
Holy Cross College (Autonomous), Nagercoil

Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35

Affiliated to **Manonmaniam Sundaranar University, Tirunelveli**

DEPARTMENT OF PHYSICS

TEACHING PLAN

ODD SEMESTER 2024 -2025

Vision

Envisions training students for quality Physics education and holistic development empowered to meet challenges and embark on luxuriant careers.

Mission

- ❖ To produce competent graduates infused with professionalism, ethical values and social responsibility.
- ❖ To prepare students to accentuate learning for life.
- ❖ To foster a research environment, to keep up with global development in Science.
- ❖ To evolve strategies for the growth of the department towards excellence.

PG PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

	Upon completion of M. Sc. Physics Programme, the	Mapping
PEOs	graduates will be able to:	with Mission
PEO1	apply scientific and computational technology to solve social	M1, M2
	and ecological issues and pursue research.	
PEO2	continue to learn and advance their career in industry both in	M4 & M5
	private and public sectors.	
PEO3	develop leadership, teamwork, and professional abilities to	M2, M5 &
	become a more cultured and civilized person and to tackle the	M6
	challenges in serving the country.	

PG PROGRAMME OUTCOMES (POs)

POs	Upon completion of M.Sc. Physics Degree Programme, the graduates will be able to:	Mapping with PEOs			
PO1	apply their knowledge, analyze complex problems, think independently, formulate and perform quality research.	PEO1 & PEO2			
PO2					
PO3	develop a multidisciplinary perspective and contribute to the knowledge capital of the globe.	PEO2			
PO4	develop innovative initiatives to sustain ecofriendly environment	PEO1, PEO2			
PO5	through active career, team work and using managerial skills guide people to the right destination in a smooth and efficient way.	PEO2			
PO6	employ appropriate analysis tools and ICT in a range of learning scenarios, demonstrating the capacity to find, assess, and apply relevant information sources.	PEO1, PEO2 & PEO3			
PO7	learn independently for lifelong executing professional, social and ethical responsibilities leading to sustainable development.	PEO3			

PROGRAMME SPECIFIC OUTCOMES (PSOS)

PSO	Upon completion of M.Sc. Physics Degree Programme, the graduates of Physics will be able to:	Mapping with POs
PSO1	have well– defined knowledge on theoretical concepts and experimental methods of advanced physics.	PO1 & PO2
PSO2	acquire skills in performing advanced physics experiments and projects using modern technology and numerical simulations.	PO3, PO4 & PO5
PSO3	develop and communicate analytical skills ranging from nuclear to cosmology to progress in the expanding frontiers of physics.	PO6
PSO4	apply and interpret physics principles in various physical observations. Demonstrate proficiency in analyzing, applying and solving Scientific problems.	PO1, PO7
PSO5	use the techniques, skills, and modern technology necessary to communicate effectively with professional and ethical responsibility. Understand the impact of Physics in a global, economic, environmental, and societal context.	PO7

Department : Physics

Class : I M.Sc. Physics

Title of the Course : Core: I Mathematical Physics

Semester : I

Course Code : PP231CC1

Course Code	L	Т	P	S	Credits	Inst. Hours	Total Hours	Marks		
PP231CC1	7	-	-	-	_	_	105	CIA	External	Total
					5	7		25	75	100

Objectives

- To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program.
- To extend their manipulative skills to apply mathematical techniques in their fields.
- To help students apply Mathematics in solving problems of Physics.

Course outcomes

CO	Upon completion of this course, students will	PSO	G
СО	be able to:	addressed	Cognitive level
CO-1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them.	PSO - 3	K1(R) & K2(U)
CO-2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	PSO - 2	K2(U) & K3(Ap)
CO-3	Analyze characteristics of matrices and its different types, and the process of diagonalization.	PSO - 1	K4(An)
CO-4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology.	PSO - 2	K4(An) & K5(E)
CO-5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems.	PSO - 1	K2(U) & K5(E)

Teaching plan Total Contact hours: 105 (Including lectures, assignments and tests)

T T •4		T	Teaching	Cognitive	D 1	Assessment/
Unit	Module	Topic	Hours level		Pedagogy	Evaluation
I	Linear V	Vector Space				
	1.	Basic concepts – Definitions- examples of vector space – Linear independence.	4	K2(U)	Introductory session, Lecture using Chalk and talk, PPT.	Evaluation through short test, MCQ, True/False, Short essays.
		Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –linear operators – Dual space- ket and bra notation	6	K1(R)	Lecture using Chalk and talk, PPT,Discussion , Mind mapping,	Concept definitions, MCQ.
		orthogonal basis – change of basis – Isomorphism of vector space – projection operator	6	K3(Ap)	Lecture using Chalk and talk, PPT.	Evaluation through short test, MCQ, True/False, Explain Principle.
	4.	Eigen values and Eigen functions –	3	K5(E)	Problem solving.	Evaluation through Problem solving
		Direct sum and invariant subspace – orthogonal transformations and rotation.	6	K4(An)	Lecture using Chalk and talk, Problem Solving, PPT.	Evaluation through Problem solving Definition.
II	Complex	c analysis				1
		Review of Complex Numbers -de Moivre's theorem.	3	K2(U)	Introductory session, Lecture	Evaluation through short

	2.	Complex Variable- Differentiability - Analytic functions-	3	K4(An)	using Chalk and talk, PPT. Problem solving, Demonstration.	test, MCQ, True/False, Short essays. Statements, MCQ, Problem solving.
	3.	Harmonic Functions. Functions of a Complex Integration-Contour Integration, Cauchy – Riemann conditions – Singular points .	5	K5(E)	Problem solving, Mind mapping,	Evaluation through short test, MCQ, True/False, Problem solving.
	4.	Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles	5	K5(E)	Lecture using Chalk and talk, Problem Solving, PPT.	Evaluation through short test, Long derivation, Problem solving.
	5.	Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems - Parallel plates and coaxial cylinders.	5	K3(Ap)	Lecture using Chalk and talk, Problem Solving, PPT.	Evaluation through Problem solving
III	Matrice	· · · · · · · · · · · · · · · · · · ·	-			
	1.	Types of Matrices and their properties, Rank of a Matrix .	5	K5(E)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through short test, Concept definitions, MCQ.
	2.	Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix.	3	K5(E)	Lecture , discussion , PPT, Problem Solving	Concept definitions, MCQ, Problem Solving.

	3.	Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices.	3	K4(An)	Lecture using Chalk and talk, , Derivation.	Evaluation through short test, MCQ, True/False, Problem Solving.
	4.	Characteristic equation - Eigen values and Eigen vectors.	5	K5(E)	Problem solving,	Evaluation through Problem Solving .
	5.	Cayley–Hamilton theorem – Diagonalization.	5	K5(E)	Group Problem Solving	Evaluation through Problem Solving
IV	Fourier	Transforms and Laplace	Transforms			
	1.	Definitions -Fourier transform and its inverse.	3	K1(R)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through short test, MCQ, True/False, Problem Solving.
	2.	Transform of Gaussian function and Dirac delta function - Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem.	5	K5(E)	Lecture, discussion, PPT, Problem Solving	Evaluation through Problem Solving.
	3.	Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string.	4	K3(Ap)	Lecture using Chalk and talk, discussion, Problem Solving.	Evaluation through Definition, MCQ, Problem Solving
	4.	Laplace transform and its inverse - Transforms of	2	K5(E)	Lecture using Chalk and talk , discussion, Derivation.	Long Derivations, MCQ, Problem

		derivatives and integrals.				Solving
	5.	Differentiation and integration of transforms - Dirac delta functions .	3	K5(E)	Lecture , discussion , PPT, Derivation.	Long Derivations, MCQ, Problem Solving
	6.	Application - Laplace equation: Potential problem in a semi - infinite strip.	4	K3(Ap)	Lecture , discussion , PPT, Derivation.	Long Derivations, MCQ, Problem Solving
V	Differe	ntial Equations				
	1.	Second order differential equation-Sturm-Liouville's theory .	4	K2(U)	Lecture discussion, PPT	Evaluation through Definition, MCQ, Problem Solving.
	2.	Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations	4	K3(Ap)	Lecture using Chalk and talk , d Problem Solving , Derivation.	Evaluation through Definition, MCQ, Problem Solving
	3.	Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties	4	K5(E)	Lecture discussion, PPT, Problem Solving	Longer essay, MCQ, Problem Solving
	4.	Dirac delta function- One dimensional Green's function and Reciprocity theorem	4	K5(E)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through Definition, MCQ, Problem Solving.
	5.	Sturm-Liouville's type equation in one dimension & their Green's function.	5	K5(E)	Group discussion, PPT, Problem Solving	Evaluation through Definition, MCQ, Problem Solving.

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability Activities (Employability): Hands on Training on Problem solving using software.

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues:-

Assignment: State and derive the Generating function of the Hermite polynomials.

Seminar Topic: Problem solving in FT and LT

Sample questions (minimum one question from each unit)

Part A

- 1. State the difference between ket and bra notation (K2)
- 2. How to find the Singular points at Z=0? (K3)
- 3. Check the hermitian condition of 2x3 matrix. (K4)
- 4. Apply the Transform of Gaussian function. (K5)
- 5. State one dimensional greens theorem. (K2)

Part B

- 6. State and derive Gram-Schmidt orthogonalization procedure. (K2)
- 7. State and prove Cauchy's integral theorem. (K2)
- 8. Derive Cayley–Hamilton equation and the application in Diagonalization. (K4)
- 9. Derive the equation for Flow of heat in an infinite and in a semi infinite medium. (K3)
- 10. Find out the solution for Legendre polynomials. (K5)

Part C

- 11. Define vector space and explain the meaning of complete orthonormal set of basis vectors.(K1)
- 12. Derive Cauchy Integral Formula.(K2)
- 13. Analyze the characteristics of the given matrices and find out Eigen value and Eigen function. (K4)
- 14. Apply Fourier transform and found out the relation for heat flow in an infinite and a semi infinite medium.(K3)
- 15. Solve Hermite differential equation.(K6)

Dr.C.Nirmala Louis Head of the Department Dr.M.Abila Jeba Queen & Dr.R.Krishna Priya Course Instructor

Department : Physics Class : I M.Sc. Physics

Title of the Course: Core Course II: CLASSICAL MECHANICS

AND RELATIVITY

Semester : I Course Code: PP231CC2

Course	T	т	р	S	Cnadita	Inst. Hours	Total Hours		Marks	
Code	L	1	Г	3	Credits	mst. nours		CIA	External	Total
PP231CC2	6	-	-	•	5	6	90	25	75	100

Objectives

1. To understand fundamentals of classical mechanics.

2. To understand Lagrangian and Hamiltonian formulation of mechanics and apply it to solve equation of motion.

Course outcomes

Course Outcomes

Upon	Upon completion of this course the students will be able to:					
CO1	Understand the fundamentals of classical mechanics.	K2				
CO2	Apply the principles of Lagrangian mechanics to solve the equations of motion of physical systems.	К3				
CO3	Apply the principles of Hamiltonian mechanics to solve the equations of motion of physical systems.	К3				
CO4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	K2, K4				
CO5	Understand and apply the principles of relativistic kinematics to the mechanical systems.	K2, K3				

Teaching plan

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Topic	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
I	Princi					
	1.	Mechanics of a single particle — mechanics of a system of particles	4	K2(U)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions Descriptive
	2.	Conservation laws for a system of particles – constraints	3	K2 (U)	Lecture, Group Discussion and Problem Solving	answers MCQ, True/False, Concept explanations,
	3.	Holonomic & non- holonomic constraints	3	K2 (U)	Lecture, Group Discussion and Problem Solving	Formative assessment I
	4.	Generalized coordinates – configuration space	3	K2 (U)	Group Discussion and lecture	
	5.	Transformation equations	3	K2 (U)	Lecture using Chalk and talk	
	6.	Principle of virtual work	2	K2 (A)	Lecture using Chalk and talk	
II		Lagrangian Formulation				Evaluation through: Online
	1.	D'Alembert's principle –	5	K2 (U)	Lecture, Group Discussion and Problem Solving	quiz, short questions Descriptive answers
	2.	Lagrangian equations of motion for conservative systems	6	K3 (Ap)	Lecture, Group Discussion and Problem Solving	MCQ, True/False, Concept explanations,
	3.	Applications: (i) simple pendulum (ii) Atwood's Machine (iii) projectile motion	7	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Formative assessment I
III	1.	Hamiltonian Formulation: Phase space – Cyclic coordinates	2	K2 (U)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions Descriptive
	2.	Conjugate	4	K3 (Ap)	Lecture, Group	answers

	3.	momentum — Hamiltonian function Hamilton's canonical equations of motion — applications	6	K3 (Ap)	Discussion and Problem Solving Lecture, Group Discussion and Problem Solving	MCQ, True/False, Concept explanations, Formative assessment I
	4.	Simple pendulum - one dimensional simple harmonic oscillator- motion of particle in a central force field	6	K3 (Ap)	Lecture, Group Discussion and Problem Solving	
IV	1.	Small Oscillations: Formulation of the problem—	6	K2 (U)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions
	2.	Transformation to normal coordinates	6	K4 (A)	Lecture, Group Discussion and Problem Solving	Descriptive answers MCQ, True/False,
	3.	Frequencies of normal modes — linear triatomic molecule.	6	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Concept explanations, Formative assessment II
V	1.	Relativity: Inertial and non- inertial frames	3	K2 (U)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions
	2.	Lorentz transformation equations	4	K4 (A)	Lecture, Group Discussion and Problem Solving	Descriptive answers MCQ, True/False,
	3.	Length contraction and time dilation – relativistic addition of velocities –	3	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Concept explanations, Formative assessment II
	4.	Einstein's mass- energy relation – Minkowski's space	4	K3 (Ap)	Lecture, Group Discussion and Problem Solving	
	5.	four vectors – position, velocity, momentum, acceleration and force in for vector	4	K3 (Ap)	Lecture using Chalk and talk ,Introductory session	

	notation and their transformations.		
		K3 (Ap)	

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/En/SD): Project

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity):-

Activities related to Cross Cutting Issues : -

Assignment : Normal Coordinates- Formulation : Online Assignment

Seminar Topic: Frames of Reference

Sample questions (minimum one question from each unit)

Part A

- 1. The total linear momentum of the system is equal to the product of total mass of the system and the velocity of ______.(K2-U, CO1)
- 2. An expression for principle of virtual work is ______. (K3- Ap, CO2)
- 3. The equation of motion of a simple pendulum is _____.(**K3 Ap, CO2**)
- 4. The Hamiltonian of a one dimensional harmonic oscillator is -----(**K4- A**, **CO3**)
- 5. The frequency associated with the period of motion is -----(**K2- U, CO5**)

Part B

- 1. Interpret work- kinetic energy theorem. (**K2-U, CO1**)
- Solve the equation of motion of a simple pendulum by using Lagrangian method and hence deduce the formula for its time period for small amplitude oscillations.(K3 – Ap, CO2)
- 3. Explain the physical significance of Hamiltonian. (K4- A, CO3)
- 4. Deduce normal coordinates and normal frequencies of vibration. (**K3-Ap, CO2**)
- 5. Explain Lorentz transformation. (**K2-U, CO-2**)

Part C

- 1. Classify constraints with suitable examples.(**K2 U, CO1**)
- 2. Illustrate the Lagrangian equation of motion using D'Alemberts principle. (K3 Ap, CO2)
- 3. Formulate the Hamilton's Canonical equation of motion.(**K4- A, CO3**)
- 4. Discuss the free vibrations of linear triatomic molecule. (**K3 Ap, CO2**)
- 5. Explain Minkowski's space. (K4 A, CO4)

Head of the Department

Course Instructor

Dr. C. Nirmala Louis

Dr. M. Priya Dharshini, Dr. A. Lesly Fathima & Dr. P. Aji Udhaya

Department : Physics

Class : I M.Sc Physics

Title of the Course: Core-III: Linear and Digital ICs and Applications

Semester : I

Course Code : PP231CC3

C C- 1-	I. T		ъ	C 124-	I4 II	Total	Marks		
Course Code	L	1	P	Creatts	Inst. Hours	Hours	CIA	External	Total
PP231CC3	6	•	•	4	6	90	25	75	100

Objectives

• To introduce the basic building blocks of linear integrated circuits.

• To introduce the concepts of waveform generation and introduce one special function ICs.

Course outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	Remember the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems	PSO - 1	K1 & K2
CO - 2	Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits.	PSO - 2	K2 & K3
CO - 3	Apply knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.	PSO - 3	K2 & K5
CO - 4	Analyze about various techniques to develop A/D and D/A converters.	PSO - 3	K4 & K5
CO - 5	Evaluate and to create the knowledge about the CMOS logic, combinational and sequential circuits	PSO - 4	K3 & K6

Teaching plan

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
I	1.	Introduction; Classification of IC's	4	K1(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short
	2.	basic information of Op-Amp 741 and its features,	4	K1(R)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	test Class Test Multiple choice
	3.	the ideal Operational amplifier, Op-Amp internal circuit	6	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	questions Quiz Formative assessment
	4.	Op-Amp; Characteristics.	4	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	Short Summary or Overview
II	5.	Solution to simultaneous equations and differential equations	5	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	6.	Instrumentation amplifiers, V to I and I to V converters.	5	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	questions Quiz Formative assessment
	7.	Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider	5	K3(Ap)	Lecture using Chalk and talk ,Introductory session, Group Discussion,	Short Summary or Overview

					Mind mapping,	
					11 6	
	8	Comparators,	3	K3(Ap)	Peer tutoring,	
		Schmitt trigger,			Lecture using	
		Multivibrators,			videos, Problem	
		Triangular and			solving,	
		Square waveform			Demonstration,	
777		generators	5	T/O(II)	PPT, Review	T 1 (
III	9	Introduction,	3	K2(U)	Lecture using Chalk and talk	Evaluation
		Butterworth filters				theoryahi ahaut
		- 1st order, 2nd			,Introductory	through: short
		order low pass and high pass filters			session, Group Discussion,	test Class Test
		ingii pass inters			Mind mapping,	test Class Test
					wind mapping,	Multiple choice
	10	band pass, band	5	K2(U)	Peer tutoring,	With the choice
	10	reject and all pass		112(0)	Lecture using	questions Quiz
		filters.			videos, Problem	1
		inters.			solving,	Formative
					Demonstration,	
					PPT, Review	assessment
	11	Introduction to IC	5	K5(E)	Lecture using	
		555 timer,			Chalk and talk	Short Summary
		description of			,Introductory	
		functional diagram,			session, Group	or Overview
		monostable and			Discussion,	
		astable operations			Mind mapping,	
		and applications,				
		Schmitt trigger				
	12	PLL - introduction,	3	K5(E)	Peer tutoring,	
		basic principle,			Lecture using	
		phase			videos, Problem	
		detector/comparato			solving,	
		r, voltage			Demonstration,	
		controlled oscillator (IC			PPT, Review	
		`				
		566), low pass filter, monolithic				
		PLL and				
		applications of				
		PLL				
IV	13	Introduction,	5	K4(An)	Lecture using	Evaluation
		Series Op-Amp		` '	Chalk and talk	
		regulator, IC			,Introductory	through: short
		Voltage Regulators			session, Group	
		_			Discussion,	test Class Test
					Mind mapping,	
						Multiple choice
	14	IC 723 general	5	K4(An)	Peer tutoring,	
					Lecture using	

	15	purpose regulators, Switching Regulator. Introduction, basic DAC techniques - weighted resistor DAC, R-2R ladder DAC, inverted R- 2R DAC, A to D converters parallel comparator	5	K5(E)	videos, Problem solving, Demonstration, PPT, Review Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping, Peer tutoring,	questions Quiz Formative assessment Short Summary or Overview
		type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.			Lecture using videos, Problem solving, Demonstration, PPT, Review	
V	17	Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154)	5	K3(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	18	BCD to 7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154)	5	K3(Ap)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	questions Quiz Formative assessment Short Summary
	19	Sequential circuits using TTL 74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers	5	K6(C)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	or Overview
	20	Universal Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).	3	K6(C)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	

Course Focussing on Employability/ Entrepreneurship/ Skill Development: **Entrepreneurship** Activities (Em/En/SD): Display on IC collection Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability Activities related to Cross Cutting Issues : -Assignment: Four-bit parallel adder (IC 7483) Seminar Topic: Multiplier and Divider Sample questions (minimum one question from each unit) Part A 1. If the output voltage is feedback to the non-inverting input terminal as part of the input, then the feedback is ___ (K1-R, CO-1) 2. Which one of the following is an electronic circuit that generates square waves? (**K2-U**, **CO-2**) b) Oscillator c) Multivibrator a) Amplifier d) Conductor 3. A ----- clipper removes the positive half-cycles of the input voltage. (**K2-U, CO-3**) 4. The practical use of binary-weighted digital-to-analog converters is limited to (**K4- An, CO 5**) a) 4-bit D/A converters b)2-bit D/A converters c) 8-bit D/A converters d) Op-amp comparators 5. A circuit with many inputs but only one output is _____(K3-Ap, CO-5) a) Multiplexer b) Demultiplexer c) Encoder d)Decoder Part B 1. Compare inverting and non-inverting operational amplifier.(K2-U, CO-1) 2. Determine the output waveform of a bistable multivibrator. (**K2-U, CO-2**). 3. Write on quantization in signal conversion (K5- E, CO- 3) 4. Discuss in detail about the Schmitt trigger. (K4-An, CO-4) 5. What is a flip-flop, compare the truth table of RS flip-flop implementing using NOR and NAND gates. (K3-Ap, CO-5)

Part C

- 1. Differentiate how the op-amp acts as an integrator and differentiator (**K2-U, CO-1**)
- 2. Determine the output waveform of a astable multivibrator. (K3-Ap, CO-2)
- 3. Explain the working of active filters as low, high and band pass first and second order filters. (K5- E, CO- 3)
- 4. Explain in detail with circuit diagram, the construction and working of an op-amp as the Triangular wave generator. (**K5- E, CO -4**)
- 5. Describe the working of AM receiver using a Phase-Locked Loop.(K6-C,CO-5)

Dr. C. Nirmala Louis Head of the Department Dr. S. Sonia & Dr. S. Virgin Jeba

Course Instructor

Department : Physics

Class : I M.Sc. Physics

Title of the Course : Elective : Energy Physics

Semester : I

Course Code : PP231EC1

G G . 1.		TI.	ъ	C - 124	T. A. II.	Total		Marks	
Course Code	L	I	P	Credits	Inst. Hours	Hours	CIA	External	Total
PP231DE1	5	-	-	3	5	75	25	75	100

Objectives

- To learn about various renewable energy sources, the techniques useful for the conversion of biomass into useful energy
- To know the ways of effectively utilizing the oceanic energy, utilization of solar energy.
- To study the method of harnessing wind energy and its advantages.

Course outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	To identify various forms of renewable and non-renewable	PSO-1	U
	energy sources		
CO 2	Understand the principle of utilizing the oceanic energy and	PSO-2	U
	apply it for practical applications.		
CO 3	Discuss the working of a windmill and analyze the advantages of	PSO-3	E
	wind energy.		
CO 4	Distinguish aerobic digestion process from anaerobic digestion.	PSO-6	C
CO 5	Understand the components of solar radiation, their measurement	PSO-1	U
	and apply them to utilize solar energy.		

Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests)

Uni t	Module	Topic	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
I	INTROD	UCTION TO ENERGY	SOURCES			
	1	Conventional and non-conventional energy sources and their availability	4	K1(R)	PPT, Illustration	Evaluation through: Online quiz, Problem solving short
	2	Prospects of Renewable energy sources—Energy from other sources	4	K3(Ap)	Group discussion	questions Descriptive answers MCQ,
	3	Chemical energy Nuclear energy	3	K5(E)	PPT, Illustration,	True/False, Short essays,
	4	Energy storage and Distribution	4	K6(C)	Group discussion	Concept explanations, Short summary or overview
						Formative assessment I
II		FROM THE OCEANS	1 -	T		
	1	Energy utilization— Energy from tides	4	K2(U)	PPT, Derivation discussion	Evaluation through: Online quiz,
	2	Basic principle of tidal power	4	K3(A)	Group discussion, PPT	Problem solving short questions Descriptive
	3	Utilization of tidal energy	3	K4(An)	Illustration,	answers Formative
	4	Principle of ocean thermal energy conversion systems.	4	K5(E)	Group discussion, PPT, Illustration	assessment I
III	WIND E	NERGY SOURCES	•	•	•	
	1	Basic principles of wind energy conversion	4	K2(U)	Discussion	Evaluation through: Online quiz, Problem

	3	Power in the wind– forces in the Blades Wind energy conversion–	3	K3(Ap) K6(C)	Illustration, PPT Group discussion,	solving short questions Descriptive answers MCQ, True/False, Short essays,
		Advantages and disadvantages of wind energy			PPT	Concept explanations, Short
	4	Conversion systems (WECS) - Energy storage–Applications of wind energy.	4	K4(An)	PPT, Illustration	summary or overview Formative assessment I/II
IV	ENERGY	FROM BIOMASS				
	1	Biomass conversion Technologies— wet and dry process—	4	K1(R)	Discussion	Evaluation through: Online quiz, Problem solving short questions
	2	Photosynthesis - Biogas Generation: Introduction–basic process:	4	K3(Ap)	Group discussion, PPT	Descriptive answers MCQ, True/False,
	3	Aerobic and anaerobic digestion – Advantages of anaerobic digestion–	3	K5(E)	Group Discussion	Short essays, Concept explanations, Short
	4	Factors affecting bio digestion and generation of gasbio gas from waste fuel— properties of biogas-utilization of biogas.	4	K6(C)	Group Discussion	summary or overview Formative assessment II
V	SOLAR E	ENERGY SOURCES		'		
	1	Solar radiation and its measurements	4	K2(U)	PPT	Evaluation through: Online quiz, Problem
	2	solar cells: Solar cells for direct conversion of solar energy to electric powers	4	K1(R)	Group discussion, PPT	solving short questions Descriptive answers MCQ,

3	solar cell parameter-	3	K3(Ap)	Group	True/False,
	solar cell electrical			Discussion	Short essays,
	characteristics-				Concept
	Efficiency-solar				explanations,
	water Heater				Short
4	Solar distillation—	4	K5(E)	Group	summary or
	solar cooking-solar			discussion,	overview
	greenhouse – Solar			PPT	
	pond and its				Formative
	applications				assessment II

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/En/SD): Project, Exhibition, Field visit

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability**

Activities related to Cross Cutting Issues: - Industrial Visit

Assignment: (Mention Topic and Type): Current global issues – Submission through Google Classroom

Seminar Topic: (if applicable): Sustainable Energy for Future

Sample questions (minimum one question from each unit)

Part A (1 mark)

- 1. What is the correct sequence of energy change from one form to another in a thermal power station when coal is used for generating electricity? (**K2-U, CO 1**)
 - a) Heat energy > Chemical energy > Electrical energy
 - b) Mechanical energy > Electrical energy > Heat energy
 - c) Heat energy > Mechanical energy > Electrical energy
 - d) Chemical energy >Heat energy >Mechanical energy
- 2. Energy Conservation Day is celebrated on _____(**K4- An, CO 5**)

 a)January 14th b)March 14th c)August 14th d)December 14th
- 3. Choose the right answer: Wind is the form of _____ energy. (**K5- E, CO3**) a)Renewable energy b) Non-renewable energy
- 4. To convert sound energy into electrical energy, which device is used? (**K6- C, CO 4**) a)Micro oven b)Refrigerator c) Microphones d) Compact Fluorescent Lamps (CFLs)

- 5. The SI unit of energy is _____(**K2- U, CO 1**)
 - a) Volts b) Watts c) Joule d) Radians

Part B

- 6. Explain the chemical energy. (K5- E, CO 3)
- 7. Discuss the basic principle of tidal power (**K2-U, CO 1**)
- 8. List the advantages and disadvantages of wind energy conversion systems (**K2-U, CO 1**)
- 9. Distinguish aerobic and anaerobic digestion. (K6- C, CO 4)
- 10. Write a note on characteristics of solar cell (**K4- An, CO 5**)

Part C

- 11. Describe the prospects of Renewable energy sources. (**K6-C, CO 4**)
- 12. Explain the principle of ocean thermal energy and its conversion systems. (K5- E, CO 3)
- 13. Explain the basic principles and working of wind energy conversion (**K6-C, CO 4**)
- 14. Discuss the factors affecting the biodigestion and generation of gas (**K4- An, CO 5**)
- 15.Describe the working of solar water Heater (**K5-E, CO 3**)

Ms .V. Shally & Sr. Sebastiammal

Head of the Department

Course Instructor

Department : Physics

Class : II M.Sc Physics

Title of the Course: CORE COURSE VI: CONDENSED MATTER PHYSICS

Semester : III

Course Code : PP233CC1

C C- 1-	т	Т	P	Credits	I4 II	Total	Marks		
Course Code	L	1			Inst. Hours	Hours	CIA	External	Total
PP233CC1	6	-	-	5	6	90	25	75	100

Learning Objectives:

- 1. To gain a comprehensive understanding of the fundamental principles in condensed matter physics, including crystallography, lattice dynamics, the theory of metals, semiconductors, magnetism and superconductivity.
- 2. To apply advanced concepts and theories learned in condensed matter physics to analyze and interpret experimental observations and phenomena in material science.

Course Outcomes

	On the successful completion of the course, students will be able to:							
1.	identify various crystal structures, symmetry and differentiate different types of bonding.	K 1						
2.	understand the lattice dynamics and apply it to concept of specific heat.	K2						
3.	articulate different types of magnetic materials and explain the underlying phenomena.	К3						
4.	relate the concepts of superconductivity, the underlying theories – related to current areas of research.	K4						
5.	assess various theories of electrons in solids and their impact in distinguishing solids.	К5						

Teaching plan

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Topic	Teaching Hours	Cognitive level	Pedagogy	Assessment/Evaluation
I	CRYST	TAL PHYSICS				
	1	Types of	4	K1(R)	PPT,	
		lattices - Miller			Illustration	Evaluation through:
		indices -			and	Online quiz,
		Symmetry			theoretical	Problem solving
		elements and			derivation,	short questions
		allowed				Descriptive answers
		rotations -				MCQ, True/False,
		Simple crystal				Short essays,
		structures -				Concept
		Atomic				explanations, Short
		Packing Factor-				summary or
		Crystal				overview
		diffraction				
	2	- Bragg's law -	5	K3(Ap)	Derivation	Formative
		Scattered Wave			and group	assessment I
		Amplitude -			discussion,	
		Reciprocal				
		Lattice (sc, bcc,				
		fcc) - Structure				
		and properties				
		of liquid				
	-	crystals		77.5 (T)	ъъ	
	3	Diffraction	5	K5(E)	PPT,	
		Conditions -			Illustration,	
		Laue equations			Theoretical	
		- Brillouin zone			formulation	
		- Structure				
		factor - Atomic				
		form factor -				
		Inert gas				
	4	crystals Cohesive	4	VA(An)	Derivation	
	4		4	K4(An)		
		energy of ionic crystals -			and group discussion	
		Madelung			uiscussioii	
		constant -				
		Types of				
		crystal binding				
		(general ideas).				
II	LATTI	CE DYNAMICS				
11						

	-	T	_		T .	
	1	Lattice with two	5		Lecture	
		atoms per		K2(U)	discussion	Evaluation
		primitive cell -			with	through: Online
		First Brillouin			illustration,	quiz,
		zone - Group			Derivation	Problem solving
		velocity - Long			and group	short questions
		Wavelength			discussion	Descriptive
		Limit				answers
	2	Derivation of	4	K3(A)	Derivation	Formative
		Force Constants		` '	and group	assessment I
		from			discussion	
		Experiment -			problem	
		Quantization of			solving	
		lattice vibrations			Lecture	
		- Phonon			Discussion	
		momentum -			with PPT	
		Inelastic			illustration	
					iliustiation	
		scattering by				
	2	phonons	<i>E</i>	TZ 4 (A)	T11	
	3	Phonon Heat	5	K4(An)	Illustration,	
		capacity- Planck			Theoretical	
		Distribution-			formulation	
		Normal Mode			Lecture	
		Enumeration-			Discussion	
		Density of			with PPT	
		States in Three			illustration	
		Dimensions				
	4	Debye's theory	4	K5(E)	Derivation	
		of lattice heat			and group	
		capacity -			discussion	
		Thermal			problem	
		Conductivity -			solving	
		Umkalapp				
		processes.				
		•				
III	THEOI	RY OF METALS A	AND SEM	ICONDUC'	TORS	
	1	Free electron	5		Lecture	Evaluation
		gas in three		K2(U)	discussion	through: Online
		dimensions -		ζ- /	with	quiz,
		Electronic heat			illustration,	Problem solving
		capacity -			Derivation	short questions
		Wiedemann-			and group	Descriptive
		Franz law -			discussion	answers MCQ,
		Band theory of				True/False, Short
		metals and				essays, Concept
		semiconductors				explanations, Short
	2			K3(Ap)	Illustration,	summary or
	4	Kronig-Penney	J	K3(Ap)	Theoretical	overview
		_				OVCIVICW
		model -			formulation	

	ı	T	T	Т	1	T
		Semiconductors			Discussion	Formative
		- Intrinsic carrier			with PPT	assessment I/II
		concentration -			illustration	
		Temperature				
		Dependence				
	3	Mobility -	4	K5(E)	Derivation	
		Impurity			and group	
		conductivity -			discussion,	
		Impurity states -			PPT	
		Hall effect			designing	
	4	Fermi surfaces	4	K4(An)	PPT,	
		and construction		,	Illustration,	
		- Experimental			Theoretical	
		methods in			formulation	
		Fermi surface			Tominatation	
		studies - de				
		Hass-van				
		Alphen effect.				
IV	MACN	ETISM				
1 1	MAGN	E 1 181VI				
	1	Diamagnatism	4		Lecture	Evaluation
	1	Diamagnetism -	4	V1(D)	discussion	
		Quantum theory		K1(R)	with	through: Online
		of			illustration,	quiz,
		paramagnetism -			Derivation	Problem solving
		Rare earth ion -			and group	short questions
		Hund's rule -			discussion	Descriptive
		Quenching of			discussion	answers
		orbital angular				MCQ, True/False,
		momentum				Short essays,
	2	Adiabatic	5	K3(Ap)	Derivation	Concept
		demagnetization			and group	explanations, Short
		- Quantum			discussion,	summary or
		theory of			PPT	overview
		ferromagnetism				
		- Curie point -				Formative
		Exchange				assessment II
		integral				
	3	Heisenberg's	5	K5(E)	Lecture	
		interpretation of			discussion	
		Weiss field -			with	
		Ferromagnetic			illustration,	
		domains - Bloch			Derivation	
		wall - Spin			and group	
		waves -			discussion	
		Quantization				
	4	Magnons -	4	K4(An)	Derivation	
	•	Thermal	•	is $\tau(m)$	and group	
		excitation of			discussion	
					uiscussioii	
		magnons - Curie				
		temperature and				

		susceptibility of				
		ferrimagnets -				
		Theory of				
		antiferomagnetis				
		m.				
V	SUPER	CONDUCTIVITY	7			
	1	Meissner effect -	4	K2(U)	Lecture	Evaluation
		Critical field –			discussion	through: Online
		Critical current -			with	quiz,
		Entropy and			illustration,	Problem solving
		heat capacity -			Derivation	short questions
		Energy gap -			and group	Descriptive
		Type I and II			discussion	answers
		Superconductors				MCQ, True/False,
	2	Thermodynamic	5	K1(R)	Derivation	Short essays,
		s of super			and group	Concept
		conducting			discussion,	explanations, Short
		transition -			PPT	summary or
		London equation			designing	overview
		- Coherence				
		length – Isotope				Formative
		effect - Cooper				assessment II
		pairs				
	3	Dandaan Caanan	5	K3(Ap)	Lecture	
		Bardeen Cooper			discussion	
		Schrieffer (BCS)			with	
		Theory - Single			illustration,	
		particle			Derivation	
		tunneling -			and group	
		Josephson			discussion	
	4	tunnelling DC and AC	4	V5 (E)	Dorivation	
	4		4	K5(E)	Derivation and group	
		Josephson			and group discussion,	
		effects - High			PPT	
		temperature			PP1	
		Solubs				
		– SQUIDS				

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Practical and Project

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues:-

Assignment: (Mention Topic and Type): Debye's theory of lattice heat capacity descriptions through Google Classroom

Seminar Topic: (if applicable): Exercise Problem solving and derivation of physical parameters

Sample questions (minimum one question from each unit)

Part A (1 mark)

1.	There are	types of Bravais lattice. (K4- An	, CO	5))

- a) 9
- b) 12
- c) 14
- d) 10
- 2. The expression for Bragg's Law is $n\lambda =$. (**K2-U, CO 1**)
 - a) d $\sin\theta$
- b) d $\cos\theta$
- c) $2d \sin\theta$ d) $2d \cos\theta$
- 3. The transmission velocity of a wave packet is _____. (K4- An, CO3)
- 4. Ferromagnetic materials exhibits magnetization even after the applied field is removed. Say True or False. (**K4- An, CO3**)
- 5. The superconducting transition temperature was experimentally found to vary with the isotope mass. Say true or false. (K2- U, CO 1)

Part B (6 marks)

- 6. Infer about Bravais lattice in three dimensions (K5-E, CO 3)
- 7. Analyze the quantization of elastic waves (**K4- An, CO 5**)
- 8. What do you understand by intrinsic and extrinsic semiconductors? (**K2-U, CO 1**)
- 9. Criticize the Antiferromagnetism. (**K6-C, CO 4**)
- 10. Describe Type–I and Type–II Superconductors. (**K4- An, CO 5**)

Part C (12 marks)

- 11. Estimate the expression for cohesive energy in ionic crystals. (K5- E, CO 3)
- 12 Explain Phonon Heat capacity and Planck Distribution (**K2-U, CO 1**)
- 13. Define Bloch theorem and derive Kronig-Penney model (**K4- An, CO 5**)
- 14. Discuss the Weiss Molecular (exchange) Field (**K5- E, CO2**)
- 15. Construct DC Josephson effect in superconductors Tunneling. (**K2-U, CO 1**)

R Birmaladouir

Rairmaladouir S. Sebartiammal

Dr.C.Nirmala Louis & Dr. S. Sebastiammal

Head of the Department

Course Instructors

Department : Physics

Class : II M.Sc. Physics

Title of the Course : Core CourseVII: Electromagnetic Theory

Semester : III

Course Code : PP233CC2

Course Code	L	Т	P	S	Credits	Inst. Hours	Total	Marks		
					0 - 0 0 - 0 0		Hours	CIA	External	Total
PP233CC2	6	_	_	_	5	6	90	25	75	100

Learning Objectives:

- 1. To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- 2. To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand the basic laws of electromagnetism.	PSO - 1	K1(R)
CO-2	recognize the behaviour of electric and magnetic fields in simple configurations under different boundary conditions.	PSO - 1	K2(U)
СО-3	apply the concepts of electrodynamics and derive the Maxwell's equation.	PSO - 3	K3(Ap)
CO-4	analyse the concept of propagation in linear media.	PSO - 4	K4(An)
CO-5	prioritize the magnetic properties of matter.	PSO - 2	K5(E)

Teaching plan

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Mo dule	Торіс	Teachin g Hours	Cognitiv e level	Pedagogy	Assessment/ Evaluation
I	ELEC	CTROSTATICS				
	1	Coulomb's law- Electric	4	K1(R)	Lecture,	Evaluation
		field – field lines, flux and			Illustration	through: quiz
		Gauss's Law in differential			and PPT	nearpod

		form – application of			using	
		Gauss's law			gamma	
	2	curl of E - Poisson's	4	K2(U)	Illustration,	Formative
	_	equation- Laplace's			PPT	assessment
		equation -one and two				
		dimensions				
	3	boundary conditions and	4	K2(U)	Lecture	Evaluation
		uniqueness theorem -			Discussion	through: quiz
		solution in cartesian and			using	using Kahoot
		spherical polar coordinates			gamma	-
	4	electric displacement -	3	K3(Ap)	Illustration	Solving simple
		gauss's law in the presence			and AI tool	problems
		of dielectrics				
	5	linear dielectrics -	3	K2(U)	Lecture	Evaluation
		electrostatic energy in the			Discussion	through short
		presence of dielectric.			using	test
					gamma	
II	MAG	NETOSTATICS	1			
	1	Lorentz force Law -Biot-	4	K2(U)	Lecture,	Evaluation
		Savart's Law –Steady			Illustration	through: quiz
		currents – The magnetic				using Kahoot
		field of a steady current				
	2	divergence and curl of B -	4	K2(U)	Lecture	Class test
		Magnetic vector- potential		(-)	Discussion	
		- The vector potential -			using PPT	Solutions to
		Magnetostatic boundary				problems
		conditions –				
	3	Multipole appendion of the	5	K3(Ap)	Lecture	Evaluation
	3	Multipole expansion of the vector potential-	3	K3(Ap)	,Illustration	through
		Magnetization - torques			using AI tool	short test
		and forces on magnetic			using 711 tool	using nearpod
		dipoles				using nearpou
		-				
	4	Effect of a magnetic field	5	K3(Ap)	Lecture	Evaluation
		on atomic orbits-Ampere's			Discussion	through
		law in magnetized			using gamma	short test
		materials - Uniformly				using nearpod
		magnetized sphere.				
III	MAX	WELL EQUATIONS	ı	ı	1	1
	1	Faraday's laws of Induction	4	K2(U)	Introductory	Evaluation
		- Maxwell's displacement			session,	through short
		current - Maxwell's			Lecture using	test, MCQ,
		equations - Energy and			Chalk and	True/False,
		momentum of the field			talk, PPT	Short essays
					, , , , , , ,	
		D		TTO ()	-	
	2	Poynting's theorem -	4	K3(Ap)	Lecture using	Concept
		Maxwell's stress tensor -			Chalk and	definitions,

		Conservation of momentum			talk , Problem Solving, PPT	MCQ
	3	Electromagnetic waves - Waves in one dimension – wave equation – sinusoidal waves	4	K3(Ap)	Lecture using Chalk and talk, Problem Solving, PPT	Evaluation through short test, Long derivation
	4	reflection and transmission – Polarization - scalar and vector potentials	4	K3(Ap)	Lecture using Chalk and talk, Problem Solving, PPT	Evaluation through short test, Long derivation
	5	Gauge Transformation - Coulomb and Lorentz gauge.	2	K2(U)	Lecture using Chalk and talk, Problem Solving, PPT	Evaluation through short test, MCQ, True/False, Short essays
IV	WAV	E PROPAGATION				
	1	Electromagnetic waves in vacuum – The wave equation for E and B – Monochromatic plane waves	5	K2(U)	Introductory session, Lecture using Chalk and talk, PPT	Evaluation through short test, MCQ, True/False, Short essays
	2	energy and momentum in electromagnetic waves - Electromagnetic waves in matter	4	K4(An)	Lecture using videos, Problem solving, Demonstratio	Concept definitions, MCQ
	3	Propagation in Linear Media – Reflection and transmission at normal incidence	4	K4(An)	Lecture using videos, Problem solving, Demonstratio	Evaluation through short test, MCQ, True/False

					n	
	4	Reflection and	5	K4(An)	Lecture using	Evaluation
		transmission at oblique			videos,	through
		incidence - Propagation of			Problem	Definition,
		waves in a rectangular			solving,	Derivation
		wave guide - the co- axial			Demonstratio	Test
		transmission line.			n	TOST
V	RELA	ATIVISTIC ELECTRODYN	AMICS			
	1	Special theory of relativity-	5	K2(U)	Lecture	Evaluation
		Einstein's Postulates-			Illustration	through:
		geometry of relativity –				quiz,
		relativity of simultaneity				Formative
						Assessment
						7 ISSESSITION
	2	time dilation –Lorentz	4	K4(U)	Illustration	Evaluation
				(-)		through short
		contraction-relativistic				test
		mechanics-proper Time				
		1 1				
		and velocity				
	3	relativistic energy-	4	K3(Ap)	Lecture	Class test
		momentum-kinematics-		- (F)	Discussion	
		dynamics- relativistic			using gamma	Solutions to
		electrodynamics			using gamma	problems
	4	magnetism as a relativistic	5	K5(E)	Lecture	Class test
	-	phenomenon-field	3		,Illustration	Class test
		transformation			using slido	Solutions to
		Electrodynamics in tensor			using sindo	problems
		1				problems
		potentials -relativistic				
		potentials –d'Alembertian				

Course Focussing on Employability/ Entrepreneurship/ Skill Development: **Employability, Skill Development**

Activities (Em / En /SD): Hands on Training on Problem solving

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross Cutting Issues:-

Assignment: Relativity of simultaneity

Seminar Topic: Gauss law in the presence of dielectrics, Ampere's law in magnetize materials, Coulomb and Lorentz gauge, energy and momentum in electromagnetic waves, relativistic potentials

Sample questions (minimum one question from each unit)

Part A

1. Choose the expression for Laplace equation.(**K1-R, CO-1**)

a)
$$\nabla^2 V = 0$$
 b) $\nabla^2 V = \alpha E$ c) $\nabla^2 V = \rho/\epsilon_0$ d) $\nabla V = 0$.

- 2. State True/False. In electrostatics, steady currents produce magnetic fields that are constant in time. (**K2-U, CO-2**)
- 3. One of the following are the waves that are travelling in the z direction and have no x or y dependence. (K1-R, CO-1)
 - a) EM waves b) plane waves c) polarized waves d) unpolarized waves
- 4. Which of the following is the expression for Snell's law?(**K4-An,CO-4**)

$$a)\frac{\sin\theta_T}{\sin\theta_I} = \frac{n_1}{n_2}$$

b)
$$\frac{Sin\theta_T}{Sin\theta_I} = \frac{n_2}{n_1}$$

$$a)\frac{Sin\theta_T}{Sin\theta_I} = \frac{n_1}{n_2} \qquad b)\frac{Sin\theta_T}{Sin\theta_I} = \frac{n_2}{n_1} \qquad c)\frac{Cos\theta_T}{Sin\theta_I} = \frac{n_1}{n_2} \qquad d)\frac{Sin\theta_T}{cos\theta_I} = \frac{n_1}{n_2}$$

d)
$$\frac{Sin\theta_T}{cos\theta_I} = \frac{n_1}{n_2}$$

- 5. What is referred as the angle at which the reflected wave completely extinguished? (K5-E, CO4)
 - a) Incident angle b) critical angle c) Brewster's angle d) transmitted angle

Part B

- 1. Show that curl of E is zero.(**K1-R, CO-1**)
- 2. Illustrate that magnetic forces do no work.(**K3-Ap,CO-3**)
- 3. Elucidate the wave equation for E and B.(**K2-U, CO-1**)
- 4. Outline energy and momentum in electromagnetic waves.(**K4-An, CO-4**)
- 5. Evaluate time dilation.(**K5-E, CO-5**)

Part C

- 1. Explain the Laplace equation in one dimension and two dimensions. (**K1-R, CO-1**)
- 2. Derive an expression for the effect of magnetic field on atomic orbits. (**K2-U, CO-2**)
- 3. State and prove Poynting's theorem.(**K3-Ap, CO-3**)
- 4. Outline the reflection and refraction of E.M. waves at normal incidence.(K4-An, CO-4)
- 5. Describe the relativity of simultaneity. (**K2-U, CO-1**)

R Birmaladouir

M. P. Sibharshi

Dr. M.Priya Dharshini & Dr.S.Virgin Jeba **Course Instructor**

Head of the Department

Department : Physics

Class : II M.Sc Physics

Title of the Course: ELECTIVE COURSE IV: b):MICROPROCESSOR AND

MICROCONTROLLER

Semester : III

Course Code : PP233EC2

Course Code	т	Т	D	C	Credits Inst. Hours		Total	Marks			
Course Coue	L	1	Г	3	Credits	mst. nours	Hours	CIA	External	Total	
PP233EC2	4	-	-	-	3	4	60	25	75	100	

Learning Objectives:

- 1. To offer insight into the architecture and operation of microprocessor 8085A and to the techniques for interfacing I/O devices and memory with the microprocessor.
- 2. To introduce programming and applications for the 8085A, along with exploring the architecture and instruction sets of the 8051 microcontroller.

Course Outcomes

On the	On the successful completion of the course, students will be able to:							
1	illustrate the architecture and functionality of the 8085 microprocessor.	K1						
2	infer the architecture and functionality of the 8051 Microcontroller.	K2						
3	apply the addressing modes and data transfer scheme for 8085 microprocessor and 8051 microcontroller.	К3						
4	categorise instructions to develop programs for measuring various electrical and physical quantities.	K4						
5	evaluate the interfacing of microprocessors and microcontrollers and develop external devices across various applications.	K5& K6						

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

Teaching plan

Total Contact hours: 60 (Including lectures, assignments and tests) Modules

Unit	Modul e	Topic	Teaching Hours	Cognitive Level	Pedagogy	Assessment/ Evaluation
I	8085 AR PERIPH	CHITECTURE, PROGRAMMI IERALS				
	1	Intel 8085 microprocessor - Pin configuration-Architecture	3	K1 (R)	Lecture –cum- Group Discussion	Evaluation

	3	Instruction set- Data transfer operations-Arithmetic operations - Logical operations - Branching and machine control operations Memory and I/O interfacing-Data transfer schemes - Programmable peripheral interface — Control group and control word— Programmable	3 3	K1 (R) K1 (R) K1 (R)	Lecture, Group Discussion and Problem Solving Lecture, Group Discussion and Problem Solving Group Discussion and Problem solving	through: Online quiz, short questions Descriptive answers MCQ, True/False, Concept explanations,
		DMA controller.				Formative assessment I
II	8085 IN	TERFACING APPLICATIONS		1		
	1	8085 interrupts — Seven segment display interface - Stepper motor interface	3	K5 (Ev)	Lecture –cum- Group Discussion and Practical Demonstration	Evaluation through: Online quiz, short
	2	Interfacing of Digital to Analog converter and Analog to Digital converter	3	K5 (Ev)	Lecture, Group Discussion and Problem Solving	questions Descriptive answers
	3	Measurement of electrical quantities – Voltage and current Measurement	3	K5 (Ev)	Lecture, Group Discussion and Problem Solving	MCQ, True/False, Concept
	4	Measurement of physical quantities —Temperature measurement and control — strain measurement.	3	K5 (Ev)	Group Discussion and Problem solving	explanations, Formative assessment II
III	8051 MI	CROCONTROLLER HARDWA				
	1	Introduction – Features of 8051– Input/ Output pins, Ports and Circuits	3	K2 (U)	Lecture –cum- Group Discussion and Practical Demonstration	Evaluation through: Online quiz, short
	2	8051 Microcontroller Hardware: Pin-out 8051, Central Processing Unit	3	K2 (U)	Lecture, Group Discussion and Problem Solving	questions Descriptive answers
	3	internal RAM, Internal ROM, Register set of 8051 – Memory organization of 8051	3	K2 (U)	Lecture, Group Discussion and Problem Solving	MCQ, True/False, Concept
	4	External data memory and program memory: External program memory, External data memory.	3	K2 (U)	Group Discussion and Problem solving	explanations, Formative assessment I
IV	8051 AS	SEMBLY LANGUAGE PROGR	AMMIN	NG		
	1	Addressing modes – Data transfer instructions: Instructions to Access external data memory, external ROM /	4	K4 (An)	Lecture –cum- Group Discussion	Evaluation through: Online quiz,

		program memory				short questions Descriptive
	2	PUSH and POP instructions, Data exchange instructions	2	K4 (An)	Lecture, Group Discussion and Problem Solving	answers MCQ, True/False,
	3	Logical instructions – Arithmetic instructions	2	K4 (An)	Lecture, Group Discussion and Problem Solving	Concept explanations,
	4	Decimal arithmetic - Jump and CALL instructions: Jump, Call and subroutines.	4	K4 (An)	Lecture, Group Discussion and Problem Solving	Formative assessment II
V	INTERR		TO	EXTERNAL		
	WORLD					
	1	8051 Interrupts –Enabling and	3	K2 (U)	Lecture –cum-	
	_	disabling an interrupt			Group Discussion	Evaluation
	2	Interrupt priority: Nested	3	K2 (U)	Lecture, Group	through:
		interrupts –Software triggering			Discussion and	Online quiz,
		- LED Seven segment display			Problem Solving	short
	3	interface	3	V5 (E)	Lastura Craura	questions Descriptive
	3	Interfacing of D/A converter and A/D converter - Stepper	3	K5 (E)	Lecture, Group Discussion and	answers
		motor interface.			Problem Solving	MCQ,
	4	motor merrace.	3	K5 (E)	Group Discussion	True/False,
	'	Measurement of electrical	5	11.5 (L)	and Problem	Concept
		quantities –Voltage and			solving	explanations,
		current– Measurement of			··· · · · · · · · · · · · · · · · · ·	,
		physical quantities –				Formative
		Temperature and strain.				assessment-
						II

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/En/SD): Project

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment

Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: (Mention Topic and Type):

Memory and I/O Interfacing-Problem Solving

Seminar Topic: (if applicable): 8051 Interrupts, Enabling and disabling an interrupt

Sample questions (minimum one question from each unit)

Part A

1. What is the function of stack pointer in 8085 micropro	ocessor? (K1-R, CO-1)
2. State True / False. The seven segment displays are con-	nected directly to I/O ports.(K1-R, CO-1)
3. The 8051 series of microcontrollers are	generation 8 bit microcontrollers.(K2-U,
CO-2)	

- 4. Name any two 16-bit registers in 8051 microcontroller?(K4-An, CO-4)
- 5. In interrupt vector table location ______ belongs to timer 1.

Part B

- 1. Draw the timing diagram for memory read operation.(K1-R, CO-1)
- 2. Explain the process of measuring strain. (K1-R, CO-1)
- 3. Write a short note on Internal RAM and ROM of 8051 microcontroller. (K2-U, CO-2)
- 4. Discuss in detail about the PUSH and POP instructions of microcontroller 8051.(K4-An, CO-4)
- 5. Describe 8051 interrupts. (K2-U, CO-2)

Part C

- 1. Explain with schematic diagram, the architecture of 8085 microprocessor(K1-R, CO-1)
- 2. Write a program to display decimal numbers 0 to 9 in seven segment display. (K5-Ev, CO-5)
- 3. Explain with schematic diagram, the pin configuration of 8051 microcontroller.
- 4. Enumerate the different addressing modes of 8051 and explain them in detail with one example for each. (K4-An, CO-4)
- 5. Explain the interfacing of stepper motor with 8051 microcontroller. (K5-Ev, CO-5)

Head of the Department

Course Instructor

Dr. C. Nirmala Louis

R Barmaladouir

Dr. R. Krishna Priya & Dr. P. Aji Udhaya

Philldhaye.

Department : Physics

Class : II M.Sc Physics

Title of the Course : Sewage and Waste Water Treatment and Reuse

Semester : III

Course Code : PP233SE1

No. of hours per week	No. of Credits	Total No. of hours	Marks
3	2	45	100

Objectives

1. To gain basic knowledge in sewage and waste water Treatment procedures

2. To gain industry exposure and be equipped to take up job.

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	CO-1 identify solid waste management methods		U
CO-2	interpret factors affecting disinfection	PSO - 4	An
CO-3	use advanced waste water treatment for removal of suspended solids in the nearby areas	PSO - 4	An
CO-4	connect to related job by gaining industry exposure	PSO - 4	Ap
CO-5	defend solid waste in and around the locality and develop entrepreneurial skills.	PSO- 4	C, E

Modules

Credit: 2 Total Hours:45

0.0000							
Unit	Sect ion	Topics	Lecture hours	Cognitiv e level	Pedagogy	Assesment/ Evaluation	
I		RECOVERY & REUSE (OF WATE	R			
	1	Methods of recovery: Flocculation – Sedimentation- sedimentation with coagulation	3	K2(U)	Illustration and PPT using gamma	Evaluation through: quiz nearpod Formative assessment Evaluation	
	2	Filtration - sand filters - pressure filters - horizontal filters	2	K2(U)	Illustration, PPT		
	3	vector control measures in industries	2	K2(U)	Lecture Discussion using	through short test using nearpod	

					gamma	
	4	chemical and biological methods of vector	2	K2(U)	Illustration and AI tool	
		eradication				
II		DISINFECTION				
	1	Introduction to	2	K3(Ap)	Illustration	Evaluation
		disinfection and sterilization: Disinfectant			using OLAB	through: quiz using
	2	UV radiation -	2	K2(U)	Lecture	hotpotatoes
		Chlorination			Discussion using PPT	
	3	Antisepsis - Sterilant -	3	K3(Ap)	Lecture,	
		Aseptic and sterile -			llustration	Class test
		Bacteriostatic and Bactericidal			using AI tool	Class test
	4	Factors affecting	2	K3(Ap)	Lecture	
		disinfection.			Discussion	
					using gamma	
III		CHEMICAL DISINFECT	TION		Barrina	
	1	Introduction - Theory of	3	K2(U)	Lecture and	Evaluation
		Chemical Disinfection -			Discussion	through:
		Chlorination Other Chemical Methods			using slido	quiz using
		Chemical Methods				quizzes Formative
						assessment
						Evaluation
						through
	2	Chemical Disinfection	2	K2(U)	Illustration	short test
		Treatments Requiring - Electricity				Lecture
	3	Coagulation/Flocculation	2	K3(Ap)	Lecture	Illustration.
		Agents as Pretreatment		- \	Discussion	
					using	
					gamma	
	4	Disinfection By-Products	2	K4(An)	Lecture	
		(DBPs)			,Illustration	
IV		PHYSICAL DISINFECT	ION		using AI tool	
1 1		I II I SICAL DISINFECT	ION			

	1	Introduction - Ultraviolet	2	K1(R)	Lecture	Evaluation
		Radiation-Solar		,	Illustration,	through:
		disinfection			,	quiz, using
	2	Heat Treatment -	3	K3(Ap)	Illustration	quizzes,slido
		Filtration Methods -	3	1 x 3(7 1 p)	masaadon	quizzes,siido
		Distillation				
	3	Electrochemical	2	K2(U)	Lecture	
	3	Oxidation	2	K 2(U)	Discussion	
		Oxidation				
					using	
				777 (77)	gamma	
	4	Water Disinfection by	2	K2(U)	Lecture	
		Microwave Heating.			,Illustration	Formative
					using AI tool	assessment
\mathbf{V}		ADVANCED WASTE WA	ATER T	REATMEN	Γ	
	1	Removal of suspended	2	K2(U)	Lecture	Evaluation
		solids, Removal of			Illustration,	through:
		dissolved solids			ŕ	quiz,
	2	Nitrogen removal –	3	K4(An)	Illustration	Formative
		Phosphorous removal				Assessment
	3	Advanced biological	2	K5(E)	Lecture	
		systems	_	113(2)	Discussion	
		Systems			using	
	4	Chaminal anidation	2	V.C.(C)	gamma	
	4	Chemical oxidation.	2	K6(C)	Lecture	
					,Illustration	
					using slido	

 $Course\ Focussing\ on\ Employability/\ Entrepreneurship/\ Skill\ Development:\ \textbf{Skill}$

Activities (Em / En /SD): SD

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross

Cutting Issues:- Environment Sustainability

Assignment: (Mention Topic and Type): Solve problems, Analyse the Chemical Disinfection Seminar Topic: (if applicable):-Hazards faced

Sample questions (minimum one question from each unit)

Part A

- 1. Which of the following chemicals is commonly used as a flocculant? (K2-U, CO-
 - 1)
 - a. Chlorine
 - b. Alum (Aluminum sulfate)
 - c. Sodium hydroxide
 - d. Calcium carbonate

- 2. Which of the following forms of chlorine is most commonly used in water treatment? (K2-U, CO-1)
 - a. Chlorine gas (Cl2)
 - b. Sodium hypochlorite (NaOCl)
 - c. Calcium hypochlorite (Ca(OCl)2)
 - d. All of the above
- 3. State whether the following statement is True or False(**K1-R, CO-1**)

 The effectiveness of sedimentation is independent of the flow rate of water through the tank.
- 4. In the electromagnetic spectrum ----- spectrum of sunlight is primarily responsible for the disinfection process (**K2-U**, **CO-2**)
- 5. Nitrosomonas bacteria are responsible for the conversion of ______ to nitrite in the nitrification process.(**K3-Ap, CO3**)

Part B

- 1. Explain the theory on coagulation and flocculation. (**K2-U, CO-2**)
- 2. Analyse the advantages and disadvantages of using autoclaves for sterilization.(**K4-AnU, CO-4**)
- 3. Analyse the potential ecological impacts of introducing biological control agents into an ecosystem(**K4-An,CO3**)
- 4. Explain the regulatory standards for sterility in the pharmaceutical and medical device industries(**K2-U, CO-2**)
- 5. Design an experiment to investigate the impact of varying chlorine doses on the formation of different DBPs.(**K6-C,C0-5**)

Part C

- 1. The Maximum daily demand at a water purification plant has been estimated as 12 million litres per day. Design the dimensions of a suitable sedimentation tank (fitted with mechanical sludge removal arrangements) for the raw supplies, assuming a detention period of 6 hours and the velocity of flow as 20 cm per minute. (**K6-C**, **CO-5**)
- 2. How do coagulation and flocculation work together to remove suspended solids from water(**K2-U, CO-2**)
- 3. Explain the oxidation state of an element change during a chemical oxidation reaction (**K2-U, CO-2**)
- 4. Analyse the effect of temperature and pH on the efficiency of chemical oxidation reactions(**K4-An,CO3**)
- 5. How can nitrogen removal processes be optimized for small-scale or decentralized wastewater treatment systems(**K5-E,CO4**)

Dr. C. NIRMALA LOUIS, M.Sc., Ph.D., PGDCA Head & Assistant Professor, PG & Research Department of Physics. Holy Cross College (Autonomous), Nagercoil, Kanyakumari District. Tamii Nadu. PIN: 629 804.

Course Instructors

Genepha Mary

Head of the Department