Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35 Affiliated to

Manonmaniam Sundaranar University, Tirunelveli

DEPARTMENT OF BOTANY

SYLLABUS FOR UNDERGRADUATE PROGRAMME

TEACHING PLAN

EVEN SEMESTER 2024-2025

Vision

To impart knowledge with professional zeal and devotion for plant science

Mission

Providing student – centered and profession- oriented higher education that bestows academic environment to create intellectuals with scientific temperament, in the context of global issues and environmental challenges.

PEOs	Upon completion of B.A/B.Sc. Degree Programme, the graduates will be able to:	Mapping with Mission
PEO 1	apply appropriate theory and scientific knowledge to participate in activities that support humanity and economic development nationally and globally, developing as leaders in their fields of expertise.	M1& M2
PEO 2	use practical knowledge for developing professional empowerment and entrepreneurship and societal services.	M2, M3, M4 & M5
PEO 3	pursue lifelong learning and continuous improvement of the knowledge and skills with the highest professional and ethical standards.	M3, M4, M5 & M6

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PROGRAMME OUTCOMES (POs)

POs	Upon completion of B.Sc. Degree Programme, the graduates will be able to:	Mapping with PEOs
PO1	obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science.	PEO1
PO2	create innovative ideas to enhance entrepreneurial skills for economic independence.	PEO2
PO3	reflect upon green initiatives and take responsible steps to build a sustainable environment.	PEO2
PO4	enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	PEO1 &PEO3
PO5	communicate effectively and collaborate successfully with peers to become competent professionals.	PEO2&PEO3

PO6	absorb ethical, moral and social values in personal and social life leading to highly cultured and civilized personality	PEO2 & PEO3
PO7	participate in learning activities throughout life, through self-paced and self-directed learning to improve knowledge and skills.	PEO1&PEO3

PROGRAM SPECIFIC OUTCOMES (PSOs)

On succe to:	essful completion of the B.Sc. Botany program, the students are expected	Mapping with POs
PSO1	implement the concept of science and technology to foster the traditional and modern techniques for solving the complex problems in Plant Biology.	PO4
PSO2	ensure the use of contemporary tools and techniques in understanding the scope and significance of Botany	PO1& PO3
PSO3	develop the scientific problem solving skills during experimentation, research projects, analysis and interpretation of data	PO4 & PO7
PSO4	design scientific experiments independently and to generate useful information to address various issues in Botany.	PO6 & PO7
PSO5	enhanced capacity to think critically; ability to design and execute experiments independently and/or team under multidisciplinary settings	PO2 & PO5
PSO6	design and standardize protocols for public health and safety, and cultural, societal, and environmental considerations	PO6 & PO3
PSO7	apply appropriate techniques, resources, and modern ICT tools for understanding plant resources.	PO2 & PO7
PSO8	demonstrate the contextual knowledge in sustainable exploitation of medicinal, economically important and endangered plants as per the National Biodiversity Act.	PO6
PSO9	follow the concept of professional ethics and bioethics norms for practicing the value of plant kingdom.	PO6
PSO10	communicate proficiently with various stakeholders and society, to comprehend and to write and present reports effectively	PO4 & PO6

TEACHING PLAN

Class

: I B.Sc., Botany

Title of the Course: Core III: PLANT DIVERSITY – II: FUNGI, BACTERIA, VIRUSES, PLANT PATHOLOGY AND LICHENS

Semester

: II

Course Code	L	L	L	L	Т	Р	Credits	Inst. Hours	Total		Marks	
						Hours	CIA	External	Total			
BU232CC1	3	2	-	4	5	75	25	75	100			

Objectives

1. To describe the biology of fungi, bacteria, virus and to discuss the importance of fungi in various ecological roles.

2. To identify the main groups of plant pathogens, their symptoms.

Course outcomes

On the succ	cessful completion of the course, student will be able to:	
1.	recognize the general characteristics of microbes, fungi and lichens and disease symptoms.	K1
2.	develop an understanding of microbes, fungi and lichens and appreciate their adaptive strategies based on structural organization.	K2 &K1
3.	identify the common plant diseases, according to geographical locations and device control measures.	K3 & K4
4.	analyze the emerging trends in fungal biotechnology with special reference to agricultural and pharmaceutical applications.	K4
5.	determine the economic importance of microbes, fungi and lichens.	K2

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6– Create

Teaching plan

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Mo dule	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
FUN	GI					
I	1.	Classification of fungi - (Alexopoulos and Mims, 1979), criteria for classification. Characteristic features, thallus organization, mode of nutrition, structure, reproduction and life- history of Zygomycotina (<i>Pilobolus, Mucor,</i> <i>Rhizopus</i>)	4	K2(U)	Lecture using Chalk & talk, Flow chart, PPT and videos, Introductory session, Mind mapping, Peer review Lecture using Chalk & talk, Live specimen, Microscopic observation of Permanent slides, Animated videos, Use of diagrams and charts	MCQ, True/False, Simple definitions, Short essays, Recall Concept, Short summary or overview, Graphical representation Suggest idea, explanations, Formative assessment, Summative assessment, Group Discussion, Oral Test,Short-answer questions based on structure and reproduction,
	3.	Structure, reproduction and life- history of Ascomycotina (<i>Aspergillus</i> , <i>Saccharomyces</i> <i>Peziza</i>),		K2(U)	Lecture using Chalk & talk, Live specimen, Microscopic analysis, Sectional reviews, PPT, Small group discussions	Concept-based oral quizzes.

	4.	Structure, reproduction and life- history of Basidiomycotina (<i>Agaricus, Pleurotus,</i> <i>Puccinia</i>)	2	K2(U)	Lecture using Chall & talk, Field observations of Liv specimens, Microscopic studie of Permanent slides Group discussions, Flowcharts and PP	e s s,
	5.	Structure, reproduction and life- history of Deuteromycotina (<i>Cercospora,</i> <i>Alternaria</i>). Importance of mycorrhizal association.	2	K2(U)	Lecture using Chall & talk, Demonstration with Live specimens, Us of PPTs and diagrams, Collaborative group discussions	n Se
II EC	CONO	MIC IMPORTANCE (DF FUNGI:			
II	1	Cultivation of mushroom – <i>Pleurotus</i> (food).	3	K3(Ap)	Lecture using Chalk & talk, PPT and videos, Hands on Training, Group Discussion, field visit, video tutorials	Surprise Test, MCQ, True/False, Short essays, Recall, Graphical representation Simple definitions, Class test, Suggest idea/concept
	2	Fungi in agriculture application (biofertilizers):	4	K4(An)	Lecture using Chalk & talk, Interactive	with examples, Formative assessment, Summative assessment,

		Mycotoxins			lecture, PPT and	open book test, group
		(biopesticides),			videos, Brain	presentation, peer-
					storming session,	reviewed discussions
					group discussion	
	3	Production of	4	K4(An)	Lecture using	
		industrially			Chalk & talk,	
		important products			Flow chart,	
		from fungi- alcohol			Charts, PPT and	
		(ethanol), organic			Group	
		acids (citric acid),			Discussion,	
		enzymes (protease).			flipped	
		Vitamins (Vitamin			classroom,	
		B-complex and				
		Vitamin B-12),				
	4	Applications of	4	K3(Ap)	Lecture using	
		fungi in			Chalk & talk,	
		pharmaceutical			Charts, E-	
		products			content, Flipped	
		(Penicillin).			classroom, PPT,	
		Importance of VAM			Animation	
		fungi. Harmful			explaining,	
		effects of Fungi.			Storytelling	
		Agriculture			session, Group	
		(Biofertilizers);			Discussion,	
		Mycotoxins				
BAC	 TERI	A, VIRUS	<u> </u>			
ш	1	Classification	3		Lecture using Chalk	Simple definitions,
		(Bergey's, 1994)		K2(U)	& talk, Flow chart,	MCQ, True/False,
					Introductory session	, Essays, Short essays,

					Group Discussion,	Recall summary,
					Review	Graphical
						representation, MCQ,
						Class Test, Formative
	2	Structure and	5		Lecture using Chalk	assessment,
	-	reproduction of	C	K2(U)	& talk, Permanent	Summative
		bacteria,		112(0)	slides, PPT and	assessment, slip test,
		Mycoplasma			Group Discussion,	preparation of
		wrycopiasina			Group Discussion,	question bank
	3	Virology -Viruses	б	K2(U)	Lecture using Chalk	question bank
		general characters,			& talk, Flipped	
		structure and			classroom,	
		reproduction.			Permanent slides,	
					Charts, PPT and	
					Group Discussion,	
PLA	NT PA'	FHOLOGY				
IV	1	General symptoms	2	K1(R)	PPT, Illustration,	Group discussion,
		of plant diseases			Live specimen,	Formative assessment,
					Lecture	Quiz, Short test, Open
						book test, MCQ,
	2	Geographical	2	K2(U)	Lecture, video	Herbarium
		distribution of			clippings, you – tube	preparation, Slip test,
		diseases; Etiology			videos,	class test, Debate
	3	General characters	3	K1(R)	Lecture, Permanent	
	_	of Bacteria and		()	slides, charts,	
		Viruses.				
		v ir ubeb.				
	4	Bacterial diseases –	3	K3(An)	Live specimen,	
		Citrus canker and			Lecture, Illustration,	
		Bacterial wilt of			Interactive PPT	

	Banana				
5	Viral diseases–TobaccoMosaicand Vein clearing ofPapaya	2	K3(An)	Live specimen, Lecture, Illustration, Interactive PPT	
6 V LICH	Fungal diseases – Blast disease in rice and Tikka disease EN	3	K3(An)	Live specimen, Lecture, Illustration, Interactive PPT	
1	Classification (Hale, 1969). Habitat, nature of association, Structure Nature of	2	K1(R) K2(U)	Lecture, PPT, Illustration	Group discussion, Formative assessment, Quiz, Short test, Open book test, MCQ, Herbarium preparation, Slip test,
	Mycobionts and Phycobionts, Study of growth forms of lichens (crustose, foliose and fruticose)			Illustration, Live specimen	class test, Debate, Model making, Summative assessment
3	Types, distribution,thallus organization,reproductionandecologicalsignificancelichens	3	K2(U)	Lecture, PPT, Illustration, Live specimen	

	reference to Usnea.				
4	Economic	3	K3(Ap)	Lecture,	Interactive
	importance of			PPT, I	llustration,
	Lichens: food, fodder			Demonstra	ation
	and nutrition, flavor,				
	tanning and dyeing,				
	cosmetics and				
	perfumes, Brewing				
	and distillation,				
	minerals				
5	Natural products,	2	K3(Ap)	Lecture,	Interactive
	medicine			PPT, I	llustration,
	(Ayurvedic,			Display	
	Siddha),				
	pharmaceutical				
	products,				
	biodegradation				
	agent, air pollution				
	and biomonitoring,				
	soil formation.				
	nitrogen fixation				
6	Harmful aspects,	2	K3(Ap)		
	poison from lichens.				

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Role play (Classification of fungi), Model making (Micro- organisms) Preparation of question Bank (Plant Diversity -II)

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human

Values/Environment Sustainability/ Gender Equity): Environment Sustainability

Activities related to Cross Cutting Issues: Group Discussion on "Economic Importance of Fungi"

Assignment: Plant Diseases, Production of ethanol, citric acid, protease and Vitamins **Seminar Topic:** General characters of Fungi and Virus

Part A

1. The thallus organization of Zygomycotina is characterized by _____.

2. Citric acid is an example of an enzyme produced by fungi. True or False:

What is the primary classification reference for bacteria according to Bergey's, 1994?
a. Linnaeusb. Whittakerc. Bergey'sd. Mims

4. The term bacteria was coined by the French microbiologist_____

5. Usnea is a fruticose lichen - True or False

Part B

1. Elaborate on the mode of nutrition in Aspergillus, a representative of Ascomycotina.

2. Explain the primary use of Pleurotus fungi in cultivation and its significance.

3. How does the structure of Mycoplasma relate to its pathogenicity in humans?

4. General characters of bacteria

5. Elucidate the nature of association of lichen.

Part C

1. Explain the life history of a representative fungus from Zygomycotina.

2. Explore the harmful effects of mycotoxins in agriculture, providing examples and discussing their impact.

3. Discuss the general characters of viruses and their structural components, emphasizing their role in the infection process.

4. Write in detail of causative organism, etiology, host-pathogen relationships, disease cycle, prevention and control measures of bacterial wilt of banana.

5. Draw and describe the internal structure of fruit body of Usnea

Head of the Department

Course Instructor

A. Anami Augustus ArulA. R. Florence

A. Anami Augustus Arul

Class : I B.Sc. Chemistry

Title of the Course : ELECTIVE ALLIED BOTANY-II

Semester : II

Course Code : BU232EC1

Cour	se Code	L	Т	Р	Credits	Inst. Hours	Total Hours	CIA	Marks External	Total
BU232	EC1	4	-	-	2	2	60	25	75	100

Objectives

- To gain a solid grasp of plant systematics, acknowledging the pivotal role of plant anatomy in production systems, and comprehending the shift from vegetative to reproductive phases.
- To acquire knowledge in the physiological processes governing plant metabolism, energy production, and utilization.

Course outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	understand the fundamental concepts of plant anatomy and embryology.	PSO – 1	K2 (U)
CO - 2	analyze and recognize the different organs of plants and secondary growth.	PSO – 10	K4 (An)
CO - 3	understand water relation of plants with respect to various physiological processes.	PSO – 4	K2 (U)
CO - 4	to know about the fundamental concepts of aerobic and anaerobic respiration.	PSO – 4	K1 (R)
CO - 5	classify plant systematics and recognize the importance of herbarium and virtual herbarium.	PSO – 1	K3 (Ap)

Teaching plan

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation								
	Morphology of Flowering Plants:													
I	1.	Plant and its parts. Structure and function of root and stem.	4	K2 (U)	Lecture, Interactive PPT, diagrams, videos, live specimen	Short- Answer Tests, Assignments,								
	2.	Leaf and its parts. Leaf types- simple and compound. Phyllotaxy and types.	4	K2 (U)	Lecture using chalk and board, live specimens diagrams, interactive discussions	MCQ, True/False. Evaluation through class								
	3.	Inflorescence - Racemose, Cymose and Special types.	2	K1 (R)	Lecture, PPT, Videos, brainstorming,	test, quizzes, assignments, Recall steps, class test,								
	4.	Terminology with reference to flower description.	2	K3 (Ap)	Lecture, group discussion, PPT, debates	formative assessment, open book test								
	Taxono	my:												
П	1.	Study of the range of characters and plants of economic importance in the following family: Rutaceae		K1 (R)	Lecture, diagrams, PPT, live specimen, brainstorming	Class tests, diagram labelling, online quizzes, MCQs,								
	2.	Study of the range of characters and plants of economic importance in the following family: Caesalpiniaceae		K2 (U)	Lecture, PPT, diagrams, live specimen, chalk and board, videos, interaction in the classroom	formative assessments, true/false statements, or fill-in-the-								
	3.	Study of the range of characters and plants of		K1 (Ap)	Lecture, PPT, live specimen, interactive	blank questions,								

	4.	economic importance in the following family: Asclepiadaceae Study of the range of characters and plants of economic importance in the following family: Euphorbiaceae.	3	K2 (U)	discussion, reflective thinking Lecture, PPT, diagrams, guided discussion, live specimen, flowcharts	group discussion summative assessments, Short Answer Questions, Essay Questions
	5.	Study of the range of characters and plants of economic importance in the following family: Cannaceae	2	K2 (U)	Lecture, PPT, diagrams, interactive discussions,	
		Anatomy:	L L			1
III	1.	Tissue and tissue systems: Simple and complex tissues.	3	K2 (U)	Lecture, PPT, illustrations, microscope slide, Group discussions	Short Answer Questions, Labeling diagrams,
	2.	Anatomy of monocot and dicot roots -	6	K1 (R)	Lecture, PPT, Charts, permanent slide, sectioning, diagrams, brain storming	Formative and Summative Assessments,
	3.	anatomy of monocot and dicot stems -	3	K2 (U)	Lecture, PPT, permanent slide, interactive discussion	Class test, essay question, MCQs
	4.	anatomy of dicot and monocot leaves.	3	K1 (R)	Lecture, PPT, flowcharts, diagram, reflective thinking	
	Embry	vology:	<u> </u>			·
IV	1.	Structure of mature anther and ovule -	3	K2 (U)	Lecture, Chalk and board, PPT	Diagram labelling, quizzes, class
	2.	Types of ovules, structure of embryo sac,	3	K2 (U)	Reflective thinking, photos,	test, essay test.

	3. 4.	Pollination fertilization,-double fertilization,Structure dicotyledonous 	3	K1 (R) K2 (U)	Brainstorming. photos Reflective thinking, photos	Formative assessment, MCQs, Short answer test, peer review, Just a Minute,
	Plant P	nysiology:				
V	1.	Absorption of water,	2	K2 (U)	Lecture using chalk and board, group discussions, reflective thinking	formative assessement, MCQs, Class tests,online
	2.	photosynthesis - light reaction - Calvin cycle;	3	K2 (U)	Brainstorming, diagram, videos, intractive e- content	quiz, essay questions, Fill in the
	3.	respiration - Glycolysis - Krebs cycle - electron transport system.	4	K3 (Ap)	Lecture, group discussion, PPT, Videos	blanks, True or False, Summative assessment,
	4.	Growth hormones - auxins and cytokinin and their applications.	3	K2 (U)	Lecture, PPT, reflective thinking	oral test, surprise test, homework

Course Focussing on Employability

Activities: Seminar, Assignment

Course Focussing on Cross Cutting Issues: Professional Ethics

Activities related to Cross Cutting Issues: Assignment and Seminar

Assignment Topic: Vegetative and Floral Characters of the family Asclepiadaceae

Seminar Topic: Economic importance of any one family.

Sample questions

Part A

1.	What type of phyllotaxy has a group of	f three leaves occurring as a whorl at each node?
	a. Ternate phyllotaxy	b. Opposite phyllotaxy
	c. Whorled phyllotaxy	l. Mosaic phyllotaxy
2.	The fruit belongs to the family Rutace	ae is
	a. Orange b. Apple	e c. Banana d. Grapes.
3.	Which tissues are considered complex	tissues?
	a. Xylem and phloem	b. Parenchyma and sclerenchyma
	c. Epidermis and cortex	d. Meristem and cambium
4.	The purpose of the microsporangia in	the anther is
	a. To produce microspores	b. To attract pollinators
	c. To protect the anther	d. To release pollen grains
5.	What is the role of mycorrhizal associ	ations in water absorption?
	a. They generate root pressure	b. They facilitate osmosis
	c. They increase the effective root sur	face area d. They aid in capillary action
		Part B
1.	What are the types of compound leave	es?
2.	Describe the vegetative characters of	he family Rutaceae.
3.	Write short notes about the simple tiss	ues.
4.	Briefly explain the structure of an em	bryo sac.

5. Discuss the applications of auxin.

Part C

- 1. Explain the special types of inflorescence.
- 2. Outline the floral variations of the family Euphorbiaceae and its economic importance.
- 3. Discuss the anatomy of monocot and dicot stems.
- 4. Categorise the types of ovules.
- 5. Explain the stages of the Krebs cycle.

Head of the Department:

Dr. A. Anami Augustus Arul

Course Instructors:

1. Dr. Sr. P. Leema Rose

2. Dr.Bojaxa A. Rosy

Class	:	Non-Major Elective
Title of the Course	:	NME II: MUSHROOM CULTIVATION
Semester	:	п
Course Code	:	BU232NM1

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total Hours	CIA	Marks External	Total
BU232NM1	2	-	-	-	2	2	30	25	75	100

Pre-requisites:

Basicknowledgeonstructureandfunction of various groups of mushrooms.

Learning Objectives

- 1. To learn and develop skills in mushroom cultivation and harvest technology.
- 2. To understand and appreciate the role of mushrooms in nutrition, medicine and health.

Course Outcomes

On the succ	cessful completion of the course, student will be able to:	
1.	recall various types and categories of mushroom.	K1
2.	explain about various types of food technologies associated with mushroom industry.	K2
3.	apply techniques studied for cultivation of various types of mushrooms.	К3
4.	analyze and decipher the environmental factors and economic value associated with mushroom cultivation	K4
5.	develop new methods and strategies to contribute to mushroom production.	К3

Unit	Modul	e Topic	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι						
	1 Introduction to mushroom		1	K2 (U)	Lecture, visual aids, historical references	Quiz, short- answer questions
	2	Morphology, Types of Mushrooms	2	K2 (U)	Presentation	Practical identification
	3	Identification of edible and poisonous mushroom	1	K2 (U)	Visual samples, hands-on exercises	test, case study analysis
	4	Nutritive values	1	K2 (U)	Lecture, case studies, research exploration	
	5	Life cycle of common edible mushrooms.	1	K1 (R)	Lecture, PPT	
Π	L		I			
	1	Mushroom cultivation	3	K3 (AP)	Demonstration, step-by-step procedures, practice	Hands-on evaluation, practical exam Discussing
	2	Prospects and scope of Mushroom cultivation in small scale Industry.	3	K3 (AP)	Interactive Lecture, Field Trip or Virtual Tour	labeling, branding, compliance
III			I	I		
	1	Life cycle of Pleurotusspp	3	K3 (AP)	Demonstration, field practice	Hands-on evaluation,
	2	Life cycle of <i>Agaricus</i> spp.	3	K3 (AP)	Lecture, PPT	practical exam
IV			1	1		1

	1	Spawn production	2	K3 (AP)	Presentation, hands-on practice	
	2	Growth media	1	K3 (AP)	Lecture, fungal laboratory visit	
	3	Spawn runningandharvestingofmushrooms	2	K3 (AP)	Demonstration, field practice	- Laboratory test, quiz spawn production test
	4	Marketing of product	1	K4 (AN)	Laboratory visit, Panel Discussion	production test Interactive Q&A
V						
	1	Diseases and post harvest technology	3	K4 (AN)	Lecture, case studies	Case study
	2	Insect pests, nematodes, mites, viruses, fungal competitors and other important diseases.	3	K4 (AN)	Lecture, pest identification, preventive measures	analysis Pest identification test

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability **Activities (Em/ En/SD):** Case study (Visit to small scale mushroom culture unit) Hand on training (Cultivation of mushroom)

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human

Values/Environment Sustainability/ Gender Equity): Environment Sustainability

Activities related to Cross Cutting Issues: Panel Discussion on "Market opportunity in mushroom cultivation"

Assignment:

Life cycle of Pleurotus spp

Life cycle of Agaricus spp.

Seminar Topic : Identification of edible and poisonous mushroom

Part-A

1. What is the life cycle of a mushroom?

2. Which mushroom species typically grows on agricultural waste like wheat or rice straw?

3. What is spawn running?

4. How can mushrooms be protected from various threats post-harvest?

5. What is help-line assistance in mushroom cultivation ?

Part B

6. Describe the cultivation of Oyster mushrooms (Pleurotus sp.)

7. Analyze the process of spawn running in mushrooms

8. Address the challenges encountered during post-harvest handling.

9. Analyze the methods used to protect mushrooms from insect pests, nematodes, mites, and viruses.

10. Design a simplified step-by-step procedure for producing mother spawn for mushroom cultivation.

11. Summarize the packaging techniques for marketing mushroom products.

12. How to identify commonly found edible mushrooms in a specific geographical region

13. Explain the life cycle of mushrooms.

Part C

14. Compare and contrast the nutritional, medicinal and therapeutic benefits value of two different edible mushroom species.

15. Develop a step-by-step guide for the isolation and spawn production of Oyster mushrooms (Pleurotus sp.).

16. Evaluate the economic viability of cultivating Oyster mushrooms (Pleurotus sp.) compared to Button mushrooms (Agaricus bisporus).

17. Apply the strategy to safeguard mushrooms from fungal competitors and diseases. (Application)

18. Evaluate the impact of various post-harvest technology approaches on the shelf life and commercial value of mushrooms.

- 19. Describe spawn production technique
- 20.Bring out the nutritional value of mushrooms.
- 21.Summarize the growth media necessary for spawn production.

SEMESTER -II

SKILL ENHANCEMENT COURSE SEC I:

BOTANICAL GARDEN AND LANDSCAPING

Total Marks S **Course Code** L Т Р Credits **Inst. Hours** Hours CIA External Total **BU232SE1** 2 2 2 30 -25 75 100

Pre-requisites: Students should know about the fundamental concepts of gardening and landscaping.

Learning Objectives

- 1. To know about the fundamental concepts of gardening and landscaping.
- **2.** To inculcate entrepreneurial skills in students for creative landscaping design using CAD software.

Course Outcomes

On th	e successful completion of the course, student will be able to:	
1.	to know about the fundamental concepts of gardening and landscaping	K1
2.	to provide an overview of various gardening styles and its scope in recreation and bio-aesthetic planning.	K2
3.	to illustrate the significance of garden adornments and propagation structures.	K3 & K6
4.	to create the design outdoor and indoor gardens and inculcate entrepreneurial skills for landscaping.	K4
5.	to inculcate entrepreneurial skills in students for creative landscaping design using cad software.	K5 & K6

Unit	Module	Торіс	Teachin g Hours	Cognitive level	Pedagogy/student centric method	Assessment/ Evaluation
	Unit-I: 6		T		1	1
	1.	Principles of gardening, garden components, adornments, lawn making	3	K1, K2, K3, K4	Introductory session, Lecture using videos, Demonstration, PPT	Mind map of garden components
Unit I II	2	methods of designing rockery, water garden, Vertical gardens, roof gardens	2	K2, K3,K4	Lecture using videos, Demonstration, PPT	Prepare a design for any garden
	3	Art of making bonsai. Greenhouse.	1	K1, K2	Experiential learning	Analyze a bonsai plant and write few sentences.
	Unit-II: 6	hrs	1			L
$I = \begin{bmatrix} Ur \\ 1. \\ 2 \\ 3 \\ 3 \\ II = \begin{bmatrix} 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	1.	Bioaesthetic planning, definition, need, round country planning, urban planning	2	K1, K2	Lecture, PPT Videos	Collect images of country and urban
	2.	Planting at avenues, railway stations, dam sites, hydroelectric stations, colonies, river banks	3	K2, K3	Lecture using videos, PPT	planning and planting in different sites –album.
	3.	Planting material for play grounds.	1	K2, K3	PPT-discussion	Seminar
	Unit-III:	6 hrs				
III	1	Landscape designs, Styles of garden, formal, informal and free style gardens, Urban landscaping,	3	K2, K3, K5, K6	Discussion with videos	Observation of a garden
	2	Landscaping for specific situations, institutions, industries, residents, hospitals, roadsides, traffic islands, damsites, IT parks, corporate.	3	K2, K3, K5, K6	Discussion with videos	Oral test
	Unit-IV:	6 hrs				
	1	Establishment and maintenance - indoor gardening, therapeutic gardening, non-plant components	3	K1, K2, K3,K6	Brainstorming on gardening, observe herbal garden in the campus	Analyze the medicinal plants in the garden and write a report

IV	2	Water scaping, xeriscaping, hardscaping.	3	Group discussion Slip test Lecture			
V	Unit-V: 6	hrs					
	1	Computer Aided	3	K2,	Group discussion	Assignment	
		Designing (CAD) for		K3,K5,K6	Lecture -videos		
		outdoor and indoor					
		landscaping					
	2	Exposure to CAD	3	K2, K3	Debate		
		(Computer Aided			Lecture-videos		
		Designing).					

Course Focussing on: Skill Development

Activities (Skill Development): Create a design for a garden

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): **Environmental sustainability**

Activities related to Cross Cutting Issues: Importance of gardens in public places, Planting trees in villages

Assignment: Video /photography of garden types

Seminar Topic: Planting at avenues, railway stations, dam sites, hydroelectric stations,

colonies, river banks

Sample questions

Part A

1. Define adornment.

2. A lawn is a grassy area of land that is usually kept mowed and is often found around a house, in a garden, or in a park - State True or False.

Part B

- 1. Comment on the art of Bonsai.
- 2. List out the methods for designing rockery.
- 3. Difference between water garden and verticalgarden.
- 4. Write short notes on CAD.
- 5. Why Urban landscaping is important?

Part C

- 1. Analyze the importance of Computer Aided Designing (CAD) inoutdoor landscaping.
- 2. Explain in detail about the different styles of garden with examples.
- 3. Summarize the importance of green house with suitable example.

Head of the Department

Course Instructor

Dr.A.Anami Augustus Arul

Dr. J. Albino Wins

Class	: II B.Sc Botany
Title of the Course	: Core Course III: Plant Diversity – IV – Gymnosperms,
	Palaeobotanyand Evolution
Semester	:III
Course Code	: BU234CC1

Course Code	L	т	Р	S	Credits	Inst Hours	Total	Total Marks				
course coue		-	T P S Credits Inst. Hours Ho	Hours	CIA	External	Total					
BU234CC1	3	2	-	-	4	5	75	25	75	100		

Pre-requisite: Fundamentals of Gymnosperms, fossil records and evolution.

Learning Objectives:

- 1.To enable the students to understand internal and the reproductive structures of Gymnosperms and the importance of evolution.
- 2.To acquaint students with evidences of the past history of plant groups and significance of the fossilization.

Course Outcomes

On	the successful completion of the course, student will be able to:	
1.	relate the general characteristics of Gymnosperms	K1
2.	explain about the morphology and anatomy of Gymnosperms.	K2
3.	understand the various fossilization methods and their significance in paleo botany.	K2
4.	compare and contrast the reproductive structures of Gymnosperms & fossil forms	K4
5.	analyze the anatomy and reproduction of Gymnosperms along with their ecological and economical importance.	K4

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

Teaching plan

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Jnit Module Topic		Teach ing Hours	Cogniti ve level	Pedagogy	Assessment/ Evaluation
Ι	1.	Classification of Gymnosperms (Sporne, 1954) (up to family).	6	K1(R)	Lecture using Chalk and Talk, Power point Presentation, Mind mapping,	MCQ, Short essays, Concept explanations, Short summary, field work report, peer assessment, Assignment
	2.	General characteristics of Gymnosperms.	4	K2(U)	Lecture using Chalk and Talk, Peer tutoring, Group Discussion, PPT, Field Trips	Oral presentation, PPT, videos,
		Economic importance of Gymnosperms with special reference to oil, resin, timber, etc.	5	K2(An)	Field Study, Lecture with live specimen	Group Discussion, summary overview, oral presentation,CIA, field work report
II		Morphology, anatomy and reproduction of Cycadales (<i>Cycas</i>)	7	K2(An)	Chart,GroupDiscussion,Visual aids,Peertutoringandmultimedia.	Seminar, True/False, Short essays, MCQ, Longer essay
		Morphology, anatomy and reproduction of Coniferales (<i>Pinus</i>).	8	K2(An)	Demonstration Chart, Mind mapping, Peer tutoring, Visual aids and Lecture using videos	Seminar, CIA, True/False, Short essays, MCQ, Longer essay
III		Morphology, anatomy and reproduction of the taxa belonging to the following order:	7	K4 (U)	Lecture using Chalk and talk, PPT, Flow Chart	Chart Evaluation,Fieldvisit,Summaryoverview,CIA,True/False,Short essays,

		Gnetales (Gnetum).				MCQ, Longer essay,
						Flow
	2	Introduction to fossils,	3	K4	Lecture, Group	Summary overview,
		Contribution of Birbal		(An)	Discussion, Peer	Assignment, Group
		Sahni			tutoring, Lecture using	Discussion, Concept
					videos, PPT, Field Visit	explanations
	3	Fossilization processes	5	K2(U)	Lecture, Group	Seminar, Assignment
		such as compression,			Discussion, Peer	Short essays, Longer
		casts, molds,			tutoring, Lecture using	essay, Peer Review,
		petrification,			videos, PPT, Field Visit	Assessment, Field
		impressions and coal				Report, Chart, Recall
		balls. Geological time				steps, PPT
		scale.				
1V	1.	Study of the fossils:	5		Lecture using Chalk and	Evaluation through short
		Rhynia		K2(U)	talk, Lecture using	test, MCQ, True/False,
					videos & images, PPT	Seminar, PPT,
	2.	Study of the	5		Lecture using Chalk and	Simple definitions, MCQ,
		fossils:Lyginopteris		K1(U)	talk, Lecture using	Slip test, Seminar with
					videos, PPT, permanent	РРТ
					slide specimen	
	3.	Study of the fossils:	5	K4(An)	Lecture using Chalk and	Definitions, Suggest idea,
		Lepidodendron			talk, Lecture using	Short essay
					videos, PPT	
V	1	Evolution - origin of life,	5	K2(U)	Lecture using Chalk and	Short test, MCQ,
		chemosynthetic theory -			talk, Group Discussion,	True/False, Seminar with
		evidences (any five).			Peer tutoring, Lecture	PPT
					using videos, PPT	
	2	Theories of evolution -	6	K2(U)	Lecture using Chalk and	Short test, MCQ,
		Darwin, Lamark and De			talk, Lecture using	True/False, Short essays,
		Veries,			videos, PPT	Assignment
	3	Modern synthetic theory.	4	K2(U)	Lecture using Chalk and	Suggest idea, Summary

Concept of species -	talk, Lecture using	overview, Concept
Allopatric and	videos, PPT, Group	explanations
sympatric.	Discussion,	

Course Focussing on: Employability

Activities (Skill Development): **Practical training on fossil identification and preparation of paleobotanical slides.**

Hands-on training in herbarium preparation, field collection, and preservation techniques.

Course Focussing on Cross Cutting Issues: Environmental sustainability

Activities related to Cross Cutting Issues: Study the ecological roles of gymnosperms and

pteridophytes in preventing soil erosion and maintaining ecological balance.

Assignment: Prepare a report on the economic importance of gymnosperms and

pteridophytes in pharmaceuticals, horticulture, and industry.

Seminar Topic: The Evolutionary Significance of Gymnosperms in the Plant Kingdom

Role of Pteridophytes in Ecosystem Stability and Biodiversity

SAMPLE QUESTIONS

Part A

1. Which scientist classified gymnosperms up to the family level in 1954?

A) Birbal Sahni B) Sporne C) Darwin D) Lamarck

2. The fossilization process where organisms leave an impression in rock is known as _____.

3. Assertion and Reasoning:Assertion (A): Cycas has a well-defined reproductive structure with cones. Reason (R): All gymnosperms reproduce through cones.

A) Both A and R are true, and R is the correct explanation of A.

B) Both A and R are true, but R is not the correct explanation of A.

C) A is true, but R is false.

D) A is false, but R is true.

4. The modern synthetic theory combines Darwin's and Lamarck's theories of evolution. True or False

5. Out of the four fossil one is not fit to fossil gymnosperms gymnosperms.

a. Archaeopteris b. Cycadeoidea c. Cordaites d. Lyginopteris

Part B

- 1. Describe the general characteristics of gymnosperms.
- 2. Explain the economic importance of gymnosperms with reference to oil and timber.
- 3. Discuss the morphology and reproduction in *Cycas* (Cycadales).
- 4. Explain the process of fossilization by petrification.
- 5. Describe Darwin's theory of evolution.

Part C

- 1. Discuss the classification of gymnosperms according to Sporne (1954) up to the family level.
- 2. Explain the anatomy and reproduction of Pinus (Coniferales) in detail.
- 3. Describe the morphology, anatomy, and reproduction of Gnetum (Gnetales).
- 4. Discuss Birbal Sahni's contribution to paleobotany and explain the geological time scale.
- Compare and contrast the theories of evolution proposed by Darwin, Lamarck, and De Vries, including the modern synthetic theory.

Head of the Department

Course Instructor Dr. A.R. Florence Dr. J. Albino Wins

Teaching Plan

Department	:	Botany
Class	:	II B.Sc., Zoology
Title of the Course	:	ALLIED BOTANY-III
Semester	:	III
Course Code	:	BU234EC1

Course Code	Code L T P Credits Inst. Hours		Marks							
		-	-	S	Creans		Hours	CIA	External	Total
BU234EC1	3	1	-	-	3	4	60	25	75	100

Objectives

- To gain a solid grasp of plant systematics, acknowledging the pivotal role of plant anatomy in production systems, and comprehending the shift from vegetative to reproductive phases.
- To acquire knowledge in the physiological processes governing plant metabolism, energy production, and utilization.

Course outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	understand the fundamental concepts of plant anatomy and embryology.	PSO – 1	K2 (U)
CO - 2	analyze and recognize the different organs of plants and secondary growth.	PSO – 10	K4 (An)
CO - 3	understand water relation of plants with respect to various physiological processes.	PSO – 4	K2 (U)
CO - 4	to know about the fundamental concepts of aerobic and anaerobic respiration.	PSO – 4	K1 (R)
CO - 5	classify plant systematics and recognize the importance of herbarium and virtual herbarium.	PSO – 1	K3 (Ap)

Teaching plan

Total Contact hours: 60 (Including lectures, assignments and tests)

TT:4	Madula	Torio	Teaching	Cognitive	Dedecas	Assessment/
Unit	Module	e Topic	Hours	level	Pedagogy	Evaluation
	Morphe	ology of Flowering Plan	its:		1	I
I	1.	Plant and its parts. Structure and function of root and stem.	4	K2 (U)	Interactive Lecture with Visual Aids, Live specimen, Hands on Training	Written Test, Group presentation, Field study
	2.	Leaf and its parts. Leaf types- simple and compound. Phyllotaxy and types.	4	K2 (U)	Group discussion and Presentation, Live specimens, Field Study	Report, Concept map Assessment, Specimen Identification,
	3.	Inflorescence - Racemose, Cymose and Special types.	2	K1 (R)	Field Study, Interactive Lecture with Visual Aids, Concept Mapping	Oral Quiz, Diagram Labelling
	4.	Terminology with reference to flower description.	2	K3 (Ap)	Quiz and Flashcards, Hands on Training	
	Taxono	my:	11			
Π	6.	Study of the range of characters and plants of economic importance in the following family: Rutaceae	2	K1 (R)	Field study and Plant Collection, Herbarium and Specimen preparation, Visual Aids and Illustrated Lectures	Specimen Identification, Herbarium Sheet Assessment, Field trip report, Quiz, Comparison
	7.	Study of the range of characters and plants of economic importance in the following family:	2	K2 (U)	PPT, Live specimen, Group discussion and debates, Quiz and Flash cards for	Comparison Chart Creation, Essay Writing

		Caesalpiniaceae			terminology	
	8.	Study of the range of characters and plants of economic importance in the following family: Asclepiadaceae	3	K1 (Ap)	Lecture, PPT, Live specimen, Herbarium and Specimen preparation, Visual Aids and Illustrated Lectures	
	9.	Study of the range of characters and plants of economic importance in the following family: Euphorbiaceae.	3	K2 (U)	Live specimen, Group discussion and debates, Quiz and Flash cards for terminology	
	10.	characters and plants of economic importance in the following family: Cannaceae	2	K2 (U)	Lecture, PPT, Live specimen, Herbarium and Specimen preparation, Visual Aids and Illustrated Lectures	
		Anatomy:				
Ш	5.	Tissue and tissue systems: Simple and complex tissues.	3	K2 (U)	Microscopic Observation, Interactive PPT, Lecture with chart, Interactive Visual Aids	Microscopic Identification of tissues, Diagram labelling test, Short answers, Quiz,
	6.	Anatomy of monocot and dicot roots -	6	K1 (R)	Microscopic Observation, Interactive PPT, Lecture with chart, Interactive Visual Aids	Assignment
	7.	anatomy of monocot	3	K2 (U)	Microscopic Observation,	

	8.	and dicot stems - anatomy of dicot and monocot leaves.	3	K1 (R)	Interactive PPT, Lecture with chart, Interactive Visual Aids Microscopic Observation, Interactive PPT, Lecture with chart, Interactive Visual Aids	-
	Embry	vology:			•	
IV	5.	Structure of mature anther and ovule -	3	K2 (U)	Lecture, Chalk and board, PPT, Illustrated Lecture and Visual Aids	Diagram labelling, quizziz, class test, essay test. Formative
	6.	Types of ovules, structure of embryo sac,	3	K2 (U)	Reflective thinking, photos, field collection of ovules	assessment, MCQs, Short answer test,
	7.	Pollination -double fertilization,	3	K1 (R)	Brainstorming, Plant reproductive map, Lecture	Seed dissection report
	8.	Structure of dicotyledonous and monocotyledonous seeds.	3	K2 (U)	Field collection and seed dissection, Lecture, Interactive PPT	
	Plant I	Physiology:				<u> </u>
V	5.	Absorption of water	2	K2 (U)	Animated Video demonstration, Group discussion	Formative assessment, MCQs, Summative
	6.	Photosynthesis - light reaction - Calvin cycle;	3	K2 (U)	Brainstorming, Role play, Diagrammatic	assessment, Flow Chart Creation and

7.	Respiration - Glycolysis - Krebs cycle - electron transport system.	4	K3 (Ap)	mapping Lecture, group discussion, Concept mapping of energy pathways	Explanation, Written test on pathways and Hormones, Concept map assessment, Interactive Quiz
8.	Growth hormones - auxins and cytokinin and their applications.	3	K2 (U)	Interactive PPT, Hormone application experiment	

Course Focussing on Employability

Activities: Flow Chart Creation, Herbarium Sheet Assessment, Identifying the plants

Course Focussing on Cross Cutting Issues: Professional Ethics

Activities related to Cross Cutting Issues: Assignment and Seminar

Assignment Topic:Role and Applications of Plant Growth Hormones (Auxins and Cytokinins) in Agriculture and Horticulture

Comparative Study of Photosynthesis and Respiration Pathways in Plants

Seminar Topic: Water Absorption Mechanisms in Plants and Their Physiological Significance

Structure and Function of Dicot and Monocot Seeds with Emphasis on Germination and Seedling Growth

Sample questions

Part -A

1. Phyllotaxy is defined as:

- A) The arrangement of flowers on the stem
- B) The arrangement of leaves on the stem
- C) The arrangement of seeds within the fruit
- D) The arrangement of roots in the soil

2. In dicotyledonous plants, the vascular bundles are:

- A) Scattered B) Arranged in a ring
- C) Diffuse D) Closed

3. Xylem and phloem togethe	r form:
-----------------------------	---------

A) Simple tissues B) Vascular tissues

C) Ground tissues D) Meristematic tissues

- 4. In monocot stems, vascular bundles are:
- A) Arranged in a ringB) Scattered throughout the stemC) In pairsD) Absent
- 5. Double fertilization results in the formation of:

A) Two embryos	B) An embryo and endosperm
C) A seed and fruit	D) A fruit and embryo

6. Pollination involving pollen transfer from the anther to the stigma of the same flower is called:

- A) Cross-pollination B) Self-pollination
- C) Wind pollination D) Water pollination
- 7. The site of the light reaction in photosynthesis is the:

A) Stroma	B) Mitochondria
-----------	-----------------

- C) Thylakoid membrane D) Cytoplasm
- 8. The first stable product of the Calvin cycle is:

D) Glucose

9. Which hormone is primarily responsible for cell elongation in plants?

- A) Cytokinin B) Auxin
- C) Gibberellin D) Ethylene

10. Cytokinins are naturally found in high concentrations in:

- A) Root tips B) Shoot tips
- C) Leaves D) Flowers

Part B

- 1. Describe the different types of phyllotaxy with suitable examples.
- 2. Compare and contrast the anatomy of monocot and dicot stems.
- 3. Describe the process of double fertilization in flowering plants.
- 4. Outline the main steps in the Calvin cycle.
- 5. Compare the roles of auxin and cytokinin in plant growth.

- 1. Explain the structure and functions of the root in plants, including their modifications and roles in support, storage, and conduction.
- 2. Describe the structure and function of complex tissues in plants, highlighting their roles in support, storage, and conduction.
- 3. Explain the structure of the mature ovule, types of ovules, and the structure of the embryo sac.
- 4. Describe the process of cellular respiration, detailing the energy transformations at each stage.
- 5. Describe the functions of auxins and cytokinins in plants and discuss their applications in agriculture and horticulture.

Head of the Department:

Course Instructors:

Dr. A. Anami Augustus Arul

1. Dr. A. Anami Augustus Arul

2.Dr. J. Albino Wins

Semester - VI Major Core VIII - Genetics, Biostatistics and Bioinformatics Sub. Code: BC2061

Number of	Number of	Total Number	Marks
Hours Per week	Credits	of Hours	
6	6	90	100

Objectives: 1. To have knowledge of Mendelian and non-Mendelian inheritance.

- 2. Develop skills in data tabulation, its treatment, analysis and interpretation of data.
- 3. Introduce the vast repositories of biological data knowledge.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO – 1	understand Mendelian principle and predict genetic inheritance patterns.	PSO - 1	U
CO – 2	analyze the facts of non-Mendelian inheritance and have conceptual knowledge on alleles and their linkage.	PSO - 3	Ар
CO – 3	examine the various stages of cell division and also a clear knowledge on DNA structure.	PSO - 3	U
CO – 4	generate biological interpretations and conclusions from data of scientific research.	PSO -3	С
CO – 5	develop skills to become employable as professionals in biochemical industries.	PSO - 5	С

Teaching Plan

U nit	Mod	lule	Topics	Lecture	Learning	Pedagogy	Assessment
				hours	outcome		1
							Evaluation
GEN	IETIO	CS A	S A SCIENCE		L	I	I
	1	Hist	ory, Experiments of Mendel	3	To differentiate	Lecture,	Class test,
		with	Pisum sativum, Principles of		monohybrid and	Problem	Group
		inhe	ritance, Mendelian laws-		dihybrid crosses	based	Discussion,
		mon	ohybrid and dihybrid cross,		and solving the	learning	Quiz, Slido -
		test	cross and back cross		related		MCQ, mind
		(Ass	signment)		problems		mapping,
	2	Mod	lification of Mendelian ratio:	3	Able to solve the	Lecture,	Edmodo
		Inco	omplete dominance – Mirabilis		problems in	Problem based	
		jala	pa,Co-dominance – MN blood		incomplete	learning	
		grou	ıp in man		dominance and co-		
					dominance		
	3	Leth	al genes: Dominant	3	To distinguish	Flipped	-
		letha	ality - Coat colour in Mice,		dominant and	classroom	
		Rece	essive lethality –		lethal genes		
		Chlo	prophyll content in Maize.				
		(Ser	ninar)				
	4	Gen	etic interaction: Dominant	2	To learn about	Lecture, PPT,	-
		Epis	stasis – fruit colour in		interaction of	Problem based	
		sum	mer squashes, Recessive		genes and solve	learning	
		epis	tasis – coat colour in		the		
		mice	e;Complementary genes –		problems		
		flow	ver colour in sweet				
		pea.	Non-epistasis - comb				
		patte	ern in Fowls				

	1	Sex Linked inheritance (eye		To understand the	Lecture, Charts,	
		colour in Drosophila) Polygenic		basics of inheritance	problem solving	Diagrammati
		inheritance with reference to		and solve the		c
		(ear length in maize)		problems		representatio
	2	Multiple alleles -ABO blood		To distinguish	Lecture, Models	-
	2	group in man, Rh factor.		mendelian and	Lecture, Woders	Formative
		Non-Mendelian inheritance		non-mendelian		assessment,
		Non-Mendenan inneritance				Summative
	2			inheritance		
	3	Extra-chromosomal		To evaluate the	Lecture, PPT	assessment, Problem
		inheritance: chloroplast		mutation patterns		
		mutation –variegation in 4		in chloroplast and		solving,
		O'clock plant; mitochondrial		mitochondria		Model
		mutations in yeast. Maternal				making
		effects – shell coiling in snail				
	4	Linkage: Morgan's views on		To understand and	Lecture, Video	
		linkage, crossing over – types,		differentiate linkage	Clippings,	
		mechanism of crossing over and		and crossing over	Problem solving	
		its significance				
	5	Holliday model for genetic		To analyse the	Lecture, Video	
		recombination.		recombination	clippings	
				patterns		
OPLI						
CELI	1	LE AND NUCLEIC ACIDS				<u>(1</u>
	1	Cell division (mitosis and	3	To understand and	Lecture, PPT,	Short test,
		meiosis), Significance of		differentiate the	Chart,	Question –
		mitosis and meiosis.		mechanisms of	Interactive PPT	Answer
				mitosis and meiosis		session,
	2	Chromosomes: Chromosome	3	To analyse the	Lecture,	Group
		morphology – (metacentric,		different patterns	Models,	discussion,
		submetacentric, acrocentric and		of chromosome	Socratic method	Continuous
1		telocentric) and Chromosome.		with special		Internal

		Structure, Special type of		reference to		Assessment I
		chromosomes: giant		giant		(CIA -I).
		chromosomes (salivary gland		chromosomes		
		chromosomes, Lamp brush				
		chromosomes), supernumerary				
		chromosomes (B chromosome).				
	3	Brief account on Nucleic acids;	3	To understand	Lecture, PPT,	
		DNA as the genetic material:		the basics of	Seminar,	
		Griffith's and Avery's		nucleic acids	Inquiry based	
		transformation experiment,		with experiments	learning	
		Hershey – Chase bacteriophage				
		experiment,RNA as the carrier of				
		genetic information (Fraenkel-				
		Conrat). DNA Structure (Watson				
		and Crick) Salient features of				
		double helix				
	4	Types of RNA: structure and	3	To differentiate	Lecture, Charts,	
		functions of mRNA, rRNA and		the different forms	PPT, Mind	
		tRNA.		of RNA	map, MCQ	
IV BIOS	STA	TISTICS				
	1	Importance of statistics in	3	To know and	Lecture,	
		Biology, sampling - random		practice the basics	Problem solving	Quiz, Group
		sampling, collection and		of biostatistics		discussions,
		interpretation of data, tabulation				Oral test,
	2	Presentation of data -	3	To understand	Lecture, PPT,	short test
		frequency distribution,		the data	Problem solving	with open
		frequency curve, frequency		presentation		ended,
		polygon, histogram and bar		with graphical		summarizati
		diagrams		representation		on

	3	Measures of central	3	To acquire skills to	Lecture,	
		tendencies -mean, median		solve probems	Problem solving	
		and mode. Measures of		based on measures		
		dispersion – standard		of central		
		deviation, standard error		tendencies and		
		(Seminar)		dispersion		
	4	Null hypothesis - Chi - square	3	To evaluate the test	Lecture, PPT,	-
		test.		of significance in	Problem	
				various data	solving	
VBIO	INFO	RMATICS			L	I
	1	Aims and scope and applications-	3	To understand the	Lecture,	Multiple
		Virtual library, e-books and e-		concepts of	PPT,	Choice
		journals		bioinformatics	problem	Questions,
					solving	Group
	2	Major areas of biological data	3	To differentiate the	Flipped	discussions,
		bases- classification; primary,		different forms of of	classroom	Computer
		secondary, specialized		biological data bases		analysis,
	3	Importance data bases- NCBI,	3	To construct	Online tool	Continuous
		SWISS-PROT, DDBJ		the databases in	assessment and	Internal
				computers	demonstration	Assessment
	4	Tools and softwares in	3	To evaluate and	Lecture, Video	Seminar,
		Bioinformatics – similarity search		practice the	clipping,	Summative
		– BLAST – FASTA sequence		softwares of	software	assessment
		alignment tools. Application of		bioinformatics	analysis	
		Bioinformatics.				
L						

Head of the Department:

Dr. A. Anami Augustus Arul Arul

Course Instructors:

1. Dr. A. Anami Augustus

2. Dr. Sr. Leema Rose

Major Core IX - Biotechnology and Molecular Biology

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
6	6	90	100

Sub. Code: BC2062

Objectives: 1. To learn and apply the general principles of biotechnology and ensure adequate training in modern biotechnology.

2. To understand the various steps in DNA replication, protein

synthesis and gene regulation in prokaryotes.

3. To gain knowledge on different types of IPR.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	acquaint the core concepts and fundamentals of	PSO - 1	U
	plant biotechnology.		
CO – 2	develop competency on different types of plant	PSO - 3	Ар
	tissue culture.		
CO – 3	understand the mechanisms of genetic information.	PSO –1	U
CO – 4	get an insight of chromosome abnormalities and	PSO –7	An
	related human syndromes.		
CO – 5	develop skills to become employable as	PSO –7	С
	professionals in Biotechnology Industries.		

Teaching Plan

Unit	Section	Topics	Lectu re hours	Learning outcome	Pedagogy	Assessment/Evalua tion
Unit l	I				1	
	1	Definition and scope of biotechnology, Principles of recombinant DNA technology, Steps and Applications of rDNA technology;	3	To understand the importance of recombinant molecules	Lecture with PPT, model	Group discussion Assignment Quizizz Continuous Internal Assessment
	2	Restriction Enzymes – Nomenclature and Classification; Cloning Vectors - Plasmids,Cosmids, Phagemidsand shuttle vectors;	3	To learn and categorize different types of restriction enzymes and cloning vectors	Lecture with PPT, Inquiry based learning, Jigsaw	Class test, Collaborative, Mind mapping
	3	DNA cloning - Steps and Applications;	3	To understand the steps and importance of DNA cloning	Lecture with PPT, you tube video	
	4	Basic techniques – Agarose gel electrophoresis, Northern blotting, Southern blotting and RFLP.	3	To know the different separation techniques	Lecture with PPT, Hand on training	
Unit l	II					
	1	Scopeandimportanceofplanttissueculture,Totipotencyofcells,Tissueculturelaboratory-organizationandrequirements	3	To practice the plant tissue culture, Sterilization techniques and Culture media preparation in laboratory	Lecture Demonstration and Hands on training	Group discussion Assignment Quiz Continuous Internal Assessment Class test
	2	MS medium composition and preparation; Sterilization	3	To know the preparation of MS medium. To provide students	Lecture, demonstration Demonstration and Hands-on training Lecture	Slip test, Slido - MCQ, Oral presentation

Unit I	1 2	Genetic code and wobble hypothesis;	2	To learn the characteristics of genetic code and wobble hypothesis. To understand the	Lecture, PPT Lecture	Group discuss ion Assignment Quiz Continuous Internal
	3	Mutations – Gene mutation and Chromosomal mutation; Mutagens; Chromosomal abnormalities- Down Syndrome and Klinefelter	5	To know about mutations and its effects.	Lecture, PPT, Model	
	2	discontinuous replication; Semi conservative model of replication – Watson and Crick, DNA damage; DNA repair mechanism. Photoreactivation, Mismatch repair;	3	To learn DNA damage and different repair mechanisms.	Lecture PPT, you tube video	Assessment Class test Short test Online quiz Slido Mind mapping
	1	GeneralFeatures ofDNAReplication:Generalprinciples –semi-conservativeandsemi	4	To learn different methods of DNA replication.	Flipped classroom	Group discussion Assignment Quiz Continuous Internal
Unit I	m	production, applications and limitations; Cryopreservation techniques.		artificial seed production and cryopreservation techniques	PPT	
	4	techniques; Types of tissue culture - Callus culture, apical meristem culture, Micropropagation and Protoplast culture; Artificial seed:	3	with the knowledge and skills of sterilization and propagation of explants. To understand	Demonstration and Hands-on training Lecture	

3	Assembly of ribosomes; Protein synthesis - initiation, elongation, and termination Gene regulation in Prokayotes- Operon concept, Lac Operon; Transposons in Prokaryotes and	3	To acquire knowledge on Protein Synthesis To understand gene regulation and transposons.	Lecture and video clippings Lecture, PPT and video	Class test Short test MCQ, mind mapping Oral presentation
TI:4 X7	Eukaryotes.				
Unit V 1	DNA transfer techniques: Physical method (Microinjection), Chemical method (Calcium phosphate method), Electrical method (Electroporation);	4	To understand the Gene regulation, mutation and characteristics of codons	Lecturing InteractivePPT	Group discuss ion Assignment Quiz Continuous Internal Assessment Class test Multiple Choice Question
2	Gene transfer in plants –Agrobacterium transformation;	2	To understand the Gene transfer methods	Lecturing, Illustration	Orla test
3	GM plants –Bt Brinjal, Bt Cotton,; Transgenic crops with improved quality traits in major crops (FlavrSavr tomato, Golden rice).	4	To learn about GM plants.	Lecture, PPT, and video	Slip test
4	IPR – Scope and different kinds of IPR.	2	To get a brief knowledge of IPR.	Debate	

Head of the Department:

Dr. A. Anami Augustus Arul

Course Instructors:

- 1. Dr. A.R. Florence
- 2. Dr.Bojaxa A. Rosy

Major Core X - Plant Physiology and Metabolism

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
6	5	90	100

Sub. Code: BC2063

Objectives: 1. Comprehend the fundamental concepts of plant physiology.

2. Describe the physiological mechanisms of plant growth, function, and

development.

3. Recognize and describe how plants respond to their environment.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	understand water relation of plants with respect to various physiological processes.	PSO - 1	U
CO – 2	explain deficiency symptoms of macro and micro nutrients in plants.	PSO –2	U
CO – 3	relate complementary metabolic pathways such as photosynthesis and respiration in energy acquisition.	PSO –1	An
CO – 4	analyse nitrogen metabolism and its significance.	PSO –1	An
CO – 5	assess dormancy and germination in plants.	PSO –1	An

Unit	Mo	Topics	Lectur	Learning	Pedagogy	Assessme
	dul		e	outcome		nt/
	e		hours			Evaluatio
						n
I Plan	t and	cell architecture		·		
	1	Importance of water to plant life.	3	To know about the	Lecture	Class test,
				basics and	PPT, Chart	Group
				importance of water		Discussion,
				to plant life		Slip test

	2	Physical properties of water;	3	To understand the	Lecture	Quiz,
		Imbibition, diffusion, osmosis		physical properties	Problem	Internal
		and plasmolysis.		of water	based	Assessment
					learning	, Slido -
F	3	Concepts of water potential	3	To evaluate the	Lecture	MCQ
		and its components. The		concepts of	PPT, Video	
		Concept of the Soil Plant		water potential	clippings	
		Atmosphere Continuum		and the concept		
		(SPAC).		of SPAC		
F		Transpiration – Definition,	3	To analyze the	Lecture,	
		types of transpiration,		process of	PPT	
		structure and opening and		transpiration and the		
		closing mechanism of		factors influencing		
		stomata; guttation and anti-		it.		
		transpirants. Factors				
		affecting transpiration.				
II Min		nutrition				
	1	Essential elements, micro and	3	To understand	Lecture	Quiz, Class
		macronutrients; Criteria of		the essentiality of	Demonstrati	test,
		essentiality of elements;		elements to plants	on	Short test, Internal
F	2	General functions, specific role	3	To learn about the	Lecture,	Assessment
		and deficiency symptoms of		specific role and	PPT,	Group
				deficiency symptoms	Video	Discussion
		macronutrients (Nitrogen,		of micro and	clipping,	Slip test
		Phosphorus, and Potassium)		macronutrients	Live	Mind
		and micronutrients (Iron,			specimen	mapping
		Magnesium, Molybdenum and				Collaborative
						assessment
		zinc)				
	3	Absorption and translocation	3	To analyze the	PPT, Lecture,	
		of solutes (organic and		absorption and	Video	
		inorganic) – active & passive		translocation of	clipping	
		uptake.		solutes		
Γ	4	Hydroponics, types, aquaponics	3	To evaluate the	Lecture,	
		and significance.		mechanism and	PPT,	
				significance of	Demonstrati	
		1		hardnenenies	on	
				hydroponics	on	

	1	Photosynthesis: Importance of	2	To understand	Lecture	Short test,
		photosynthesis for food security		the importance	PPT,	Question –
		and environment		of	Inquiry	Answer
		and environment		photosynthesis	based	session,
				1 5	learning	Group
	2	Ultrastructure of chloroplast	1	To know the	Flipped	discussion,
		1		ultrastructure of	classroom	Continuous
				chloroplast		Internal
	3	Light reaction: Radiant energy,	3	To know about	Lecture	Assessment
		photosynthetic apparatus, light		the light	PPT	Quiz using
		harvesting complex; light		reaction in	Seminar	Mentimeter
		absorption, composition and		photosynthesis		Flow chart
		characteristics of pigment		r		
		systems, photosynthetic electron				
	4	transport, Dark reaction: Carbon dioxide	A		T (
	4	fixation	4	To understand the	Lecture	
		in C3, C4 and CAM plants,		different types of	Charts,	
		in C3, C4 and C7 avi plants,		dark reaction and its	Seminar	
				significance		
		Photorespiration and its significance, factors	2	To learn about	Mind .	
		affecting photosynthesis.		photorespiration	mapping,	
		arreeting photosynthesis.		and the factors	Debate	
		· ·		affecting respiration		
IV Re	espirat		2			
	1	Ultrastructure of	3	To differentiate the	Brain storming,	
		mitochondria, Aerobic and		different forms of	Cooperative	Short test,
		anaerobic respiration, cyanide		respiration	learning	Question –
		independent respiration,				Answer
		Fermentation			_	session,
	2	Glycoysis, Krebs cycle and	3	To learn the	Peer	Group
		generation of ATP synthesis		generation of ATP	tutoring	discussion,
		through oxidative electron		through different		Continuous
		transfer chain (cytochrome		process		Internal
		system)				Assessment
	3	Chemiosmotic	3	To know about	Lecture, PPT,	Quiz
		regeneration of ATP,		chemiosmotic	Video clippings	Oral test,
		Gluconeogenesis, Factors		processes with		Flow
		affecting respiration		exampes		chart
	4	Nitrogen nutrition, organic	3	To analyze the	Lecture,	
		nitrogen, nitrogen fixation in		mechaniam of	PPT, Video	
		microbes / legumes, nif		biological	clippings	

		genes and NOD factors,		nitrogen fixation		
		nitrate and ammonia				
		assimilation, nitrogenase				
V Plan	t Grov	wth Regulators				
	1	Growth, Growth curve,	3	To know the	Flipped	Short test,
		Growth and development,		growth pattern of	classroom	Question –
		phytochrome and light		plants and the role		Answer
		control, role of phytochrome		of phytochromes		session,
		in tropism, flowering and				Group
		fruiting				discussion,
	2	Physiological role of auxins,	3	To understand the	Inquiry	Continuous
		gibberellins, abscisic acid		role of plant	based	Internal
		and ethylene		hormones with	learning	Assessment
				suitable examples		Quiz
	3	Vernalization – dormancy of	3	To evaluate seed	Project based,	Clim to st
		seeds, methods of breaking		dormancy and seed	Demonstration	Slip test
		dormancy, mechanism of		germination process		Short test
		seed germination				
	4	Plant response to	3	To analyse the	Peer	MCQ
		environmental stresses –		response of plants	tutouring	
		Polyamines, brassinosteroids		to environmental		
		and their functions		stresses		

Head of the Department:

Dr. A. Anami Augustus Arul

Course Instructors:

- 1. Dr. J. Albino Wins
- 2. Dr.Bojaxa A. Rosy

Semester - VI

Elective –IV (a) Marine Botany

Sub. Code: BC2064

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
4	3	60	100

Objectives: 1. Understand the diversity of marine organisms.

2. Learn about the marine plants and their medicinal property.

3. Acquire knowledge on marine pollution and conservation methods.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	describe the types of marine habitat and their relationship with environment	PSO - 1	R
CO – 2	compare the threats and conservation of seaweeds and sea grasses	PSO –4	An
CO – 3	evaluate how natural events and human activities affect coastal habitats	PSO-4	Ev
CO – 4	create a broad knowledge about themarine products and their economic value	PSO – 5	С
CO – 5	describe the role of mangroves in conservation of marine flora and fauna.	PSO –4	U

Unit	Section	Topics	Lecture	Learning outcome	Pedagogy	Assessment/
			hours			Evaluation
I.	Clas	sification of Marine habitat				
	1	Classification of marine habitat – pelagic, neritic and oceanic province, benthic – zonation	2	To classify the types of marine habitats	Lecture Video, field visit	Group discuss ion Assignment Quiz
	2	shore environment – muddy, rocky and sandy, waves and tides deep sea bottom – pelagic deposits.	3	To understand the shore environment	Lecture, field visit	Continuous Internal Assessment Class test
	3	Physical and chemical properties of sea water.	2	To learn the	Lecture PPT,	

			properties of sea water	Flow chart	
4	Salt marshes and sand dune vegetation.	2	To be able to understand the salt marshes and sand dunes.	Lecturing with PPT Debate	
II.	Marine biodiversity		·	·	
1	phytoplankton- Nekton, Benthos. Marine Phytoplankton- Dino - flagellates, Nano-plankton, Ultra-plankton, marine bacteria, marine fungi, marine Lichens.	5	To study the marine organisms	Lecture PPT	Group discuss ion Assignment Quiz Continuous Internal Assessment
2	Threats and conservation of seaweeds and sea grasses.	4	To realize the importance of seaweeds and sea grasses	Lecture PPT Video	Class test
III.Marine	products				
1	traditional uses - human food and agriculture.	4	To learn about the traditional uses of marine products	Lecture	Group discuss ion Assignment
2	Isolation of agar–agar. Scope of the seaweed industry: Brown seaweeds as food, Red seaweeds as food.	4	To study the marine products	Lecture PPT Video	Quiz Continuous Internal Assessment Class test
3	Medicinal uses of marine seaweeds and sea grasses.	1	To assess the medicinal importance of seaweeds and sea grasses	Lecture with PPT	
IV. Marine	e pollution:	1		1	L
1	Pollution due to heavy metals - radioactive wastes, thermal, sewage, algal blooms and oil spills –	5	To analyse the impact of marine pollution	Lecture, PPT	Group discussion Assignment Quiz Continuous

	2	possible remedies – oil	4	To understand the	Lecture. PPT	Internal
		eating bacteria – GMO and		remedies for		Assessment
		pollution abatement		marine pollution		Class test
V. Ma	angroves					
	1	Salient features of	3	To know the	Lecture	Group discuss
		Rhizophora and Avicennia.		salient features of		ion
				selected mangroves		Assignment
						Quiz
	2	Definition, distribution,	3	To study the stress		Continuous
		stresses on mangroves,		and regeneration of	Lecture, PPT	Internal
		regeneration of mangroves,		mangroves		Assessment
	3	coral reefs – ecology,	3	To learn about the	Lecture, PPT	Class test
		species interaction,		coral reefs	Video	
		economic importance and				
		conservations.				

HOD: Dr. A. Anami Augustus Arul

Course Instructor: Dr. Bojaxa A. Rosy