Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35

Affiliated to **Manonmaniam Sundaranar University, Tirunelveli**

DEPARTMENT OF PHYSICS

TEACHING PLAN

ODD SEMESTER 2024 - 2025

Vision

Envisions training students for quality Physics education and holistic development empowered to meet challenges and embark on luxuriant careers.

Mission

- To produce competent graduates infused with professionalism, ethical values and social responsibility.
- ✤ To prepare students to accentuate learning for life.
- ✤ To foster a research environment, to keep up with global development in Science.
- ✤ To evolve strategies for the growth of the department towards excellence.

Programme Educational Objectives (PEOs)

PEOs	Upon completion of B.A/B.Sc. degree programme, the graduates will be able to	Mission addressed
PEO 1	apply appropriate theory and scientific knowledge to participate in activities that support humanity and economic development nationally and globally, developing as leaders in their fields of expertise.	M1& M2
PEO 2	inculcate practical knowledge for developing professional empowerment and entrepreneurship and societal services.	M2, M3, M4 & M5
PEO 3	pursue lifelong learning and continuous improvement of the knowledge and skills with the highest professional and ethical standards.	M3, M4, M5 & M6

Programme Outcomes (POs)

POs	Upon completion of B.Sc. Degree Programme, the graduates will be able to:	Mapping with PEOs
PO1	obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science.	PEO1
PO2	create innovative ideas to enhance entrepreneurial skills for economic independence.	PEO2
PO3	reflect upon green initiatives and take responsible steps to build a sustainable environment.	PEO2
PO4	enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	PEO1 & PEO3
PO5	communicate effectively and collaborate successfully with peers to become competent professionals.	PEO2 & PEO3

PO6	absorb ethical, moral and social values in personal and social life leading to highly cultured and civilized personality	PEO2 & PEO3
PO7	participate in learning activities throughout life, through self- paced and self-directed learning to improve knowledge and skills.	PEO1 & PEO3

Programme Specific Outcome (PSOs)

PSOs	Upon completion of B.Sc. Physics Degree Programme, the	Mapping
	graduates of Physics will be able to:	with POs
	understand the core theories and principles of physics which	PO1
PSO - 1	include mechanics, thermodynamics, electronics, material	
	science etc.	
PSO - 2	develop extensive comprehension of fundamental and diverse	PO2 &
	applications of Physics.	PO3
	apply knowledge of principles, concepts in Physics and analyze	PO4 &
PSO - 3	their local, national and global impact. Apply the critical	PO5
PSU - 5	reasoning and computing skills to analyze and solve problems in	
	physics.	
	analyze the observed experimental data and relate the results	PO6
PSO - 4	with theoretical expectations. Communicate appropriately and	
	effectively, in a scientific context using present technology.	
	develop entrepreneurial skills, empowered according to the	PO5 &
PSO - 5	professional requirement and become self-dependent.	PO7
120-2	Understand the professional, ethical, legal, security, social issues	
	and responsibilities.	

Department	:	Physics
Class	:	I B.Sc. Physics
Title of the Course	:	Core Course –I: PROPERTIES OF MATTER AND ACOUSTICS
Semester	:	I
Course Code	:	PU231CC1
		Total Marks

Course Code	т	Т	Р	Credite	Inst. Hours	Total		Marks	
Course Coue	L		ſ	Creuits	1115t. 110u15	Hours	CIA	External	Total
PP2035	6	-	-	6	6	90	25	75	100

Learning Objectives

- 1. To Study of the properties of matter leads to information which is of practical value to the physicists.
- 2. To provide an information about the internal forces which act between the constituent parts of the substance.

Course Outcomes

On the s	uccessful completion of the course, student will be able to:	PSO addressed	Cognitive Level
1.	Relate elastic behavior in terms of three modulii of elasticity and working of torsion pendulum.	PSO 1	K1 (R) & K2 (U)
2.	Appreciate concept of bending of beams and analyze the expression, quantify and understand nature of materials.	PSO 2	K2 (U) & K3 (Ap)
	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineering problems.	PSO 1	K2 (U) & K3 (Ap)
4.	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains		K1 (R) & K3 (Ap)
5.	Understand the concept of acoustics, importance of constructing buildings with good acoustics. Also to apply their knowledge of ultrasonics in real life, especially in medical field and assimilate different methods of production of ultrasonic waves.		K2 (U) & K3 (Ap)

Unit	Section	Topics	Lecture	Cogn	Pedagogy	Assessment/
		- • F	hours	itive		Evaluation
			nours	Level		2,
I	ELASTI			Level		
L	1	Hooke's law –	5	K1 (R)	Lecture	Evaluation
	1	stress-strain	5		using chalk	through:
		diagram –			and talk,	short test
		elastic			Discussion	short test
		constants			with	Class Test
		constants			Videos,	Class Test
					mind	Multiple
						choice
					mapping, Demonstrat	
						questions
	2	Poisson's ratio –		V2(A=)	ion	Ouiz
	2			K3 (Ap)	Lecture	Quiz
		relation between	4		using	Formersting
			4		videos,	Formative
		Poisson's ratio			Problem	assessment
					solving	C1 (
						Short
						Summary or
	3	work done in	5	K2 (U)	Demonstrat	Overview
	5	stretching and	5	$\mathbf{K}_{2}(0)$	ion, Peer	
		twisting a wire –			tutoring,	
		twisting couple on a			Problem	
		cylinder			solving,	
		c ymhder			Review	
	4		4			
	4	rigidity modulus by	4	K3 (Ap)	Demonstrat	
		static torsion-			ion, Peer	
		torsional pendulum			tutoring,	
		(with and without			Problem	
		masses)			solving,	
					Review	
II		NG OF BEAMS	1.			·
	1	Cantilever-	4	K2 (U)	Demonstratio	Evaluation
		expression for			n, Peer	through:
		Bending moment –			tutoring,	Short test
		expression for			Problem	Quiz
		depression at the			solving,	
		loaded end of the			Review	

	Modules
:6	Total contact hours: 90 (Including assignments and tests)

		cantilever			Discussion	Assignment
		culture ver			with Video,	1 isoigiinient
					mind	Formative
					mapping	assessment
	2	oscillations of a	4	K3 (Ap)	Demonstrat	Class test
		cantilever – expression			ion, Peer	
		for time period –			tutoring,	Practical.
		experiment to find			Problem	T fuetieui.
		Young's modulus			solving,	
					Review,	
					Discussion	
					with PPT,	
					mind	
					mapping	
	3	non-uniform	5	K3 (Ap)	Demonstratio	
		bending-experiment			n, Peer	
		to determine Young's			tutoring,	
		modulus by Koenig's			Problem	
		method – uniform			solving,	
		bending			Review, mind	1
					mapping	
	4	expression for	5	K3 (Ap)	Demonstratio	
		elevation –			n, Peer	
		experiment to			tutoring,	
		determine Young's			Problem	
		modulus using			solving,	
		microscope			Review	
III	FLUID	DYNAMICS				
	1	Surface tension:	5	K3 (Ap)	Lecture	
		definition – molecular			using	Evaluation
		forces-excess			chalk and	through:
		pressure over curved			talk,	
		surface – application			Discussion	Class test
		to spherical and			with video,	
		cylindrical drops and			mind	Quiz
		bubbles			mapping	
	2	determination of	4	K2 (U)	Lecture	Multiple choice
		surface tension by			using	questions
		Jaegar's method–			videos,	
		variation of surface			Problem	Formative
		tension with			solving	assessment
		temperature			-	Practical
						i iuviivai

	3	Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with temperature	5	K2 (U) K3 (Ap)	Lecture using videos, Demonstrat ion, Peer tutoring, Problem solving, Review. Demonstrat ion, Peer tutoring, Problem solving, Review	
IV	WAVES 1 2	AND OSCILLATIONSimpleHarmonicMotion(SHM) – differentialequation of SHM –graphicalrepresentationofSHM- composition oftwo SHM in a straightline and at right anglesLissajous's figures-free, damped, forcedvibrations –resonance andSharpness ofresonance.	6	K2 (U)	Lecture using chalk and talk, Discussion with PPT, mind mapping Lecture using videos, Problem solving	Evaluation through: Class test Quiz Short test Formative assessment II Practical
	3	Laws of transverse vibration in strings – sonometer – determination of AC frequency using sonometer	4	K2 (U)	Demonstrati on, Peer tutoring, Problem solving, Review	

	4	determination of frequency using Melde's string	4	K3 (Ap)	Demonstrati on, Peer tutoring,	
		apparatus			Problem solving, Review	
				DAGONICG.		
		TICS OF BUILDINGS			_	
	1	Intensity of sound – decibel – loudness of sound –reverberation – Sabine's	5	K1 (R)	Lecture using chalk and talk,	Evaluation through: Short test
		reverberation formula			Discussion with PPT, mind	Class test
	2	acoustic intensity – factors affecting the	4	K3 (Ap)	mapping Demonstrati on, Lecture	Quiz Assignment
		acoustics of buildings.			using videos, Problem	Formative assessment II
V	3	Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method		K2 (U)	solving Demonstrati on, Peer tutoring, Problem solving, Review, Lecture using videos.	
	4	magnetostriction effect –application of ultrasonic waves		K3 (Ap)	Demonstrati on, Peer tutoring, Problem solving, Review, Lecture using videos.	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : **Employability** Activities (Em/ En/SD): **Model Making**

Course Focussing onCross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : (Mention Topic and Type): Application of ultrasonics - LMS

Sample questions

Part A (1 mark)

Answer all the questions

- 1. The ratio of volume stress to the volume strain is known as _____ (K2-U, CO 1)
- a) Volume stain b) Young's modulus c) Bulk modulus d) none of the above
- 2. The ratio of change in any dimension to its original value is called _____(K1-R, CO 2)
 - a) stress b) stain c) poisson's ratio d) Rigidity modulus
- 3. The unit of co-efficient of viscosity is ______ (K1-R, CO 3)
- a) Nm b) N/sec c) Nm² d) Nsm⁻²
- 4. The simple pendulum vibrates with a time period T given by _____ (K3-Ap, CO 4)

a)
$$T = 2\pi \frac{l}{g}$$
 (b) $T = 2\pi \frac{k}{g}$ (c) $T = \pi \frac{l}{g}$ (d) $T = \pi \frac{l}{2g}$

5. The persistence of sound in an enclosure due to multiple reflections of sound at the walls after the source has ceased to emit sound is known as _____. (K1-R, CO 5)

Part B (4 marks)

- 1. Define beam. Derive the expression for bending moment. (K2-U, CO 1)
- 2. Derive an expression for time period of cantilever oscillations. (K2- U, CO 2)
- 3. Explain streamline flow and turbulent flow.. (K1-R, CO 3)
- 4. Obtain the differential equation of S.H.M. (K2-U, CO 4)
- 5. Explain the production of ultrasonic waves using piezoelectric crystal method.(K2-U, CO 5)

Part C (9 marks)

- 1. Explain in detail different moduli of elasticity and Possion's ratio. (K2-U, CO1)
- 2. Explain the experimental method to determine the Youngs modulus of the beam using non uniform set up. (K2- U, CO 2)
- 3. Describe Jaegar's method of determining surface tension of liquids. (K2-U, CO 3)
- 4. Explain the transverse and longitudinal mode of the Melde string and hence determine the frequency of the fork. (K3- Ap, CO 4)
- 5. Discuss the factors affecting the architectural acoustics and their remedies.(K3-Ap, CO 5)

Dr. A. Lesly Fathima & Dr. P.Aji Udhaya Course Instructor

Head of the Department

Teaching Plan

Department	:	Physics
Class	:	I B.Sc Mathematics
Title of the Course	:	Generic Elective : Allied Physics for Mathematics-I
Semester	:	Ι
Course Code	:	PU231EC1

Comme Code	т	Т	D	Credita	Inst. Hours	modita Inst Hound	Total		Marks	
Course Code	L	I	P	Creatts		Hours	CIA	External	Total	
PU231GE1	4	-	-	3	4	60	25	75	100	

Objectives

- To impart basic principles of Physics
- To incorporate concepts of Physics in day to day life

Course outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	Acquire knowledge on elementary ideas of waves, properties of matter, electricity and magnetism, electronics	PSO - 1	K1 & K2
CO - 2	Analyze the concepts of ultrasonics, surface tension and study their applications in the medical field.	PSO - 4	КЗ
CO - 3	Interpret the real-life solution using concepts of electricity, magnetism, and electronics in Digital India.	PSO - 3	К2
CO - 4	Apply their depth knowledge of Physics in day today life.	PSO - 3	К3
CO - 5	Develop their knowledge to carry out the practical by applying these concepts of Physics	PSO - 5	КЗ

Teaching plan

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	1.	Simple harmonic motion (SHM) – composition of two SHMs at right angles (periods in the ratio 1:1) – Lissajous figures – uses	3	K1(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test
	2.	laws of transverse vibrations of strings – determination of AC frequency using sonometer (steel and brass	2	K1(R)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	Multiple choice questions Quiz
	3.	wires) ultrasound – production – piezoelectric method – application of ultrasonics: medical field – lithotripsy, ultrasonography – ultrasonoimaging	4	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Formative assessment Short Summary or Overview
	4.	ultrasonics in dentistry – physiotheraphy, opthalmology – advantages of noninvasive surgery – ultrasonics in green chemistry.	3	K3(Ap)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
Π	5. 6.	Elasticity: elastic constants – bending of beam – theory of non- uniform bending – determination of Young's modulus by non- uniform bending energy stored in a	3	K1(R) K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping, Peer tutoring,	Evaluation through: short test Class Test Multiple choice questions Quiz

		stretched wire –			Lecture using	Formative
		torsion of a wire –			videos, Problem	ronnauve
		determination of				aggaggmant
					solving,	assessment
		rigidity modulus			Demonstration,	Chart Cours
		by torsional			PPT, Review	Short Summary
		pendulum				
		Viscosity:				or Overview
		streamline and				
		turbulent motion –				
		critical velocity	2		.	
	7.	coefficient of	3	K3(Ap)	Lecture using	
		viscosity –			Chalk and talk	
		Poiseuille's			,Introductory	
		formula –			session, Group	
		comparison of			Discussion,	
		viscosities –			Mind mapping,	
		burette method,				
		Surface tension:				
		definition				
	8	molecular theory –	3	K1(R)	Peer tutoring,	
		droplets			Lecture using	
		formation– shape,			videos, Problem	
		size and lifetime –			solving,	
		COVID			Demonstration,	
		transmission			PPT, Review	
		through droplets,				
		saliva – drop				
		weight method –				
		interfacial surface				
		tension.				
III	9	Joule-Kelvin effect	3	K1(R)	Lecture using	Evaluation
		– Joule-Thomson			Chalk and talk	
		porous plug			,Introductory	through: short
		experiment –			session, Group	Ŭ
		theory			Discussion,	test Class Test
		•			Mind mapping,	
		– temperature of			11 0/	Multiple choice
		inversion –				I I
		liquefaction of				questions Quiz
	10	Oxygen	3		De est 44	
	10	Linde's process of	3	K2(U)	Peer tutoring,	Formative
		liquefaction of air-			Lecture using	
		liquid Oxygen for			videos, Problem	assessment
		medical purpose-			solving,	
		importance of			Demonstration,	Short Summary
		cryocoolers –			PPT, Review	,
		thermodynamic				or Overview
		system		TTA / 1 \		
	11	thermodynamic	3	K3(Ap)	Lecture using	
		equilibrium – laws			Chalk and talk	

	12	of thermodynamics – heat engine – Carnot's cycle – efficiency entropy – change of entropy in reversible and irreversible process.	3	K1(R)	,Introductory session, Group Discussion, Mind mapping, Peer tutoring, Lecture using videos, Problem solving, Demonstration,	
IV	13	Potentiometer – principle – measurement of thermo emf using potentiometer – magnetic field due to a current carrying conductor	3	K1(R)	PPT, Review Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	14	Biot-Savart's law – field along the axis of the coil carrying current – peak, average and RMS values of ac current and voltage	3	K1(R)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	questions Quiz Formative assessment Short Summary
	15	power factor and current values in an AC circuit – types of switches in household and factories	3	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	or Overview
	16	Smart wifi switches- fuses and circuit breakers in houses	3	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
V	17	logic gates, OR, AND, NOT, NAND, NOR , EXOR logic gates – universal building blocks	3	K1(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	18	BooleanalgebraDeMorgan'stheorem-verification-	3	K3(Ap)	Peer tutoring, Lecture using videos, Problem solving,	questions Quiz

	overview of			Demonstration, PPT, Review	Formative
19	Government initiatives:software technological parks under MeitY, NIELIT	3	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	assessment Short Summary or Overview
20	Semiconductor laboratories under Dept. of Space – an introduction to Digital India	3	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development

Activities (Em/ En/SD): Model making

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues : -

Assignment : Streamline and Turbulent motion -Demonstration

Seminar Topic: -

Sample questions (minimum one question from each unit)

Part A

1. The material used in magnetostriction method is _____.(K1-R, CO-1) a) Ferromagnetic b)dia magnetic c) paramagnetic d) None of the above 2. ______ is defined as the restoring force per unit area. (K3-Ap, CO-2) 3. A ----- is a device for measuring potential differences. (K2-U, CO-3) b) Potentiometer a) Meter Bridge c) Carey Foster Bridge. 4. The maximum value of alternating current in any direction is called ------ value of alternating current. (K3-Ap, CO-4) a) Peak b) Mean c) Maximum d) RMS 5. When NOT gate follows an AND gate, the combination is called as _____(K3- Ap,CO-5) a) NAND b) AND c) EX-OR d) NOR

Part B

- 1. Interpret the production of ultrasonic waves using piezoelectric crystal method. (K2-U, CO-1)
- 2. Derive the expression for the bending moment. (K3-Ap, CO-2)
- 3. Explain the change of entropy in reversible and irreversible process. (K2-U, CO-3)
- 4. How will you measure the thermo emf using potentiometer? Explain. (K3-Ap, CO-4)
- 5. Show that the NAND gate as universal building blocks. (K3- Ap,CO-5)

Part C

- 1. Describe the applications of ultrasonic waves. (K2-U, CO-1)
- 2. Determine the Rigidity modulus by Torsion pendulum by Dynamic torsion method. (K3-Ap , CO-2)
- 3. Obtain the efficiency of Carnot's cycle with suitable phase diagram. (K2-U, CO-3)
- 4. Define Biot-Savart's law and obtain an expression for field along the axis of the coil carrying current. (K3-Ap, CO-4)
- 5. Verify the De Morgan's theorem. (K3- Ap,CO-5)

Head of the Department

Course Instructor

		Teaching Plan
Department	:	Physics
Class	:	I B.Sc Physics
Title of the Course	:	Skill Enhancement Course- SEC I

Non Major Elective: Physics for Everyday Life

Semeste	er
Course	Code

: PU231SE1

: I

	т	т	р	Credita	Cuedita Inst House	T A TI	Total		Marks		
Course Code	L	I	T P Credits Inst. Hours	Hours	CIA	External	Total				
PU231SE1	2	-	-	2	2	30	25	75	100		

Objectives

- 1. To introduce fundamental physics concepts and their applications in everyday life.
- 2. To comprehend where all physics principles have been applied in everyday life and to appreciate the concepts with a greater understanding, as well as to learn about Indian scientists who have made significant contributions to Physics.

Course outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	Understand the knowledge of basic scientific principles and fundamental concepts in motion of bodies.	PSO-1	K2
CO - 2	Understand the basic laws of physics in domestic appliances	PSO-1	K2
CO - 3	Recall the physics notions applied in various optical instruments	PSO-2	K2
CO - 4	Comprehend the utilization of solar energy in everyday life activities	PSO-3	K2
CO - 5	Know about the various physicists contribution towards science and technology	PSO-1	K1

Teaching plan

Uni t	Modu le	Topic Teachi ng level Hours		Pedagogy	Assessment/Evaluat ion	
Ι	MECH	ANICAL OBJEC	TS			
	1	Spring scales, bouncing balls	2	K2(U)	Demonstrat ion	Evaluation through:
	2	Roller coasters, bicycles	2	K2(U)	PPT, illustration, group discussion	Online quiz, short questions Descriptive answers MCQ, True/False,
	3	Rockets	1	K2(U)	PPT, Illustration	Short essays, Concept
	4	Space travel	1	K2(U)	PPT, Theoretical formulation	explanations, Formative assessment I
II	OPTIC	AL INSTRUMEN	TS AND	LASER	1	
	1	Vision corrective lenses, Polaroid glasses	2	K2(U)	PPT, Group discussion	Evaluation through: Online quiz, Short questions Descriptive
	2	UV protective glass – Polaroid camera	2	K2(U)	PPT, Group discussion	Descriptive answers Formative
	3	Colour photography	1	K2(U)	Concept Explanation, Theoretical formulation	assessment I
	4	Holography and Laser	1	K2(U)	Demonstration n, Group discussion	
III	PHYSI	CS OF HOME AI	PPLIAN	CES		
	1	Bulb – fan – hair drier	2	K2(U)	Lecture method, Concept Explanatio n, Peer group learning, PPT	Evaluation through: Online quiz, short questions Descriptive answers MCQ, True/False, Concept

Total Contact hours: 30 (Including lectures, assignments and tests)

	2 3	Television – air conditioners Microwave ovens – vacuum cleaners	2	K2(U) K2(U)	Illustration, Theoretical formulation Group Discussion Group discussion, PPT	explanations, Formative assessment I/II
IV	SOLAF	R ENERGY				
	1	Solar constant – General applications of solar energy	2	K2(U)	Lecture method, Peer group learning, PPT	Evaluation through: Online quiz, short questions Descriptive answers
	2	Solar water heaters – Solar Photo – voltaic cells	2	K2(U)	Lecture method, group discussion, PPT	MCQ, True/False, Concept explanations, Short summary
	3	General applications of solar cells.	2	K2(U)	Group discussion, PPT	Formative assessment II
V	INDIA	N PHYSICIST AN	D THE	IR CONTRIBU	ΓIONS	
	1	C.V.Raman, HomiJehangirB habha,	2	K1(R)	Lecture method, Peer group learning, PPT	Evaluation through: Online quiz, short questions Descriptive
	2	Vikram Sarabhai, Subrahmanyan Chandrasekhar,	2	K1(R)	Lecture method, Peer group learning, PPT	answers MCQ, True/False, Concept explanations, Formative
	3	Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam and their contribution to science and technology.	2	K1(R)	Lecture method, Peer group learning, PPT	assessment II

Course Focussing on Employability/ Entrepreneurship / Skill Development: Skill Development

Activities (Em/ En/SD): Group Discussion

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment

Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: (Mention Topic and Type): General Applications of solar energy - descriptions through Google Classroom

Seminar Topic: (if applicable): -

Sample questions (minimum one question from each unit)

Part A (1 mark)

2. The abbreviation for LASER is _____

3. The hair dryer is also known as blow dryer. Say True / False.

4. Which one of the following material is used for collector tubes in solar water heater?a) Copperb) Ironc) Silverd) Aluminium

5. Who received the Nobel prize for physics for theoretical studies of the physical processes

of importance to the structure and evolution of the stars?

a) Vikram Sarabhai b) Subrahmanyan Chadrasekhar

c) Sir C V Raman d) Homi Jehangir Bhabha

Part B (4 marks)

1. What is the physics principle behind the bouncing ball?

2. What are the characteristics of Laser light?

3. How the bulb glows light?

4. Explain the principle of solar cell.

5. How did Raman discovered the Raman effect?

Part C (8 marks)

- 1. Explain the working of Roller Coaster.
- 2. Discuss the various applications of Holography.
- 3. Discuss the working of a television.
- 4. Discuss the general applications of solar energy.
- 5. Discuss about Dr. A. P. J Abdul Kalam's contribution towards science and Technology.

Head of the Department

Course Instructor

Dr. C. Nirmala Louis

Dr. S. Sonia & Dr. P. Aji Udhaya

Teaching Plan

Department Class Title of the Co Semester Course Code	urse	:	Co III	B.Sc re C	. Physics	General Mec	hanics an	d Class	ical Mechai	nics
Course Code L			P	<u>s</u>	Credits	Inst. Hours	Total	Marks		
							Hours	CIA	External	Total
PU233CC1	5	_	_	_	5	5	75	25	75	100

Objectives

- 1. To have a basic understanding of the laws and principles of mechanics and to apply the concepts of forces existing in the system;
- 2. To understand the forces of physics in everyday life and to apply Lagrangian equation to solve complex problems.

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	recognize Newton's Law of motion, general theory of relativity, Kepler's laws and the basic principles behind planetary motion.	PSO - 1	K1(R)
CO-2	infer the knowledge on the conservation laws.	PSO - 1	K2(U)
СО-3	relate conservation law and calculate energy of various systems, understand and differentiate conservative and non–conservative forces.	PSO - 3	K3(Ap)
CO-4	devise concepts of rigid body dynamics and solve problems.	PSO - 3	K4(An)
CO-5	defend Lagrangian system of mechanics and D' Alembert's principle.	PSO - 2	K5(E)

Course Outcomes

Teaching plan

	Мо		Teachin	Cognitiv		Assessment/
Unit	dule	Торіс	g Hours	Cognitiv e level	Pedagogy	Evaluation
			nours			
Ι	LAW	S OF MOTION	1	1		
	1.	Newton's Laws– Forces- Equations of motion – Motion of a particle in an uniform gravitational field	3	K1(R)	Lecture, Illustration and PPT using gamma	Evaluation through: quiz nearpod.
	2.	Kepler's laws-Newton's law of gravitation– Determination of G by Boy's method	3	K2(U)	Illustration, PPT	Formative assessment
	3.	Earth–moon system– Earth satellites –Earth density – mass of the Sun	3	K2(U)	Lecture Discussion using gamma	Evaluation through short test using nearpod
	4.	Gravitational potential – Velocity of escape – Einstein's theory of gravitation-Introduction	3	K1(R)	Illustration and AI tool	Solving simple problems
	5.	Principle of equivalence– Gravitational red shift – Bending of light.	3	K2(U)	Lecture Discussion using gamma	Evaluation through: quiz using hot potatoes.
II	CON	SERVATION LAWS OF LI	NEAR AN	D ANGUL	AR MOMENT	TUM
	1	Conservation of linear and angularmomentum-Internalforcesandmomentumconservation-Centre of mass-Examples	4	K2(U)	Lecture, Illustration	Evaluation through: quiz using hot potatoes
	2	General elastic collision of particles of different masses– System with variable mass– Examples	4	K2(U)	Lecture Discussion using PPT	Class test Solutions to problems
	3	Conservation of angular momentum– Torque due to internal forces – Torque due to gravity	4	K3(Ap)	Lecture , llustration using AI tool	Evaluation through short test using nearpod
	4	Angular momentum about centre of mass – Proton	3	K3(Ap)	Lecture Discussion	Evaluation through

		scattering by heavy nucleus.			using gamma	short test using nearpod
III	CON	SERVATION LAWS OF EN	ERGY		•	
	1.	Introduction – Significance of conservation laws – Law of conservation of energy .	4	K2(U)	Introductory session, Lecture using Chalk and talk, PPT.	Evaluation through short test, MCQ, True/False, Short essays.
	2.	Work – Power – Work – Kinetic energy theorem– Work done in lifting and lowering an object .	3	K3(Ap)	Lecture using Chalk and talk , Problem Solving, PPT.	Concept definitions, MCQ.
	3.	Conservative forces – Work done by spring force – Work done by the gravitational force.	3	K3(Ap)	Lecture using Chalk and talk , Problem Solving, PPT.	Evaluation through short test, Long derivation.
	4.	Gravitational potential energy and elastic potential energy	3	K3(Ap)	Lecture using Chalk and talk , Problem Solving, PPT.	Evaluation through short test, Long derivation.
	5.	Examples Non- conservative forces	2	K2(U)	Lecture using Chalk and talk , Problem Solving, PPT.	Evaluation through short test, MCQ, True/False, Short essays.
IV	RIGI	D BODY DYNAMICS	-		•	
	1.	Translational and rotational motion – Angular momentum.	4	K2(U)	Introductory session, Lecture using Chalk and	Evaluation through short test, MCQ, True/False,

					talk , PPT.	Short essays.
	2.	Moment of inertia – General theorems of moment of inertia – Examples	3	K4(An)	Lecture using videos, Problem solving, Demonstratio n.	Concept definitions, MCQ.
	3.	Rotation about fixed axis – Kinetic energy of rotation – Examples	3	K4(An)	Lecture using videos, Problem solving, Demonstratio n.	Evaluation through short test, MCQ, True/False.
	4.	Body rolling along a plane surface – Body rolling down an inclined plane	3	K4(An)	Lecture using videos, Problem solving, Demonstratio n.	Evaluation through Definition, Derivation Test
	5.	Gyroscopic precision – Gyrostatic applications.	2	K4(An)	Lecture using videos, Problem solving, Demonstratio n.	Evaluation through short test
V	LAG	RANGIAN MECHANICS				
	1	Generalized coordinates – Degrees of freedom – Constraints-Holonomic and non–holonomic – Scleronomic and Rheonomic constraint	5	K2(U)	Lecture Illustration,	Evaluation through: quiz, Formative Assessment
	2	Principle of virtual work and D' Alembert's Principle	3	K4(U)	Illustration	Evaluation through short test
	3	Lagrange's equation from D' Alembert's principle	3	K3(Ap)	Lecture Discussion using gamma	Class test Solutions to problems
	4	Application – Simple pendulum – Atwood's machine.	4	K5(E)	Lecture ,Illustration using slido	Class test Solutions to problems

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em / En /SD): Hands on Training on Problem solving

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross Cutting Issues:-

Assignment: Find out the Kinetic Energy of a Body rolling along a plane surface.

Seminar Topic: (if applicable):-

Sample questions (minimum one question from each unit)

Part A (1mark)

- 1. A ball thrown vertically upwards falls at the same place. What is the displacement of the ball.(**K4-An, CO-4**)
- 2. In the electromagnetic spectrum ----- has the high penetrating power(K2-U, CO-2)
- 3. Which of the following is not a conservative force? (K1-R, CO-1)a)Gravitational b)Frictional c)Electrostatic d)Nuclear
- 4. What will be the radius of gyration of a circular plate of diameter 10cm? (K4-An,CO-4)
 - a) 1.5cm b) 2.0cm c) 2.5cm d) 3cm
- **5.** Evaluate the number of degrees of freedom for a system consisting of N number of particles(**K5-E, CO4**)

Part B Part B (4 marks)

- 1. Briefly explain Newton's laws of motion. (K1-R, CO-1)
- 2. Explain motion and derive an expression for the equations of motion.(K2-U, CO-1)
- 3. Calculate the work done by a spring force. (K3-Ap,CO3)
- 4. Compare translational and rotational motion. (K4-An, CO-4)
- 5. Evaluate Lagrange's Equation. (K5-E, CO-5)

Part C Part C (8 marks)

- 1. Determination the gravitational constant G by Boy's method (K1-R, CO-1)
- 2. Derive an expression between torque and moment of inertia .(K2-U, CO-2)
- 3. Calculate the work done in lifting and lowering an object by applying kinetic energy theorem. (K3-Ap, CO-3)
- 4. Analyse the concept "Body rolling down an inclined plane" and find out its Kinetic energy. (K4-An, CO-4)
- 5. Explain the principle of virtual work and D' Alembert's Principle(K2-U, CO-1)

Wirmala down

Dr. C. NIRMALA LOUIS, M.Sc., Ph.D., PGDCA Head & Assistant Professor, PG & Research Department of Physics, Holy Cross College (Autonomous), Nagercoil, Kanyakumari District, Tamil Nadu, PIN: 629 004.

Head of the Department

Genepha Mary

Course Instructors

Teaching Plan

Department Class Title of the Course Semester Course Code			Ski III	B.Sc II Ei	. Physics	nt Course SE(C -II Astı	rophysi	cs	
Course Code	L	Т	Р	S	Credits	Inst. Hours	Total Hours	CIA	Marks External	Total
PU233SE1	2	-	-	-	2	2	30	25	75	100

Objectives

- 1. To introduce principles of astrophysics describing the science of formation and evolution of stars and interpretation of various heavenly phenomena.
- 2. To provide an understanding of the physical nature of celestial bodies.

Course Outcomes

On the	successful completion of the course, students will be able to:	
1.	recall the total and annular solar and lunar eclipses.	K1
2.	summarize the different layers of the Sun and its phenomenon.	K2
3.	articulate the basic concepts of Solar systems on planetary motion.	K3
4.	relate the distinct properties of planets revolving around the sun.	K4
5.	grade the principle of planetary motion towards science and technology.	K5

Teaching plan

Total Contact hours: 30 (Including lectures, assignments and tests)

Unit	Mo dule	Торіс	Teachin g Hours	Cognitiv e level	Pedagogy	Assessment/ Evaluation
Ι	THE				Ι	
	1.	The Sun – A typical star – Photosphere – Limb darkening .	2	K2(U)	Lecture, Illustration with PPT and videos.	Evaluation through: quiz, Schematic Representation s, Formative assessment

	2.	Chromosphere – Spicules – Plages and filaments .	2	K2(U)	Illustration with PPT and videos.	Evaluation through: quiz, Schematic Representation s, Formative assessment
	3.	Solar corona – The inner corona – The outer corona – The emission corona - prominences – sunspots - solar flares	2	K4(Ap)	Illustration with PPT and videos.	Evaluation through: quiz, Schematic Representation s, Formative assessment
II	SOLA	AR SYSTEM				
	1	Comets – Nucleus – Coma – Hydrogen cloud – Dust tail – Ion tail - Asteroids – Debris – Meteors .	3	K4(An)	Illustration with PPT and videos.	Evaluation through: quiz using hot potatoes, class test
	2	Shooting stars – Falling stars – Meteoroids – Crater - Kuiper belt.	2	K3(Ap)	Lecture Discussion using PPT	Evaluation through: quiz using hot potatoes, class test
	3	Oort cloud - Bode's law of planetary distances	1	K3(Ap)	Illustration with PPT and videos.	Evaluation through: quiz using hot potatoes, class test
III	ECLI		[]			
	1.	Types of eclipses – Solar eclipse – Solar eclipse geometry - Total and annular solar eclipse .	3	K1(R)	Introductory session, Illustration with PPT and videos.	Evaluation through short test, MCQ, True/False, Short essays.
	2.	Lunar eclipse – Umbra – Penumbra - Total and partial lunar eclipse	3	K1(R)	Illustration with PPT and videos.	Evaluation through short test, MCQ, True/False, Short essays.
IV	INNE	R PLANETS				

	1.	Mercury: Planet closest to the sun – Venus: Earth's twin.	3	K4(An)	Introductory session, Illustration with PPT and videos.	Evaluation through short test, MCQ, True/False, Short essays.
	2.	Earth: The water planet – Mars: The red planet	3	K4(An)	Lecture using videos, PPT	Evaluation through short test, MCQ, True/False, Short essays.
V	OUT	ER PLANETS		L		
	1	Jupiter: The largest planet – Saturn: The ringed planet – Uranus:	3	K2(U)	Lecture using videos, Illustration,	Evaluation through: quiz, Formative Assessment
	2	Neptune's twin – Neptune: The blue planet – Pluto – Dwarf planet.	3	K2(U)	Illustration , PPT	Evaluation through short test

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em / En /SD): Stellar identification using stellarium mobile app

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross Cutting Issues:-

Assignment: Identify the brightest star using stellarium mobile app and analyse its characteristics.

Seminar Topic: (if applicable):-

Sample questions (minimum one question from each unit)

Part A

- 1. Name the outermost layer of the sun.(K1-R, CO-1)
- 2. What is the gap between the orbit of mars and Jupiter called? (K2-U, CO-2)
 a) Asteroids
 b) Comets
 c) Meteor
 d) Meteorite
- 3. The cross-section of the objects involved in an astronomical eclipse is ______ shaped. (K3-Ap, CO-3)
- 4. Which is the brightest planet in the universe? (K4-An,CO-4)a) Mercuryb) Venusc) Earthd) Saturn

5. Which is the nearest planet to the sun? (K5-E, CO4)

a)Neptune b) Mars c) Mercury d)Earth

Part B

- 1. Write short note on solar flares. (K1-R, CO-1)
- 2. State Bode's law of planetary distances.(K2-U, CO-2)
- 3. Explain the Solar eclipse geometry. (K3-Ap,CO3)
- 4. Compare red and water planet. (K4-An, CO-4)
- 5. Evaluate why Pluto is called dwarf planet. (K5-E, CO-5)

Part C

- 1. With neat sketch, explain the layers present in the sun. (K1-R, CO-1)
- 2. Differentiate Shooting stars from Falling stars.(K2-U, CO-2)
- 3. Calculate the Total and partial lunar eclipse. (K3-Ap, CO-3)
- 4. Analyse the concept "Earth's twin". (K4-An, CO-4)
- 5. Compare the physical properties of largest and ringed planet. (K5-E, CO-5)

mala domi

 Dr. C. NIRMALA LOUIS, M.Sc., Ph.D., PGDCA. Head & Assistant Professor,
 PG & Research Department of Physics. Holy Cross College (Autonomous),
 Nagercoil, Kanyakumari District,
 Tamil Nadu, PIN: 629 004.

Head of the Department

Reall

Course Instructors

Teaching plan

Department	: Physics
Class	: II B.Sc. Chemistry
Title of the Course	: Elective Course III: Allied Physics for Chemistry-I
Semester	: III
Course Code	: PU233EC1

Course	rse L		Р	> s	Credits	Inst.	Total	Marks		
Course Code	L	T	P	3	Creatis	Hours	Hours	CIA	External	Total
PU233EC1	4	-	-	-	3	4	60	25	75	100

Learning Objectives:

- 1. To gain a comprehensive understanding of the fundamental principles in Physics.
- **2.** To develop skills for interpreting physical phenomena beneficial for students who have taken programmes other than Physics.

Course Outcomes

On the	On the successful completion of the course, students will be able to:					
1.	identify the basic concepts in waves, characteristics of matter, electricity and magnetism, as well as electronics.	K1				
2.	interpret the principles of ultrasonics and surface tension, and explore their practical applications within the medical domain.	К2				
3.	articulate real-world solutions leveraging the principles of electricity, magnetism, and electronics within the framework of Digital India.	К3				
4.	categorize physics principles in everyday situations.	K4				
5.	prioritize Boolean algebraic concepts in practical scenarios.	K5				

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Propertie	s of Matter				•
	1.	Elasticity: elastic constants – bending of beam – theory of non- uniformbending– determination of Young'smodulus by non-uniform bending	3	K1(R)	Lecture using Chalkandtalk ,Introductory session, Group Discussion, Mindmapping,	Evaluation through:short testClassTest
	2.	energy stored in a stretched wire – torsionofawire– determination of rigidity modulus by torsional pendulum	3	K2(U)	Peertutoring, Lectureusing videos,Problem solving, Demonstration, PPT, Review	questionsQuiz Formative assessment ShortSummary orOverview
	3.	Viscosity: streamline and turbulentmotion– criticalvelocity coefficient of viscosity	3	K3(Ap)	Lectureusing Chalkandtalk ,Introductory session,Group Discussion, Mind mapping,	
	4.	Surface tension: definition- interfacial surface tension – drop weight method	3	K1(R)	Peertutoring, Lectureusing videos,Problem solving, Demonstration, PPT, Review	
II	Heat and	Thermodynamics			1	I

	5.	Joule-Kelvineffect – Joule-Thomson porous plug experiment – temperature of inversion –	4	K1(R)	Lecture using Chalkandtalk ,Introductory session, Group Discussion, Mindmapping,	Evaluation through: short test Class Test Multiplechoice questionsQuiz
	6.	liquefaction of Oxygen - Linde's process of liquefaction of air– liquid Oxygen for medical purpose	4	K2(U)	Peer tutoring, Lecture using videos,Problem solving, Demonstration, PPT, Review	Formative assessment
	7.	laws ofthermodynamics – entropy-heat engine – Carnot's cycle – efficiency	4	K3(Ap)	Lecture using Chalkandtalk ,Introductory session, Group Discussion, Mindmapping,	
III		y and Magnetism	I			
	8.	Potentiometer- principle – measurement of thermoemf using potentiometer – magnetic field due toacurrent carryingconductor	4	K1(R)	Lecture using Chalkandtalk ,Introductory session, Group Discussion, Mindmapping,	Evaluation through: short test Class Test Multiplechoice
	9.	Biot-Savart'slaw– peak, averageandRMS valuesofaccurrent and voltage	4	K1(R)	Peer tutoring, Lecture using videos,Problem solving, Demonstration, PPT, Review	questions Quiz Formative assessment ShortSummary
	10.	power factor and currentvaluesinan AC circuit – types of switches in household and factories	4	K2(U)	Lecture using Chalkandtalk ,Introductory session, Group Discussion, Mindmapping,	or Overview
IV	Waves, O	scillations and Ultras	onics			

	11.	Simple harmonic motion (SHM) – compositionoftwo SHMs at right angles (periods in the ratio 1:1) –	4	K1(R)	Lecture using Chalkandtalk ,Introductory session, Group Discussion, Mindmapping,	Evaluation through: short test Class Test			
	12.	lawsoftransverse vibrations of strings – determination of AC frequency using sonometer	4	K1(R)	Peer tutoring, Lecture using videos,Problem solving, Demonstration, PPT, Review	Multiplechoic e questions Quiz			
	13.	ultrasound – production – piezoelectric method – application of ultrasonics	4	K2(U)	Lecture using Chalkandtalk ,Introductory session, Group Discussion, Mindmapping,	Formative assessment Short Summary or Overview			
v	Digital Electronics and Digital India								
	14.	logic gates, OR, AND, NOT, NAND,NOR, EXOR logic gates	3	K1(R)	Lecture using Chalk and talk, Introductory session,Group Discussion,	Evaluation through:short test Class			
	15.	Boolean algebra – De Morgan's theorem – verification –	3	K3(Ap)	Peer tutoring, Lecture using videos,Problem solving, Demonstration, PPT, Review	Test Multiple choice questions			
	16.	overview of Government initiatives: software technological parks under MeitY, NIELIT	3	K2(U)	Lecture using Chalkandtalk ,Introductory session, Group Discussion, Mindmapping,	Quiz Formative assessment			
	17.	Semiconductor laboratories under Dept.of Space–an introduction to Digital India	3	K2(U)	Peer tutoring, Lecture using videos,Problem solving, Demonstration, PPT, Review	Short Summary or Overview			

Course Focussing on Employability/Entrepreneurship/Skill Development: Skill Development

Activities (Em/En/SD): Model making

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/ Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues:-

Assignment: Simple Harmonic Motion-Model Making

Seminar Topic: -

Sample questions

PartA

1. The material used in magnetostriction method is (K1-R,CO									
2. <u>i</u> s	2. <u>is defined as the restoring force per unit area.</u> (K3-Ap,CO-2)								
3. Ais a devi	3. Ais a device for measuring potential differences. (K2-U,CO-3)								
a) Meter Bridge	a) Meter Bridge b) Potentiometer c) Carey Foster Bridg								
4. The maximum va	lue of alternating cur	rent in any direction is o	calledvalue of						
alternating current	nt. (K3-Ap, CO-4)								
a) Peak	b) Mean	c)Maximum	d)RMS						
5. When NOT gate follows an AND gate, the combination is called as									
(K3-Ap, CO-5)									
a) NAND	b)AND	c)EX-OR	d)NOR						

PartB

- 1. Interpret the production of ultrasonic waves using piezoelectric crystal method. (K2- U, CO-1)
- 2. Derive the expression for the bending moment. (K3-Ap,CO-2)
- 3. Explain the change of entropy in reversible and irreversible process. (K2-U,CO-3)
- 4. How will you measure the thermo emf using potentiometer? Explain.

(K3-Ap, CO-4)

5. Show that the NAND gate as universal building blocks. (K3-Ap,CO-5)

Part C

- 1. Describe the applications of ultrasonic waves. (K2-U,CO-1)
- 2. Determine the Rigidity modulus by Torsion pendulum by Dynamic torsion method. (K3-Ap,CO-2)
- 3. Obtain the efficiency of Carnot's cycle with suitable phase diagram.(K2-U,CO-3)
- 4. Define Biot-Savart's law and obtain an expression for field along the axis of the coil carrying current. (K3-Ap, CO-4)
- 5. Verify the DeMorgan's theorem.(K3-Ap,CO-5)

R Birmaladouir

& Virgin Juba S. Sebartiammal

Head of the department

Course Instructors

DEPARTMENT OF PHYSICS

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

III BSc Physics

Teaching Plan

Semester V

Major Core -- V

Name of the Course : Classical and Statistical Mechanics

Subject code : PC2051

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To understand the mechanics of systems of particles and their equations of motion
- 2. To study the concept of statistics of molecules.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO- 1	understand the basic mechanical concepts related to system of particles	PSO-1	U
CO-2	apply various mechanical principles to find solution for physical problem	PSO-4	Ар
CO- 3	solve the equations of motion using Hamiltonian formalism	PSO-6	С
CO- 4	explain the fundamental postulates of statistical mechanics and Maxwell Boltzmann statistics	PSO-1	R
CO- 5	understand and develop a scientific knowledge in quantum statistics	PSO-7	U

Credits: 5 Total contact hours: 90 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Cognitiv e level	Pedagogy	Assessment/ Evaluation
Ι	Mechani	ics of a System of Parti	cles			
	1	External and internal forces, center of mass	4	K1(R)	Lecture Discussion with PPT illustration	Evaluation through: Online quiz, short questions Descriptive answers MCQ, Problem solving. True/False,
	2	Conservation of linear momentum- Conservation of angular momentum- Conservation of energy- work- energy theorem-	5	K1(R)	Lecture discussion	Short essays, Concept explanations, Short summary or overview Formative
	3	Conservative forces- examples- Constraints-Types of constraints- Examples- Degree of freedom-	5	K2(U)	Lecture discussion	assessment I
	4.	Generalized coordinates (transformation equations) – Generalized Velocities- Generalized Momentum.	4	K2(U)	Lecture discussion, PPT	
П	Lagrang 1	gian Formulations Principle of virtual work, D'Alembert's principle	4	K2(U)	Lecture Discussion with PPT Illustration	Evaluation through: Online quiz, short questions Descriptive
	2	Lagrange's equation of motion for	4	K3(Ap)	Lecture discussion	answers

		· · · · · · · · · · · · · · · · · · ·				MCO Duelland
		conservative and non				MCQ, Problem
	3	conservative systems	5	$\mathbf{V}_{2}(\mathbf{A}_{n})$	DDT	solving.
	3	Simple applications-	5	K3(Ap)	PPT,	True/False,
		simple pendulum- Atwood's machine-			Illustration,	Short essays,
					Theoretical	Concept
		compound pendulum			formulation, Derivation	explanations,
	4	Hamilton's minainla	5	$V_2(\Lambda n)$		Short summary or overview
	4	Hamilton's principle- Deduction of	3	K3(Ap)	PPT,	Formative
					Illustration, Theoretical	assessment I
		Lagrange's equation of motion from				
		Hamilton's principle			formulation, Derivation	
		- Deduction of			Derivation	
		Hamilton's principle				
		from D'Alembert's				
		principle				
III	Hamilto	nian Formulations				
111	1	Phase space- The	6	K2(U)	Lecture with	
	-	Hamiltonian			PPT	Evaluation
		function H-			Illustration	through: Online
						quiz,
		Hamilton's				short questions
		Canonical equation				Descriptive
		of motion				answers
						MCQ, Problem
	2	Physical significance	6	K3(Ap)	Question-	solving.
		of H-Deduction of			answer	True/False,
		Canonical equation			session	Short essays,
		from a variational				Concept
		principle			Lecture	explanations,
						Short summary
	3	Applications-	6	K4(An)	PPT,	or overview
		Harmonic Oscillator-			Illustration,	Formative
		Planetary motion-			Theoretical	assessment I/II
		Compound			formulation,	
		pendulum			Derivation	
IV					-	
	1	Micro and macro	6	K1(R)	Lecture	Evaluation
		states- The mu-space			Diamarian	through: Online
		and gamma space-			Discussion	quiz,
		fundamental				short questions Descriptive
		postulates of				answers
		statistical mechanics				MCQ,
	2	Ensembles- different	6	K2(U)		True/False,
	-	types- Thermo			Lecture	Short essays,
		types- merilio				Short Obbuyb,

	3	dynamical probability - entropy and probability Boltzmann's theorem- Maxwell- Boltzmann statistics- Maxwell- Boltzmann energy distributive law- Maxwell- Boltzmann velocity distributive law.		K3(Ap)	Discussion PPT, Illustration, Theoretical formulation, Derivation	Concept explanations, Short summary or overview Formative assessment II
V	Quantur	n Statistics				
	1 2	Development of Quantum statistics- Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose– Einstein statistics ,	5	K2(R) K2(U)	PPT, Illustration, Theoretical formulation, Derivation PPT, Illustration, Theoretical formulation, Derivation	Evaluation through: Online quiz, short questions Descriptive answers MCQ, True/False, Short essays, Concept
	3	Free electrons in metal- Fermi Gas- Difference between classical and quantum statistics	4	K4(An)	PPT, Illustration, Theoretical formulation, Derivation	explanations, Short summary or overview Formative
	4	Free electrons in metal- Fermi Gas- Difference between classical and quantum statistics	4	K3(Ap)	Lecture, ppt Illustration, Theoretical formulation,	assessment II

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em / En /SD): **Problem solving, Discussion**

Course Focussing onCross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross Cutting Issues :-

Assignment: (Mention Topic and Type): Problem solving

Seminar Topic: (if applicable): Analysis of different types of statistics

Sample questions (minimum one question from each unit)

Part A (1 mark)

- 1. Force on the system is zero, its total linear momentum is constant.(True/False) (**K2-U**, **CO1**)
- 2. Virtual work done by all the applied forces must be zero under the condition that the virtual work done by the constraint forces is also zero. True / False. (K3- Ap, CO2)
- 3. The equation of motion of a simple pendulum is _____ K3 Ap, CO2)
- 4. Analyze the thermodynamic probability in the equilibrium state ------ (K4-An,CO3)
- 5. The statistics which obeys Pauli's exclusion principle is known as ------ (K5-E, CO4)

Part B (4 marks)

- 1. Estimate that for a conservative force (K2- U, CO1)
 - i. $\oint F. dr = 0$
 - ii. Curl F = 0
- 2. Produce an expression for D'Alemberts principle of virtual work. (K3 Ap, CO2)
- 3. Compose the equation of motion for a compound pendulum. (K6- C, CO3)
- 4. Compare and contrast M-B statistics, F-D statistics and B-E statistics.K5-E, CO3)
- 5. Distinguish classical and quantum statistics. (K2- U, CO5)

Part C (8 marks)

1. Discuss that the angular momentum of a system of particles is conserved. (K2 – U,CO1)

2. Illustrate the Lagrangian equation of motion using D'Alemberts principle.a. (K3 – Ap, CO2)

3. Formulate the Hamiltonian function for linear harmonic oscillator. (K6- C, CO3)

4. Evaluate an expression for the distribution of ni particles in the energy levels (Ei) by using Maxwell- Boltsman statistics (K5- E, CO2)

5. Evaluate the expression for Planck's radiation formula from Bose-Einstein statistics

Course instructors: Dr.A.Lesly Fathima and Dr.S.J Jenepha Mary

Head of the Department: Dr. C. Nirmala Louis

Teaching Plan

Department	:	Physics
Class	:	III B.Sc Physics
Title of the Course	:	Major Core- VI- Analog Electronics
Semester	:	V
Course Code	:	PC2052

Correct Cords	т	т	Р	C l'4-	Ter et II eren	Total		Marks	
Course Code	L	I	P	Credits	Inst. Hours	Hours	CIA	External	Total
PC2052	6	-	-	5	6	90	25	75	100

Objectives

- To impart in depth knowledge about Semiconductors, Diodes, Transistors, Operational Amplifiers, Oscillators etc
 To enable the students to understand the aspects of analog electronics in a lucid and
- comprehensive manner.

Course outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	understand the fundamental principles of semiconductors including P-N junctions and zener diode	PSO-1	K2
CO - 2	illustrate network theorems like Thevenin's theorem, Norton's theorem etc.,	PSO-2	К2
CO - 3	analyze the operation of transistor, amplifier, oscillator and multivibrator	PSO-3	K5
CO - 4	demonstrate practical skills in the simulation, construction and testing of simple electrical and electronic circuits.	PSO-6	К3

Teaching plan

	Modul	— •	Teachin	Cognitive	Pedagogy	Assessment/
Unit	e	Торіс	g Hours	Level		Evaluation
Ι	Linear	circuit analysis and semicon		iodes		
	1	Constant voltage source - constant current source - Maximum power transfer theorem - Thevenin's theorem - procedure for finding Thevenin Equivalent circuit	5	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions
	2	PN junction theory - V-I characteristics of a PN junction diode - Half wave rectifier - Bridge rectifier - Efficiency	5	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Descriptive answers MCQ, True/False, Concept
	3	filters - Shunt capacitor filter – pi filter - Zener diode - equivalent circuit - voltage regulator	4	K3 (Ap)	Lecture, Group Discussion and Problem Solving	explanations, Formative assessment I
	4	LED - V-I characteristics – advantages - applications - photo diode - characteristics applications	4	K2 (U)	Group Discussion and lecture	
II	Transis	stor Amplifier				
	1	Transistor - Different modes of operations-CB mode & CE mode	4	K2 (U)	Demonstration and lecture	Evaluation through:
	2	Two port representation of a transistor- h parameter - AC equivalent circuit using h parameters- analysis of amplifiers using h parameters (CE only)	4	K3 (Ap)	demonstration and lecture – cum- discussion, Problem Solving	Online quiz, short questions Descriptive answers MCQ,
	3	RC coupled amplifier - transformer coupled amplifier	3	K4 (An)	Lecture-cum- Discussion and Demonstration	True/False, Concept explanations,
	4	Power amplifier	1	K4 (An)	Lecture- cum- discussion	Formative assessment I
	5	Classification of amplifiers - Class A, Class B and Class C	4	K4 (An)	Group Discussion and lecture	Multiple choice, question s,

Total Contact hours: 90 (Including lectures, assignments and tests)

	6	Push pull amplifier – Emitter follower	2	K4(An)	Lecture, Group Discussion	Formative assessment
III	Oscilla	tors and Multivibrator				
	1	Principle -effect negative feedback-and Barkhaussen criterion	4	K5(E)	Lecture-cum- discussion, Problem solving	Evaluation through: Online quiz,
	2	Phase shift and Wien Bridge oscillators using transistors – Expression for frequency	5	K5 (E)	Lecture, Group discussion, Problem solving	short questions Descriptive answers MCQ,
	3	Multivibrators- Astable and ,Monostable	4	K4 (An)	Demonstration, Lecture-cum- discussion	True/False, Concept explanations,
	4	Bistable multi vibrators using transistors - Schmitt trigger.	5	K4 (An)	Demonstration, Lecture-cum- discussion	Formative assessment I
IV	Special	Semiconductor Devices				
	1	Clipping and clamping circuits	3	K4 (An)	Lecture-cum- discussion, PPT	Evaluation through:
	2	Differentiating circuit - Integrating circuit	4	K4 (An)	Lecture, Demonstration, Group discussion	Online quiz, short questions Descriptive
	3	Field effect Transistor FET- MOSFET	4	K4 (An)	Lecture-cum- discussion	answers MCQ,
	4	UJT-SCR -characteristics - FET as a VVR	4	K4 (An)	Lecture-cum- discussion	True/False, Concept
	5	UJT relaxation oscillator-SCR as a switch and rectifier	3	K4 (An)	Lecture-cum- discussion	explanations, Formative assessment I
V	Operat	ional Amplifier				
	1	Operational Amplifier- characteristics-parameters- applications- Inverting amplifier - Non inverting amplifier	5	K2 (U)	Lecture-cum- discussion, Demonstration	Evaluation through: Online quiz, short questions
	2	Voltage follower- Adder - Subtractor - Integrator – Differentiator	5	K2 (U)	Lecture-cum- discussion, Demonstration	Descriptive answers MCQ, True/False,
	3	Solving simultaneous	4	K3 (Ap)	Lecture-cum-	Concept

	equations-comparator -square			discussion,	explanations,
	wave generator			Demonstration	
4	Wien bridge oscillator -Schmitt	4	K2 (U)	Lecture-cum-	Formative
	trigger			discussion,	assessment I
				Demonstration	

Course Focussing on Employability/ Entrepreneurship / Skill Development: Skill Development

Activities (Em/ En/SD): Project

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment

Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: (Mention Topic and Type): Problems in Linear circuit Analysis

Seminar Topic: (if applicable): -

Sample questions (minimum one question from each unit)

Part A (1 mark)

1. Which one of the following	s is an example of	alternating voltage source? (K2-U, CO-2)
a) dc generator	b) ac generato	or
c) cells	d) battery	
2. The current amplification fa	actor is given by -	(K5-E, CO 3)
3. An oscillator converts	_(K2-U, CO-1)	
a. a.c power into d.c powe	r	b. d.c power into a.c power
c. mechanical power into	a.c power	d. none of the above
4. Astable multivibrator contin	uously produces	the square wave output, it is referred as
multivibrator.(K2-U, CO-1)	
5. In integrated chip 741, the	pin 2 denotes	(K2-U, CO-1)
a) - Vcc	b) off set null	

c) non- inverting input d) inverting input

Part B (4 marks)

- 1. An audio amplifier produces an alternating output of 12 V before the connection to a load. The amplifier has an equivalent resistance of 15Ω at the output. What resistance the load need to have to produce maximum power? Also calculate the power output under this condition. (K5-E, CO-3)
- 2. Describe Push pull amplifier. (K3-Ap, CO4)
- 3. Compute the nature of the oscillations produced by tank circuit. (K3-Ap, CO-4)
- 4. Recognize FET as a VVR. (K2-U, CO-2)
- 5. Explain briefly the integrator. (K2-U, CO-2)

Part C (8 marks)

1. A generator develops 200V and has an internal resistance of 100 Ω . Find the power delivered to a load of (i) 100 Ω (ii) 300 Ω . Comment on the result. (K5-E, CO-3) 2. Compare RC Coupled amplifier and transformer coupled amplifier. (K4-An, CO-3) 3. Differentiate the three types of Multivibrators in detail. (K2-U, CO-2) 4. Outling Field Effect Transistor and explain MOSEET (K2-U, CO-2)

4. Outline Field Effect Transistor and explain MOSFET.(K2-U, CO 2)

5. Discuss in detail about the Voltage follower. (K2-U, CO-2)

Head of the Department

Course Instructor

Dr. C. Nirmala Louis

Dr. M. Priya Dharshini & Dr. R. Krishna Priya

Teaching Plan

Department :PhysicsClass :III B.Sc PhysicsTitle of the Course :Core VII: Solid State PhysicsSemester :VCourse Code :PC2053

Course Code	т	Т	р	Credits	Ingt Houng	Total	Marks		
Course Code	L		P		Inst. Hours	Hours	CIA	External	Total
PC2053	5	-	-	5	5	75	30	70	100

Objectives

- To impart knowledge on the structure of crystals and the different types of materials.
- To develop a scientific attitude at micro and nano scales of materials

Course outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	illustrate various types of bonding present in solids with example.	PSO - 1	U
CO - 2	explain the various crystal parameters and structures.	PSO - 3	Е
CO - 3	discuss the various theories involved in magnetic materials. (dia, para, ferro, ferri and antiferro magnetism)	PSO - 3	С
CO - 4	describe polarization processes and analyze the information contained in the temperature and frequency dependence of dielectric materials.	PSO - 1	С
CO - 5	analyze the structure and physical properties of semiconductors.	PSO - 5	An
CO - 6	describe and discuss the theory of superconductivity and superconducting materials.	PSO - 2	С

Teaching plan

Unit	Module	Торіс	Teachin g Hours	Cognitive level	Pedagogy	Assessment/Evaluation
Ι	Bondin	g in Solids	Hours			
	1	Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding	4	K1(R)	PPT, Illustration and theoretical derivation,	Evaluation through: Online quiz, Problem solving short questions Descriptive answers MCQ, True/False, Short essays, Concept
	2	Bond energy of sodium chloride molecule - variation of inter atomic force with inter atomic spacing	4	K3(Ap)	Derivation and group discussion, block diagram	explanations, Short summary or overview Formative assessment I
	3	Cohesive energy - cohesive energy of ionic solids - application to sodium chloride crystal	3	K6(C)	PPT, Illustration, Theoretical formulation Discussion and Problem Solving	
	4	Evaluation of Madelung constant for sodium chloride	4	K5(E)	Derivation and group discussion Problem Solving	
II		Structure and C	rystal Dif	fraction		
	1	Crystal Lattice -Primitive and unit cell-seven classes of crystal-Bravais Lattice- Miller Indices	4	K2(U)	PPT, Derivation discussion Demonstratio n	Evaluation through: Online quiz, Problem solving short questions

Total Contact hours: 75 (Including lectures, assignments and tests)

	2	Crystal	4	K4(An)	Derivation	Descriptive
	2	Diffraction –	-		and group	answers
		Bragg's Law			discussion	Formative
		Dragg S Law			problem	assessment I
					solving	assessment 1
					solving	
	3	Experimental	3	K3(A)	Illustration,	
		methods-Laue			Theoretical	
		method,			formulation	
		powder method			PPT,	
		and rotating			Derivation	
		crystal method			discussion	
					Demonstratio	
					n	
	4		4	K5(E)	Derivation	
		Reciprocal			and group	
		lattice-			discussion	
		Intensity and			problem	
		structure factor.			solving	
III	Magnet	tic Properties				
	magne	ue i roperues				
	1	a	4	K3(Ap)) PPT,	Evaluation
		Spontaneous			Illustration	through: Online
		Magnetization			and	quiz,
		– Weiss Theory			theoretical	Problem solving
		– Temperature			derivation,	short questions
		dependence of				Descriptive
		Magnetization				answers MCQ,
	2	Classical	4		Devicestien	True/False, Short
	2	Classical Theory of	4	K2(U)	Derivation	essays, Concept
		Theory of Diamagnotism			and group discussion,	explanations, Short
		Diamagnetism			block	summary or
						overview
	3	Weiss theory of	3	VG(C)	diagram Derivation	
	5	Para	3	K6(C)	and group	Formative
		magnetism-			discussion,	assessment I/II
		Ferromagnetic			PPT	
		domains –			Block	
		Bloch wall			diagram	
					designing	
<u> </u>	4	Basic ideas of	4	K4(An)	PPT,	
		anti-			Illustration,	
		ferromagnetism -			Theoretical	
		Ferri magnetisms			formulation	
		– Ferrites in				
		computer Momorios				
IV	Dialact	Memories.			1	
11	Dielect	ric Properties				

	-		4	U (1/ D)		
	1	Band theory of solids – classification of insulators, Semiconductors , conductors	4	K1(R)	Derivation discussion PPT, Illustration, Theoretical formulation	Evaluation through: Online quiz, Problem solving short questions Descriptive answers MCQ, True/False,
	2	Intrinsic and extrinsic semiconductor Carrier concentration for electron - Barrier Potential	4	K5(E)	Derivation and group discussion, PPT Block diagram designing	Short essays, Concept explanations, Short summary or overview Formative
	3	Calculation Rectifier Equation Dielectrics - Polarization – frequency and temperature effects on polarization	4	K3(Ap)	Derivation and group discussion Block diagram designing	assessment II
	4	Dielectric loss- Clausius Mosotti relation- determination of dielectric constants.	3	K6(C)	Derivation and group discussion Block diagram designing	
V	SuperCo	nductivity			1	
	1	Introduction - General Properties of Superconducto rs - effect of magnetic field	4	K2(U)	Discussion PPT Block diagram designing	Evaluation through: Online quiz, Problem solving short questions Descriptive answers MCQ, True/False,
	2	Meissner effect-effect of current- thermal properties- entropy- specific heat -	4	K1(R)	Derivation and group discussion, PPT Block diagram designing	Short essays, Concept explanations, Short summary or overview

	energy gap - isotope effect				Formative assessment II
3	London equations - AC & DC Josephson effects - applications- Type–I and Type–II Superconducto rs	4	K3(Ap)	Derivation and group discussion Block diagram designing	
4	- Explanation for the Occurrence of Super Conductivity - BCS theory - Application of Superconducto rs - High TC superconductor S.	3	K5(E)	Derivation and group discussion, PPT	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability

Activities (Em/ En/SD): **Project**

Course Focussing onCross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : (Mention Topic and Type): **Application of Superconductors - High TCsuperconductors -descriptions through Google Classroom**

Seminar Topic: (if applicable): -

Sample questions (minimum one question from each unit)

Part A (1 mark)

- A ______ is formed by sharing of valence electrons between themselves. (K5- E, CO 2)
 - a) Ionic bonds b) covalent bond c) metallic bond d) Hydrogen bond
- 2. The expression for Bragg's Law is $n\lambda =$ _____. (K2- U, CO 1) a) d sin θ b) d cos θ c) 2d sin θ d) 2d cos θ
- 3. Ferromagnetic materials exhibits magnetization even after the applied field is removed. Say True or False. (K5- E, CO 2)
- 4. At high temperature, the ionic polarizability decreases. Say true or false. (**K2- U, CO** 5. In general, superconductors are (**K4- An, CO 5**)
- a) Ferromagnets b) Antiferromagnets c) diamagnets d) paramagnets

Part B (4 marks)

- 6. Compare primary and secondary bonds .Give examples. (K5- E, CO 3)
- 7. Outline the applications of powder Xray Diffraction method. (K2- U, CO 1)
- 8. Explain about the ferrimagnetism (K2- U, CO 1)
- 9. What do you understand by intrinsic and extrinsic semiconductors? (K6- C, CO 4)
- 10. Derive the London equations in superconductors (K4- An, CO 5)

Part C (8 marks)

- Elaborate cohesive energy and derive an expression for the cohesive energy (K6- C, CO 4)
- 12. Interpret the seven crystal system with neat diagram (K5- E, CO 3)
- 13. Describe the classical theory of diamagnetism (K6- C, CO 4)
- 14. Discuss band theory of solids using energy band diagram. Discuss its bandgap

dependence. (K4- An, CO 5)

15. Discuss the outstanding contributions of BCS theory and list its limitations. (K5-E, CO 3)

Ms.C.Nirmala Louis & Ms.JV.Shally

Head of the Department

Course Instructor