and unitary operators	PSO - 2	K2(U)	
CO - 4	analyze the concepts of determinants, spectrum, and the spectral theorem for operators in finite-dimensional spaces	PSO - 4	K4(An)	
CO - 5	evaluate the structure of commutative Banach algebras, including understanding the Gelfand Mapping and applications of spectral radius formula	PSO - 1	K5(E)	

Total contact hours:90 (Including lectures, assignments and tests)

Unit	Module	Topics	Teaching	Cognitive level	Pedagogy	Assessment/
			Hours			evaluation
Ŧ						
I	Banach S	Spaces				
	1.	Introduction to Banach space	1	K1 (R)	Introductory session	Simple definitions, Recall basic concepts
	2.	Definition and, examples of normed linear space and Banach Space, theorem on Normed linear space.	2	K1 (R) K2 (U)	Interactive PPT	MCQ
	3.	Properties of a Closed unit sphere, Holder's Inequality and Minkowski's Inequality.	3	K1 (R) K2 (U)	Lecture with illustrations	Group Discussion
	4.	Continuous linear transformations, theorems on Banach Space	4	K2 (U) K3(Ap)	Flipped Classroom	Evaluation through slip test
	5.	Definition of an Operator, Hahn Banach theorem, Theorem based on functional in N*, Problems based on Normed linear spaces	5	K1 (R) K3(Ap)	Computation al learning	MCQ using Nearpod
II	Banach s	paces				
	1.	Second conjugate space, induced functional, weak	4	K1 (R)		

	2.	topology, weak* topology, Strong topology, Theorem on isometric isomorphism of Open mapping	4	K3(Ap) K2 (U) K6(C)	Lecture using videos Blended learning	Evaluation through short test Home Assignment
		theorem and Open mapping theorem				
	3.	Projection, Closed Graph Theorem,	4	K1 (R) K3(Ap)	Lecture with illustration.	MCQ using slido
	4.	The conjugate of an operator, the Uniform, Boundedness theorem and theorem on isometric isomorphism	3	K2 (U) K3(Ap)	Computation al Learning	Online Assignment
III	Hilbert S	pace	I	I	I	
	1.	Hilbert Space, Properties of a Hilbert Space, Schwarz Inequality, Parallelogram law, Theorem on Convex subset of a Hilbert Space	3	K2 (U) K3(Ap)	Lecture with illustration	MCQ
	2.	Theorem on Orthogonal Complements and theorem on closed linear subspaces	3	K1 (R) K3(Ap)	Evaluative Learning	Formative Assessment Test I
	3.	Orthonormal set, Bessel's Inequality	5	K2 (U) K3(Ap)	Brain storming	Oral Test

		and Theorems on Orthonormal Sets				
	4.	Gram –Schmidt Orthogonalization Process, theorem on Conjugate Space H*	4	K1 (R) K3(Ap)	Interactive PPT	Short summary
IV	Adjoint o	operator				
	1.	Definition and small results, theorem on the properties of an adjoint operator	3	K1 (R) K4(An)	Lecture with illustration	Oral Test
	2.	Self-adjoint operator, theorems on self-adjoint operators	3	K2 (U) K4(An)	Interactive PPT Gamma AI	MCQ
	3.	Normal and Unitary Operators, theorems on Normal and Unitary Operators,	3	K1 (R) K4(An)	Blended learning	Slip Test
	4.	Projections, theorems on Projections and theorems on invariant subspace	3	K2 (U) K4(An)	Brain Storming	Online Quiz
	5.	Spectral theory, Definition of Spectrum of an operator and spectral theorem	3	K1 (R) K4(An)	Lecture using videos	Home assignment
V	General	Preliminaries on Bar	ach Algebra	15		

1.	The definition and	3	K1 (R)	Lecture with	MCQ Using
	some examples of			illustration	Nearpod
	Banach algebra		K2(U)		
2.	Theorems on	4	K1 (R)	Interactive	Class Test
	Regular and			PPT using	
	Singular elements		K3(Ap)	Gamma AI	
3.	The definition and	4	K1 (R)	Evaluative	Formative
	theorems on		$\mathbf{V} \mathbf{A}(\mathbf{A}, \mathbf{r})$	Learning	Assessment
	spectrum		K4(An)		Test II
4.	The formula and	4	K1 (R)	Lecture using	Ouiz
	theorems on	•		videos	X
	Spectral radius		K4(An)		

Course Focusing on Employability/Entrepreneurship/Skill Development : Skill Development

Activities(Em/En/SD) : 1. Evaluation through short test, Quiz competition

2. Peer teaching, Puzzles

Assignment: Preparation of quiz questions, Normal and Unitary Operators

Seminar Topic: Hilbert Space and Adjoint operator

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues : Nil

Sample questions: (Minimum one question from each unit)

Part-A

- 1. Which of the following is not a property of norm in general?
 - (a) $||x|| \ge 0$
 - (b) $||x + y|| \le ||x|| + ||y||$ (c) ||kx|| = k||x||
 - (d) ||x|| = 0 iff x = 0
- 2. State the condition for a normed linear space N to be reflexive.

3.Consider the statements:

- (i) A one-to-one linear transformation T of a Banach space onto itself is continuous then its inverse T^{-1} is automatically continuous.
- (ii) A non-empty subset X of an normed linear space N is bounded iff f(x) is a bounded set of number for each f in N^*

- a. Only (i) is true
- b. Only (ii) is true
- c. Both (i) and (ii) are true
- d. Neither (i) nor (ii) are true.
- 4. Let x, y be elements of a Hilbert space H, such that ||x|| = 3, ||y|| = 4 and ||x + y|| = 7. Then ||x y|| equals:
 - (a) 1
 - (b) 2
 - (c) 3
- $^{-}$ (d) $\sqrt{2}$
- 5. Choose the correct answer for the following norm $||T^*T|| =$
 - (a) $||T^*|| ||T||$ (b) $||T||^2$ (c) $||T^*||^2$ (d) $||T^2||$
 - 6. Give an example of a Banach Algebra

Part-B

- 1. For $1 \le p \le \infty$, prove that l_p^n is a Banach space.
- 2. If P is a projection on a Banach space B and if M and N are its range and null space, then show that M and N are closed linear subspaces of B such that $B = M \oplus N$.
- 3. State and prove Schwartz inequality.
- 4. Show that if T is normal then each M_i reduces T.
- 5. State and prove closed graph theorem.
- 6. Prove that $\sigma(x)$ is non-empty.

Part-C

- 1.If T is a linear transformation of N in to N^1 . Then the following conditions on T are all equivalent to one another.
 - (i) T is continuous
 - (ii) T is continuous at the origin
 - (iii) there exists a real number $K \ge 0$ with the property that $||T(x)|| \le K ||x||$ for every $x \in N$.

(iv) If $S = \{x : ||x|| \le 1\}$ is the closed unit sphere in N then its image T(S) is a bounded set in N.'

- 2. State and prove the open mapping theorem.
- 3. State and prove Bessel's inequality
- 4. State and prove the Uniform Boundedness Theorem

5. State and prove the spectral theorem.

6. Prove that $r(x) = \lim ||x^n||^{1/n}$

Head of the Department Dr. J. Anne Mary Leema

Course Instructor Dr. B. ShekinahHenry

Teaching Plan

Department	:	Mathematics (SF)
Class	:	II M.Sc. Mathematics (SF)
Title of the Course	:	Core XI: Probability Theory
Semester	:	IV
Course Code	:	MP234CC2

Course Code	т	т	D	G	Cradita	radits Inst Hours		Total Marks		
Course Coue	L	1	Г	3	Creans	mst. nours	Hours	CIA	External	Total
MP234CC2	6	-	-	-	5	6	90	25	75	100

Learning Objectives:

- To upgrade the knowledge of Probability theory.
 To solve NET /SET related Probability theory problems.

Course outcomes

СО	Upon completion of this course, the students will be able to:	Cognitive level
CO-1	recall the basic probability axioms, conditional probability, random variables, and related concepts	K1 (R)
CO-2	define Special Mathematical Expectations, The Binomial Distribution, and The Poisson Distribution.	K2 (U)
CO-3	define The Exponential, Gamma, and Chi-square Distributions, The Normal Distribution.	K2 (U)
CO-4	study Bivariate Distributions of discrete, and continuous types, The correlation coefficient, Conditional Distribution, and The Bivariate Normal Distribution.	K5 (E)
CO-5	discuss Functions of one random variable, Transformations of two random variables, The central limit Theorem, Chebyshve's inequality, and convergence in probability, Limiting moment-generating functions.	K3 (Ap) K4 (An)

Teaching plan

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Topics	Teaching	Cognitive	Pedagogy	Assessment/
Т	Probabil	itx	110015	level		Evaluation
1	1	Properties of probability	4	K1 (R)	Introductor y session, Lecture with illustration	Questioning, recall steps, concept definitions, concept with examples
	2	Methods of enumeration	5	K2 (U)	Group discussion, Lecture with illustration, Problem solving	Evaluation through short test, concept explanations, solve problems
	3	Conditional probability	4	K2 (U)	Lecture with illustration, Peer tutoring	Slip Test, concept explanations
	4	Independence events - Baye's theorem	5	K2 (U)	Lecture with illustration, PPT, Problem solving	Quiz using slido, concept explanations, solve problems
ΙΙ	Discrete	Distributions				
	1	Random variables of the discrete type	4	K2 (U)	Introductor y session, Lecture with illustration, Problem solving	Recall steps, questioning, concept definitions, concept with examples, solve problems
	2	Mathematical Expectation - Special Mathematical Expectation	4	K2 (U)	Lecture with illustration, Group discussion	Group discussion, concept explanations, Quiz using Nearpod

	3	Binomial Distribution	5	K2 (U)	Lecture with illustration	concept definitions, concept with examples
	4	Poisson Distribution	5	K2 (U)	Lecture with illustration, Problem solving	concept definitions, concept with examples, oral test, solve problems
III	Continue	ous Distributions				
	1	Random variables of continuous type	5	K2 (U)	Lecture with illustration	concept definitions, concept with examples, questioning, Group discussion
	2	Exponential, Gamma, and Chi-square distributions	7	K2 (U)	Lecture with illustration, Peer tutoring, problem solving	concept explanations, evaluation through short test, solve problems
	3	Normal Distribution	6	K2 (U)	Lecture with illustration, Group discussion	concept definitions, concept explanations, Quiz using Mentimeter
IV	Bivariate	Distributions	I	I	L	I
	1	Bivariate Distributions of discrete type	4	K5 (E)	Lecture with illustration	concept definitions, concept with examples, Assignment
	2	Correlation coefficient - Conditional distribution	5	K5 (E)	Lecture with illustration, Peer tutoring, problem solving	concept explanations, Quiz using Kahoot, solve problems

	3	Bivariate distributions of continuous type	4	K5 (E)	Lecture with illustration	concept explanations, Evaluation through short test
	4	Bivariate Normal Distribution	5	K5 (E)	Lecture with illustration, Group discussion	concept definitions, concept explanations
V	Distribut	tions of functions	of Random	variables	1	1
	1	Functions of one random variable	4	K3 (Ap)	Introductor y session, Lecture with illustration	concept explanations, concept definitions, concept with examples
	2	Transformation s of two random variable - Several random variables	4	K3 (Ap)	Lecture with illustration	concept definitions, concept explanations, slip test, seminar
	3	Central limit theorem - Chebyshve's inequality and convergence in probability	5	K4 (An)	Lecture with illustration, problem solving	concept explanations, Quiz using Quizizz, solve problems
	4	Limiting moment generating functions	5	K4 (An)	Lecture with illustration	concept definitions, Evaluation through short test

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Group discussion

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues: Nil

Assignment: Bivariate Distributions of discrete type

Seminar Topic: Transformations of two random variable, several random variables

Sample questions

Part A

- 1. Events A and B are _____ if and only if $P(A \cap B) = P(A)P(B)$.
- (a) dependent (b) independent (c) enumeration (d) permutation
- 2. State True or False: A Bernoulli experiment is a random experiment, the outcome of which can be classified in one of two mutually exclusive and exhaustive ways.
- 3. Complete: The gamma function is defined by _____.
- 4. State True or False: $0 \le f(x, y) \le 1$.
- 5. Complete: The mathematical expectation (or expected value) of $u(X_1, X_2, \ldots, X_n)$ is given by _____.

Part B

- 1. If *A*, *B*, and *C* are any three events, then prove that $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B)$
- 2. Let *X* have a Poisson distribution with a mean of $\lambda = 5$. Find $P(X \le 6)$, P(X > 5) and P(X = 6).
- 3. Find the moment generating function of exponential distribution.
- 4. Let the joint pmf of *X* and *Y* be defined by $f(x, y) = \frac{xy^2}{13}$, (x, y) = (1,1), (1,2), (2,2). Find the pmf of X and Y.
- 5. Say $X_1, X_2, ..., X_n$ are independent random variables and $Y = u_1(X_1) u_2(X_2) ... u_n(X_n)$. If $E[u_i(X_i)], i = 1, 2, ..., n$, exist, then prove that $E(Y) = E[u_1(X_1) u_2(X_2) ... u_n(X_n)] = E[u_1(X_1)]E[u_2(X_2)] ... E[u_n(X_n)]$.

Part C

Prove that (a) P(A|B) ≥ 0;
 (a) P(B|B) = 1;
 (c) If A₁, A₂, A₃, ... are mutually exclusive events, then P(A₁ ∪ A₂ ∪ · · · ∪ A_k |B) = P(A₁ |B) + P(A₂ |B)+ · · · +P(A_k |B), for each positive integer k, and P(A₁ ∪ A₂ ∪ · · · |B) = P(A₁ |B) + P(A₂ |B)+ · · · , for an infinite, but countable, number of events.

- 2. (a) If c is a constant, then prove that E(c) = c.
 (b) If c is a constant and u is a function, then prove that E[cu(X)] = cE[u(X)].
 - (c) If c_1 and c_2 are constants and u_1 and u_2 are functions, then prove that $E[c_1u_1(X) + c_2u_2(X)] = c_1E[u_1(X)] + c_2E[u_2(X)].$
- 3. If the random variable X is $N(\mu, \sigma^2), \sigma^2 > 0$, then prove that the random variable $V = \frac{(x-\mu)^2}{\sigma^2} = Z^2$ is $\chi^2(1)$.
- 4. If X and Y have a bivariate normal distribution with correlation coefficient ρ , then X and Y are independent if and only if $\rho = 0$.
- 5. State and prove Central limit theorem.

Head of the Department

Course Instructor

Dr.J.Anne Mary Leema

Dr.C.Jenila

TEACHING PLAN

Department: Mathematics(S.F)

Class: II M.Sc Mathematics

Title of the Course: Core Course XII: Numerical Analysis

Semester: IV

Course Code: MP234CC3

Course Code	L	Т	Р	S	Credits Inst.		Total Hours	Marks		
						Hours	nouis	CIA	External	Total
MP234CC3	5	-	-	-	5	6	90	25	75	100

Learning Objectives:

- 1. Understand fundamental numerical analysis techniques and their applications.
- 2. Develop proficiency in implementing numerical algorithms using computational tools.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	recall and list basic numerical methods covered in the course, including root-finding algorithms and interpolation techniques.	PSO - 1	K1(R)
CO - 2	understand the principles behind key numerical algorithms such as Newton's method, Gaussian elimination, and Runge-Kutta methods.	PSO - 2	K ₂ (U)
CO - 3	apply numerical methods to solve algebraic equations, interpolate data points, fit curves to data sets, and solve systems of linear equations.	PSO - 3	K ₃ (Ap)
CO - 4	analyse the accuracy, convergence, and stability of numerical solutions obtained using different techniques.	PSO - 3	K ₄ (An)
CO - 5	evaluate the suitability and effectiveness of various numerical methods for specific mathematical problems based on computational efficiency and solution quality.	PSO - 2	K ₅ (E)

Course Outcome

Teaching plan

Total Contact hours: 90 (Including lectures, assignments, and tests)

Unit	Module	Торіс	Teach ing Hours	Cogniti ve level	Pedagogy	Assessment/ Evaluation
Ι	1.	Solution of Algebraic and Transcendental Equations - Introduction –Iteration Method	4	K ₂ (U)	Introductory session, Group Discussion. PPT.	Evaluation through MCQ, True/False.
	2.	Newton-Raphson Method- Ramanujan's Method	4	K ₃ (Ap)	Blended Learning	Simple definitions, Recall steps,
	3.	Secant Method - Muller's Method.	4	K ₃ (Ap)	Interactive Method	Slip test
II	1.	Differences of a polynomial - Newton's formulae for Interpolation - Central Difference Interpolation formulae	3	K ₂ (U)	Inductive Learning	MCQ, True/False.
	2.	Gauss's central difference formulae - Stirling's formula - Bessel's formula	5	K ₂ (U)	Group Peer tutoring.	Evaluation through short tests.
	3.	Everett's formula - Relation between Bessel's and Everett's formulae - Practical Interpolation.	4	K ₃ (Ap)	Flipped Classroom	Presentations
III	1.	Least squares and Fourier Transforms - Introduction - Least squares Curve Fitting	5	K ₂ (U)	Analytic Method	Evaluation through short tests.
	2.	Procedure Fitting a straight line - Multiple Linear Least squares	5	K ₂ (U)	Group Discussion.	MCQ, True/False.

	3.	Linearization of Nonlinear	5	K4(An)	PPT, Review.	Evaluation
		laws - Curve fitting by				through short
		Polynomials.				tests, Seminar.
IV	1.	Numerical Linear Algebra -	3	K ₁ (R)	Peer tutoring, Transmissive	Evaluation
		Introduction - Triangular			method using videos.	through short
		Matrices - LU Decomposition of a matrix -				tests.
	2.	Solution of Linear systems -	4	K ₂ (U)	Flipped class room	Concept
		Direct Methods - Gauss				explanation
		elimination				
	3.	Necessity for Pivoting -	4	K ₃ (Ap)	Group Discussion.	MCQ,
		Gauss - Jordan method -				True/False.
		Modification of the Gauss				
		method to compute the				
		inverse				
	4	LU Decomposition method -	4	K ₄ (An)	Brainstorrming	Questioning
		Solution of Linear systems -	•	114(111)	Drainstorrining	Questioning.
		Iterative methods				
V	1	Numerical Solution of	F		Desertation I actions	Enclosed
V	1.	Ordinary Differential	5	$K_2(U)$	Peer tutoring, Lectures	Evaluation through short
		Equations - Solution by			using videos.	tests Seminar
		Taylor's series				tests, Semmar.
	2.	Euler's method - Runge -	5	K ₃ (Ap)	Interactive method	Seminar.
		Kutta methods - II order and				
		Iv order				
	3.	Numerical Integration –	5	K ₄ (An)	Analytic Method	Concept
		Trapezoidal Rule – Simpson's 1/3– Rule –				explanations,
		Simpson's 3/8– Rule.				Seminar.
		*				

Course Focussing on Employability/ Entrepreneurship/ Skill Development: (Mention):Skill Development

Activities (Em/ En/SD): Online Assignments, Open Book Test, and Group Discussions

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): (Mention): Nil

Activities related to Cross Cutting Issues:Nil

Assignment: Solution of Algebraic and Transcendental Equations -Introduction; Iteration Method(Online)

Seminar Topic: Differences of a polynomial - Newton's formulae for Interpolation - Central Difference Interpolation formulae.

Sample questions (minimum one question from each unit)

Part A

1. Say True or False: 'Every Polynomial equation of the nth degree has n and only n roots'

2. Everett's formula will be easier to apply, since it uses only the -----order differences.

3.Say True or False:" The given data may not always follow a linear relationship"

4. Define the norm of a vector.

5. The Second order Runge - Kutta formula is ------

Part B

1. Find a real root of equation $x^3 = 1 - x^2$ on the interval [0, 1] with an accuracy of 10⁻⁴

2. Derive the relation between Bessel's formula and Everett's formula.

3. Fit the second-degree parabola $y = a + bx + cx^2$ to the data (x_i, y_i); (1,0.63), (3, 2.05), (4, 4.08), (6, 10.78)

4. Factorize the matrix $A = \begin{pmatrix} -1 & 2 & 3 \\ 3 & 1 & 0 \\ 0 & 5 & 3 \end{pmatrix}$ in to LU form.

5. Derive Trapezoidal rule.

Part C

1. Use the Iterative method to find the real root of the equations x = 10(x-1). Correct to three decimal places.

- **2.** Derive Bessel's formula.
- 3. Explain Linearization of Non linear laws with example.
- 4. Derive a LU decomposition of a matrix.
- 5. Derive Simpson's 3/8 th rule.

Head of the Department

Dr. J. Anne Mary Leema

Course Instructor

Dr. J. Nesa Golden Flower

		Network Security and Cryptography
Class	:	II M.Sc. Mathematics
Title of the Course	:	Elective Course VI: a) Network Security and
		Cryptography
Semester	:	IV
Course code	:	MP234EC1

Course	-	_	_	~	~	Inst.	Total		Marks	
Code	L	Т	Р	S	Credits Hours		Hours Hours		External	Total
MP234EC1	4	-	-	-	3	4	60	25	75	100

Objectives: 1. To understand the fundamental principles and mechanisms of computer and

network security, including security attacks, services, and encryption techniques.

2. To apply cryptographic protocols and techniques, such as symmetric and

public-key encryption, message authentication codes, and user authentication

protocols, to design and implement secure communication systems and

protocols.

Course Outcomes

СО	Upon completion of this course the students	PSO	CL
	will be able to	addressed	
CO - 1	demonstrate proficiency in employing classical encryption	PSO - 1	K3, K4
	techniques, including symmetric cipher models, substitution		
	techniques, and transposition techniques, to secure data		
	transmission and storage.		
CO - 2	design and implement message authentication mechanisms to	PSO - 2	K3, K6
	verify the integrity and authenticity of transmitted data.		
CO - 3	analyze and identify various security attacks and vulnerabilities	PSO - 2	K4
	in computer and network systems.		
CO -4	evaluate the principles and algorithms of public-key	PSO - 3	K5
	cryptography for ensuring confidentiality, integrity, and		
	authenticity in communication channels.		

CO - 5	develop expertise in deploying user authentication protocols to	PSO - 4	K6
	authenticate remote users securely and manage access control		
	in networked environments.		

Total contact hours: 45 (Including assignments and tests)

Unit	Module	Торіс	Teach ing Hours	Cognitive level	Pedagogy	Assessment Evaluation
Ι		Compute	r and Net	work Security	y Concepts:	
	1.	Computer Security Concepts, Security Attacks	3	K2, K4	Lecture with Illustration	Questioning
	2.	Security Services, Security Mechanisms	2	K2	Lecture	Quiz using slido
	3.	Symmetric Cipher Model	3	K2, K4	РРТ	Problem Solving
	4.	Substitution Techniques -	3	K2, K4	PPT	Assignment – exercise problems
	5.	Transposition Techniques.	1	K4	Lecture	Slip test
Π		Publi	c-Key Cr	yptography a	nd RSA	
	1.	Principles of Public- key Cryptosystems	3	K3, K4	Lecture	Q & A
	2.	The RSA Algorithms	2	K3, K4	Lecture using PPT	Questioning
	3.	Diffie-Hellman Key Exchange, Elliptic Curve Cryptography	2	K2, K4	Lecture with Illustration	Problem Solving
	4.	Applications of Cryptographic Hash Functions, Two Simple Hash Functions,	2	K4	Lecture with Illustration	Assignment – exercise problems

		Requirements and				
		Security				
	5.	Hash Functions Based on Cipher Block Chaining	1	K4	Lecture	Slip test
	6	8	2	V A	L acture with	$O R \Lambda$
	0.	Secure Hash Algorithm – SHA-3.	Z	K 4	Illustration	Q&A
III		Me	essage Au	thentication (Codes	
	1.	Message Authentication Requirements	1	K2, K4	Lecture	Multiple choice questions using nearpod
	2.	Message Authentication Functions, Requirements for Message Authentication Codes	3	K2, K4	Lecture	Assignment – Solving Exercise problems
	3.	Security of MACs, MACs Based on Hash Functions	3	K2, K4	Lecture with illustration	Short test
	4.	MACs Based on Block Ciphers: DAA and CMAC	3	K4	PPT	Assignment
	5.	Digital Signatures	2	K2	PPT	Quiz
IV			User A	uthentication		
	1.	Remote User Authentications Principles	1	K4, K5	Lecture	Problem solving
	2.	Remote User Authentication using Symmetric Encryptions	1	K4, K5	Lecture	Q&A
	3.	Kerberos	3	K4, K5	Lecture with Illustration	Quiz
	4.	Remote User Authentication using Asymmetric Encryption	1	K4, K5	Lecture	Solving Exercise problems
	5.	Electronic Mail Security, Pretty Good Privacy	2	K4, K5	PPT	Solving Exercise problems

	6.	S/MIME	2	K2	Lecture	Questioning
	7.	Domain Keys Identified Mail.	2	K4	Lecture with illustration	Slip Test
V		,	Transpor	t-Level Secur	ity	
	1.	Web Security Considerations	2	K2	Lecture with Illustration	Short test
	2.	Transport Layer Security	2	K2	Seminar presentation	Quiz using slido
	3.	HTTPS, Secure Shell	3	K4	Seminar presentation	Short test
	4.	Wireless Security	3	K6	Seminar presentation	Explain concepts
	5.	Mobile Device Security	2	K2	Seminar presentation	Questioning

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Problem-solving, Seminar Presentation, Quiz Competition

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/Gender Equity): -Nil

Activities related to Cross Cutting Issues: -Nil

Assignment: Electronic Mail Security

Seminar Topic: Remote User Authentication using Symmetric Encryptions, Remote User Authentication using Asymmetric Encryption, Domain Keys Identified Mail

Sample Questions:

Part A

1. What is the primary goal of security services in computer security?

a) To define encryption standards.

b) To detect and prevent unauthorized access.

c) To provide confidentiality, integrity, and availability.

d) To develop new cryptographic algorithms.

- 2. Which of the following is true about Diffie-Hellman Key Exchange?
 - a) It provides confidentiality for messages.
 - b) It allows two parties to securely exchange a symmetric key.
 - c) It uses elliptic curves for encryption.
 - d) It is a symmetric key cryptosystem.
- 3. CMAC (Cipher-based Message Authentication Code) is based on which cryptographic primitive?

a) Public-key cryptographyb) Symmetric block ciphersc) Asymmetric encryption algorithmsd) Hash functions

- 4. A MAC based on a hash function is commonly referred to as: a) HMAC b) CMAC c) CBC-MAC d) SHA-MAC
- 5. The primary goal of DomainKeys Identified Mail (DKIM) is:
 - a) Encrypting email content
 - b) Verifying the sender's domain using digital signatures
 - c) Blocking spam emails
 - d) Providing email confidentiality

Part –B

1. Explain about Security attacks?

2. Explain the basic structure of RSA and outline the steps for key generation, encryption, and decryption.

3. What are the differences between MACs based on hash functions (HMAC) and MACs based on block ciphers (CMAC)?

4 What are the main features of Pretty Good Privacy (PGP) in ensuring email security?.

5. What are the key features of Transport Layer Security (TLS) and how does it secure communication over the web?

Part –C

1. Discuss classical encryption techniques in detail, including substitution and transposition techniques.

2. Discuss the role and applications of cryptographic hash functions. Explain how hash functions based on cipher block chaining work with an example.

3. Describe the structure and working of HMAC. How does it ensure message authentication?

4. Discuss the working of S/MIME in securing electronic mail. Highlight its advantages and limitations.

5. Explain HTTPS in detail. Discuss its architecture, working, and role in securing web communication. communication over the web?

Head of the Department
Dr. J. Anne Mary Leema

Course Instructor Dr. B. ShekinahHenry

Applications of Mathematics in Artificial Intelligence

Department	:	Mathematics (S.F)
Class	:	II M.Sc. Mathematics
Title of the Course	:	Elective Course VII: a) Applications of Mathematics In Artificial Intelligence
Semester	:	IV
Course Code	:	MP234EC4

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total		Marks	
							Hours	CIA	External	Total
MP234EC4	4	-	-	-	3	4	60	25	75	100

Learning Objectives:

1. Understand the fundamental mathematical concepts essential for AI.

2. Develop the ability to apply mathematical principles and

algorithms to solve realworld problems in AI.

Course Outcomes

On the s	On the successful completion of the course, students will be able to:						
1.	demonstrate proficiency in mathematical concepts as applied toAI	K3					
2.	apply mathematical algorithms to build, train, AI models using the programming language Python	К3					
3.	analyse and interpret the behaviour of AI models using mathematical techniques	K4					
4.	tackle a variety of AI challenges using mathematical reasoning and analytical techniques	К5					
5.	propose novel approaches and solutions to complex problems in AI	K6					

K3 – Apply; K4 - Analyse; K5 - Evaluate; K6 - Create

		Total contact hours: 75 (Including	instructio	n hours, assi	gnments and test	ts)								
Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation								
Ι	Introduction to Artificial Intelligence													
	1.	Overview of AI concepts and applications	4	K ₁ , K ₂	Lecture with illustration	Questioning								
	2.	Role of mathematics in AI	4	K ₁ , K ₂	Interactive PPT	Short test								
II	Linear Algebra and AI													
	1.	Vectors and matrices	3	K2	Brainstorming	Assignment								
	2.	Matrix operations and properties	3	K2, K3	Flipped classroom	Online Quiz using Quizizz								
	3.	Eigen values and eigenvectors	3	K4	Collaborative learning	Open book test								
	4.	Singular Value Decompositior (SVD)	n 3	K2, K3	Lecture with illustration	Class test								
III		Ca	lculus for	AI										
	1.	Differentiation and gradients	4	K2	Brainstorming	Quiz using Slido								
	2.	Optimization techniques	4	K2, K4	Blended Classroom	Solving Exercise Problems								
	3	Gradient Descent, Stochastic Gradient Descent	4	К3	Collaborati ve learning	Slip test								
	4	Calculus of variations	4	K2, K4	Blended Classroom	Assignment								
IV		Probability :	and Statis	tics for AI										
	1.	Probability distributions	3	K1 & K2	Interactive PPT	Questioning								
	2.	Bayes' Theorem and conditiona probability	1 3	К3	Lecture with illustration	Assignment								
	3.	Expectation, variance, covariance	3	К3	Seminar Presentation	Quiz using Slido								
	4.	Statistical inference	3	K2	Seminar Presentation	Short test								
V		Applicatio	ns and Ca	se Studies										
	1.	Real world applications of AI with a focus on mathematical principles	a 6	K2, K3	PPT using Gamma AI	Q & A								

2.	Case studies and projects	6	K2, K4	Flipped	Concept
				Classroom	explanations

Course Focussing on: Employability

Activities (Em/ En/SD): Problem-solving, Seminar Presentation, Quiz

Assignment: Solving Exercise Problems on Bayes' Theorem and conditional probability

Seminar Topic: Expectation, variance, covariance, Statistical inference

Sample Questions:

Part A

- 1. What is Artificial Intelligence (AI)?
- 2. Two vectors are ------ if they point in the same direction or in the opposite direction.
- 3. Find the derivative of the function $h(x)=(2x + 1)^4$ using chain rule.
- 4. The dot product is a special case of inner product.
- 5. Name an AI application that uses linear algebra for image processing.

Part B

- 1. Explain the basic difference between Artificial Intelligence and Machine Learning.
- 2. Prove that the system of linear equations $x_1 + x_2 + x_3 = 3$

$$x_1 - x_2 + 2x_3 = 2 2x_1 + 3x_3 = 1$$

has no solution.

3. Explain gradient of vectors with respect to matrices.

4.Descirbe Expectation and covariance.

5. Explain the role of probability in AI applications like weather forecasting.

Part C

- 1. Discuss the key components and working of an AI system. Provide examples to illustrate each component.
- 2. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$.

3. Consider the function h: $R \to R$ with h(t)= (fog) (t) with f: $R^2 \to R$ and $g: R \to R^2$, $f(x) = exp(x_1x_2^2), x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = g(t) = \begin{bmatrix} tcost \\ tsint \end{bmatrix}$. Find the gradient of h with respect to t.

4. State and prove Bayes' theorem.

5. Present a detailed analysis of a case study on AI in medical imaging. Explain how linear algebra and probability aid in processing and interpreting medical data.

Dr.J.Anne Mary Leema

Dr.J.Anne Mary Leema

Head of the Department

Course Instructor

Department	: Mathematics (S.F)
Class	: II M.Sc
Semester	: IV
Name of the Course	: Skill Enhancement Course III: Training For Competitive
	Examinations
Course Code	: MP234SE1

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total	Marks		
							Hours	CIA	External	Total
MP234SE1	4	-	-	-	2	4	60	25	75	100

Learning Objectives:

- 1. To solve problems needed for various competitive examinations.
- 2. To develop a comprehensive understanding of algebraic principles enablingproficient problemsolving in various Mathematical contexts.

Course Outcomes

On the successful completion of the course, students will be able to:						
1.	describe the concepts of topological properties of metric spaces.					
2.	associate the concept of continuity and connectedness	K2				
3.	apply Cauchy's integral formula and Maximum modulus principle to evaluate integral	К3				
4.	outline Liouville's theorem and open mapping theorem	K4				
5.	built the mental ability to face GATE, CSIR and SET examinations	K5				

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate

T T •4			Teaching	Cognitive	D	Assessment/				
Unit	Module	Торіс	Hours	level	Pedagogy	Evaluation				
Ι	Problems in metric spaces									
	1.	Problems in metric spaces, Distance function	3	K2	Blended Classroom	Assignments				
	2.	Problems in Convergence of sequences in metric spaces	3	К3	Discussion	MCQs				
	3.	Problems in Cauchy sequences	3	K3&K4	Interactive examples	Class tests				
	4.	Problems in Complete metric spaces	3	К3	Lecture	Quizzes				
II	Problems in metric spaces									
	1.	Problems in connected sets	3	K2&K3	Interactive examples	Home work				
	2.	Problems on Continuous functions on metric spaces, Intermediate value property	3	К4	Discussion	Short test				
	3.	Problems on Heine-Borel theorem, Compact subsets in metric spaces	3	K2&K3	Lecture with illustration	Quizziz				
	4.	Problems on totally bounded metric spaces	3	К3	Problem-solving	Peer review writing				
III	Problems in algebra of complex numbers									
	1.	Problems in algebra of complex numbers, polar form	2	К3	Problem-solving	Peer group review				
	2.	Problems on the complex plane -Geometric representation, Modulus- argument form	2	K3 & K4	Discussion	Worksheets				

	3.	Problems on Roots of	3	К3	Interactive	Solving previous					
		Radius of convergence			examples	questions					
	4.	Problems on Exponential, trigonometric, and hyperbolic functions in complex plane	2	K3 & K4	Lecture with illustration	Quizzes					
	5.	Problems on Analytic Functions, Cauchy-Riemann equations	3	КЗ	Problem-solving	Assignments					
IV		Problems in contour integral									
	1.	Problems in contour integral	2	K3	Problem solving	Group discussion					
	2.	Cauchy theorem Cauchy's integral formula	3	К3	Lecture with illustration	Quiz using Kahoot					
	3.	Liouville's theorem	2	K4	Lecture with illustration	Class test					
	4.	Maximum modulus principle Schwarz lemma	3	K4	Problem solving	Brainstorming					
	5.	open mapping Theorem	2	K4	Lecture with illustration	Group discussion					
		·		L							
V	Problem in Taylors Series, Laurents Series, calculus of residues, Conformal mappings, Mobius transformations										
	1.	Problems in Taylors Series, Laurents Series	4	K2&K3	Interactive PPT	Presentation					
	2.	Problems in calculus of residues	4	К3&к4	Group Discussion	Solving previous year NET/SET questions					
	3.	Problems in Conformal mappings, Mobius transformations	4	K2&K3	Problem-solving	Assignments					
		1	1	I		1					

Course Focussing on Skill Development

Activities (Em/ En/SD): Seminar, Quizzes, Group Discussions

Assignment: Solving problems in previous year NET/SET questions

Seminar Topic: Analytic Functions, Calculus of residues

Sample questions

Part A:

1.Say true or false: In any metric space every convergent sequence is a Cauchy sequence.

2.A metric space is said to be totally bounded if _____

a) Every Cauchy sequence converges.

b) For every ϵ >0, the space can be covered by finitely many ϵ -balls.

c) It is compact.

d) It contains no infinite subset.

3. If z=3+4i, then |z|² is _____ a) 7 b) 25 c) 10 d) 5

4. What does Liouville's Theorem state about bounded entire functions?

5. The radius of convergence for the Taylor series of ln(1+z) at z=0 is ______
a) 1
b) ∞

c) Valid for |z|<1d) Not valid at z=1

Part B:

1. Let $\{x_n\}$ be a sequence in R defined by $x_{n+1=\frac{x_n}{2}}$. If $x_{1=2}$, then discuss about the convergence of the sequence.

2. Check whether the following sets are connected in R under the standard metric?
a) [0,1]∪[2,3]
b) (0,1)
c) [0,1)
3.Test the convergence of the series ∑_{n=0}[∞] zⁿ/n!.

4.Using Schwarz's Lemma, show that a holomorphic self-map of the unit disk that fixes the origin has modulus less than or equal to 1.

5. For which type of singularity does the Taylor series converge?

Part - C

1. Check whether each of the following metric space is complete and bounded?

a) R under d(x,y)=|x-y|
b) Q under d(x,y)=|x-y|
c) [0,1] under d(x,y)=|x-y|
d) C under d(x,y)=|x-y|

2. Let $X = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ with the Euclidean metric. Check the validity of each of the following statements

- a) X is connected.b) X is compact.c) X is not totally bounded.d) X is complete.
- 3. Check the validity of each statement:
- The Cauchy-Riemann equations guarantee:
- a) Differentiability in the complex sense.
- b) Analyticity of a function.
- c) Continuity of u(x,y) and v(x,y)
- d) Laplace's equation is satisfied.

4. Prove Liouville's Theorem and deduce that every bounded analytic function on the entire complex plane is constant.

5. Check the validity of each of the following statements:

For $f(z) = e^{z} + sin(z)$, the Taylor expansion:

a) Contains both odd and even powers of z.

b) Converges for all z in \mathbb{C} .

- c) Includes coefficients involving 1/n!.
- d) Has no radius of convergence restriction.

Head of the Department:

Course Instructors:

Dr. J.Anne Mary Leema Dr. J.Anne Mary Leema Dr.C.Jenila, Dr.J.Nesa Golden Flower