Holy Cross College (Autonomous), Nagercoil

Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35 Affiliated to

Manonmaniam Sundaranar University, Tirunelveli

DEPARTMENT OF BOTANY SYLLABUS FOR POSTGRADUATE PROGRAMME

TEACHING PLAN ODD SEMESTER 2024- 2025

Vision

To impart knowledge with professional zeal and devotion for plant science.

Mission

Providing student – centered and profession- oriented higher education that bestows academic environment to create intellectuals with scientific temperament, in the context of global issues and environmental challenges.

	Upon completion of M. Sc. Botany Programme, the	Mapping with
PEOs	graduates will be able to:	Mission
PEO1	apply scientific and computational technology to solve	M1, M2
	social and ecological issues and pursue research.	
PEO2	continue to learn and advance their career in industry	M4 & M5
	both in private and public sectors.	
PEO3	develop leadership, teamwork, and professional abilities	M2, M5 & M6
	to become a more cultured and civilized person and to	
	tackle the challenges in serving the country.	

Programme Educational Objectives (PEOs)

Programme Outcomes (POs)

POs	Upon completion of M.Sc. Botany Programme, the graduates will be able to:	Mapping with PEOs
PO1	apply their knowledge, analyze complex problems, think independently, formulate and perform quality research.	PEO1 & PEO2
PO2	carry out internship programmes and research projects to develop scientific and innovative ideas through effective communication.	PEO1, PEO2 & PEO3
PO3	develop a multidisciplinary perspective and contribute to the knowledge capital of the globe.	PEO2
PO4	develop innovative initiatives to sustain ecofriendly environment	PEO1, PEO2
PO5	through active career, team work and using managerial skills guide people to the right destination in a smooth and efficient way.	PEO2
PO6	employ appropriate analysis tools and ICT in a range of learning scenarios, demonstrating the capacity to find, assess, and apply relevant information sources.	PEO1, PEO2 & PEO3
PO7	learn independently for lifelong executing professional, social and ethical responsibilities leading to sustainable development.	PEO3

PROGRAMME SPECIFIC OUTCOMES (PSOs)

Program Specific Outcomes (PSO)	

On succes	sful completion of the M.Sc. Botany programme, the students are expected to
PSO1	familiarize with the fundamental, advanced and emerging concepts in Botany.
PSO2	understand the role of plants and their interactions with other organisms in
1502	variousecosystems.
PSO3	identify the potency of plant resources in contemporary research and visualize
1505	futurethrust areas in Botany.
PSO4	design scientific experiments independently and to generate useful information
1504	toaddress various issues in Botany.
PSO5	acquire basic knowledge on principles and applications of laboratory instruments
1505	andadequate skills to handle them.
PSO6	choose and apply appropriate tools, techniques, resources, etc. to perform
1500	variousexperiments in Botany.
PSO7	carryout scientific experiments independently or in collaboration with inter-
1507	disciplinary or multidisciplinary approaches.
PSO8	disseminate knowledge on conservation of biodiversity and protection of
1500	environment.
PSO9	awareness on the sustainable utilization of plant/microbial resources following
1307	thebioethical norms.
PSO10	demonstrate proficiency in communicating with various stakeholders like
13010	students, teachers, scientists and society.

M.Sc. BOTANY

Teaching Plan		
Department	:	Botany
Class	:	I M.Sc. Botany
Title of the Course BRYOPHYTES	:	Core I: PLANT DIVERSITY – I: ALGAE, FUNGI, LICHENS AND
Semester	:	Ι
Course Code	:	BP231CC1

Course Code	т	т	Р	Cradita	Inst. Hours	Total	Marks			
Course Coue	L	1		Creatis		Hours	CIA	External	Total	
BP231CC1	5	2	-	5	7	105	25	75	100	

Objectives

- To learn about the classification, distinguishing traits, geographic distribution, and reproductive cycle of algae, fungi, lichens, and bryophytes.
- To gain knowledge about the ecological and economic importance of algae, fungi, lichens and bryophytes.

Course o	putcomes			
Course	On completion of this course, the students will be able to:	PSO	Cognitive	
outcomes	СО	address	level	
:		ed		
CO 1	Relate to the structural organizations of algae, fungi, lichens and	PSO -1	K1(R)	
	Bryophytes.			
CO2	Demonstrate both the theoretical and practical knowledge in	PSO -1	K2(U)	
	understanding the diversity of basic life forms and their importance.			
CO3	Explain life cycle patterns in algae, fungi, lichens and Bryophytes.	PSO -2	K3(Ap)	
CO4	Compare and contrast the mode of reproduction in diverse groups of	PSO -2	K4(An)	
	basic plant forms.			
CO5	Discuss and develop skills for effective conservation and utilization of	PSO-4	K5 &	
	lower plant forms.		K6(Ev&Cr)	

Total Contact hours: 105 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teach ing Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι				1		1
	1	General account of algology, Contributions of Indian Phycologist (T.V.Desikachary, V.Krishnamurthy and V.S. Sundaralingam), Classification of algae by F.E. Fritsch (1935- 45) & Silva (1982).	5	K2(U)	Lecture using Chalk and talk ,Introductory session, Mind mapping,	Short essays, MCQ, Quiz
	2	Salient features of major classes: Cyanophyceae, Chlorophyceae, Xanthophyceae, Chrysophyceae, Cryptophyceae, Dinophyceae, Chloromonadineae, Euglenophyceae, Bacillariophyceae, Phaeophyceae and Rhodophyceae.	4	K2(U)	PPT, Lecture	Short summary
	3	Range of thallus organization, algae of diverse habitats, reproduction (vegetative, asexual and sexual) and life cycles	4	K1(R)	Review, Lecture	MCQ, Quiz,Short Essay, True or false
	4	Phylogeny and inter- relationships of algae, origin and evolution of sex in algae.	4	K3(Ap)	Demonstration, PPT, Review	Discussion, Debating or Presentations
	5	Structure, reproduction and life histories of the following genera: Oscillatoria, Scytonema, Ulva, Codium, Diatoms, DictyotaandGelidium.	4	K4(An)	Group discussion	Essay
п	1	FUNGI: General Characteristics, occurrence and distribution. Mode of nutrition in fungi. Contributions of Indian	4	K1(U)	Lecture using videos, Group discussion	Definitions, MCQ, Assignment

		Mycologists					
├ ── │		(C.V.Subramanian),					
		Classification of Fungi by Alexopoulos and					
		by Alexopoulos and Mims (1979) & Recent					
		trends in the			I acture using	Essay,	
	2	classification of fungi -	4	K2(R)	Lecture using videos,	Discriminating	
		Phylogeny and inter-			videos,	the concepts	
		relationships of major					
		groups of fungi.					
		General characters of					
		major classes:					
		Mastigomycotina,					
,	3	Zygomycotina,	4	K3(An)	Lecture using	Explain,	
•	5	Ascomycotina,	•		Chalk and talk	Explain,	
		Basidiomycotina and					
		Deuteromycotina.					
		Heterothallism in fungi,				a	
	4	sexuality in fungi, Para	4		Group	Concept with	
· · · · · · · · · · · · · · · · · · ·	4	sexuality, sex hormones	4	K3(Ap)	discussion	examples, short	
		in fungi.				essay, Seminar	
		Structure, reproduction					
		and life histories of the					
		following genera:			Crown		
1	5	Plasmodiophora,	5	K4(An)	Group discussion	Seminar,	
	Taphrina, Pa	Phytophthora, Rhizopus,			discussion		
		Taphrina, Polyporus and					
		Colletotrichum					
		LICHENS			Lecture using	MCQ,	
III	1	Introduction and	5	K1 (U)	Chalk and talk	Concepts, short	
	-	Classification (Hale,	5		,Introductory	essay	
		1969).			session,		
		Occurrence and inter-			Lecture using		
	2.	relationship of	4	K2(R)	Chalk and talk	MCQ, Quiz	
		phycobionts and			Method		
		mycobionts					
		Structure and				Diagrammatia	
	3.	reproduction in Ascolichens,	4	K4(An)	Group	Diagrammatic representation,	
		Basiodiolichens and			discussion	Essays	
		Deuterolichens.				Loouyo	
		Structure and			Lecture using	Differentiating	
	4.	reproduction in	4	K4(An)	Chalk and talk	the characters,	
		Basiodiolichens	•		method	short essays	
		Structure and				•	
	5.	reproduction in	4	K4(An)	Group	Summarize,	
		Deuterolichens.			discussion	Essays,	
		BRYOPHYTES:			T		
		General characters and			Lecture using	MCQ,	
IV	1	Classification of	4	K1(U)	Chalk and talk	Quiz,Group	
		Bryophytes by Watson			,Introductory	discussion,	
		(1971).			session,	,	

	2.	Distribution, Structural variations and evolution of gametophytes and sporophytes in Bryopsida, Anthoceropsida and Mosses.	4	K4(An)	Lecture using Chalk and talk ,Introductory session,	MCQ, Quiz,Group discussion,
	3.	General characters of major groups - Marchantiales, Jungermaniales, Anthocerotales, Sphagnales, Funariales and Polytrichales.	5	K2(R)	Group discussion	Differentiating the characters, short essays
	4.	Reproduction - Vegetative and sexual, spore dispersal mechanisms in bryophytes, spore germination patterns in bryophytes.	4	K3(Ap)	Review	Summarize, Essays, diagrammatic representations
	5.	Structure, reproduction and life histories of the following genera: <i>Targionia,</i> <i>Porella</i> and <i>Polytrichum</i> .	4	K4(An)	Lecture using PPT Videos	Essays,
V	1	ECONOMIC IMPORTANCE Algae - Economic importance in Food and feed - Single cell protein,	5	K3(Ap)	Group Discussion,	Short essays, MCQ, Quiz, True or false, Assignments
	2.	Industrial products (Agar-Agar, Carrageenan, Alginic acid, Iodine, biofertilizers, Vitamins and biofuel), Medicinal value and Diatomaceous earth.	4	K4(Ap)	Group Discussion	Short essays, MCQ, quiz
	3.	Fungi – Economic importance in food, industries and medicine. Culturing and cultivation of mushrooms <i>Pleurotus</i> .	4	K4(Ap)	Group Discussion	Short essays, MCQ, quiz
	4.	Lichen –economic importance and as indicator pollution.	4	K5(Ev)	Group Discussion,	Summarize, Slip test
	5.	Bryophytes – Ecological and economic importance – industry, horticulture and medicine.		K5(Ev)	Group Discussion,	Summarize, Slip test

Course Focussing on Employability/ Entrepreneurship/ Skill Development : **Skill Development** Activities (Em/ En/SD): **Algae visit** Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): **Environment Sustainability** Activities related to Cross Cutting Issues : -Assignment : **Mode of nutrition in fungi./ online** Seminar Topic: **Heterothallism in fungi. Sample questions**

- Part A
 - 1. Who is the father of Algology?
 - 2. Which of the following fungi division includes 'Club fungi'?
 - a. Zygomycotina b. Deuteromycotina
 - b. Basidiomycotina d, Ascomycotina
 - 3. What is dolipore septum?
 - 4. What is the algal component of Lichen?
 - 5. Cite the lichen used as food.

Part B

- 1. Write short note on the thallus organisation of Algae.
- 2. List out the general characters of Fungi.
- 3. Categorize lichen based on habitat.
- 4. Explain the morphological and anatomical structures of *Marchantia*.
- 5. Criticize the economic importance of Bryophytes

Part C

- 1. Classify Algae based on Fritsch.
- 2. Summarize Parasexuality in Fungi with neat labelled sketches.
- 3. Discuss the structure and reproduction in Lichen.
- 4. Explain the evolution of sporophytes in Bryophytes
- 5. Critique on the economic importance of Algae.

Head of the Department

Course Instructor

Dr. J. Celin Pappa Rani

alin

	Teaching Plan								
Department	:	Botany							
Class	:	I M.Sc. Botany							
Title of the Course PTERIDOPHYTES, O	• -	PLANT DIVERSITY – II: INOSPERMS AND PALEOBOTANY							
Semester	:	I							

Course Code : BP231CC2

Comme Code	L	T	п	Cara ditta	Inst.Hours	Total	Marks		
Course Code		1	Р	Credits		Hours	CIA	External	Total
BP231CC2	5	2	-	5	7	105	25	75	100

Objectives

- 1. To investigate the classification, distinctive traits, distribution and reproduction and life history of the various classes and major types of Pteridophytes and Gymnosperms.
- 2. To identify and characterize diversity of lower vascular plants in order to comprehend the dynamics of diversity to realize the importance of diversity.

СО	Uponcompletionofthiscourse, the students will be able to:	PSOAddressed	Cognitive level
CO- 1	Recallonclassification,recenttrendsin phylogeneticrelationship, Generalcharacters ofPteridophytesand Gymnosperms.	PSO-1	K1 &K3
CO- 2	Learnthemorphological/anatomicalor ganization,lifehistory ofmajortypes ofPteridophytesand Gymnosperms.	PSO-2	K3 & K4
CO- 3	Comprehendtheeconomicimportance ofPteridophytes, Gymnosperms, and fossils.	PSO-3	K3 & K5
CO- 4	Understandingtheevolutionaryrelation shipofPteridophytesand Gymnosperms.	PSO-3	K2
CO- 5	Awarenessonfossiltypes,fossilizationa ndfossilrecordsof Pteridophytesand Gymnosperms.	PSO-3	K1 & K3

Course Outcomes

Total Contact Hours:105 (Including Lectures, Assignments and Tests)

Unit	Module	e Topic	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι		General characteristics and classification (Reimer, 1954).Stellar evolution.	4	K2(U)	Lecture using Chalkandtalk Demonstration	Evaluation through short test, MCQ, True/False, Short essays, Concept explanations, Shortsummary or overview
		Range of structure, reproduction and evolution of the gametophytes	4	K1(R)	Introductory session, Group Discussion,	Simple definitions, MCQ, Recall steps,Concept definitions
		Gametophyte types – sex organs. Apogamy and Apospory. Life cycles.	4	K3(Ap)	Mind mapping,	Suggest idea/concept with examples
		Heterospory and seed habit, Telome theory.	4	K4(An)	Lecture using videos	Finish a procedure in many steps, Differentiate betweenvarious ideas,Map knowledge
		Morphogenesis, Economic importance of Pteridophytes.	5	K5(E)	PPT	Longer essay/ Evaluation essay

Π						
	1.	Structure, anatomy, reproduction and life histories of <i>Isoetes</i>	4	K2(U)	Lecture using Chalkandtalk Demonstration	Evaluation through short test, MCQ Shortsummary
	2.	Structure, anatomy, reproduction and life histories of <i>Equisetum</i>	4	K1(R)	Introductory session, Group Discussion,	Simple definitions, MCQ, Concept definitions
	3.	Structure, anatomy, reproduction and life histories of <i>Angiopteris</i>	4	K3(Ap)	Mind mapping,	Suggest idea/concept with examples
	4.	Structure, anatomy, reproduction and life histories of <i>Osmunda</i>	4	K4(An)	Lecture using videos	Finish a procedure in many steps, Differentiate betweenvarious ideas,Map knowledge
	5.	Structure, anatomy, reproduction and life histories of <i>Pteris</i> and <i>Azolla</i> .	5	K5(E)	PPT	Longer essay/ Evaluation essay
II						
	1.	General characters - A general account of distribution of Gymnosperms.	4	K2(U)	Lecture using Chalkandtalk Demonstration	Evaluation through short test
	2.	Morphology, anatomy of Gymnosperms.	4	K1(R)	Introductory session, Group Discussion,	Simple definitions,Co ncept definitions
	3.	Reproduction, phylogeny of Gymnosperms.	4	K3(Ap)	Mind mapping,	Suggest idea/concept with examples
	4.	Classification of Gymnosperms. (K.R.Sporne, 1965).	5	K4(An)	Lecture using videos	Differentiate betweenvarious ideas,Map knowledge
	5.	Economic importance of Gymnosperms.	4	K5(E)	PPT	Longer essay/ Evaluation essay
V						
	1	Character (E. 1)	4		T (•	E1 (
	1.	Structure (Exomorphic and endomorphic),	4	K2(U)	Lecture using Chalkandtalk Demonstration	Evaluation through short test, MCQ,

		anatomy reproduction on	d			True/False,
		anatomy, reproduction and	u			
		life histories of <i>Thuja</i>				Short essays,
						Concept
						explanations,
						Shortsummary
						or overview
	2.	Structure (Exomorphic	4	K1(R)	Introductory	Simple
		and endomorphic),			session, Group	definitions,
		anatomy, reproduction and			Discussion,	MCQ, Recall
		life histories of Cupressus	5			steps,Concept
						definitions
	3.	Structure (Exomorphic	3	K3(Ap)	Mind mapping,	Suggest
		and endomorphic),				idea/concept
		anatomy, reproduction and	d			with examples
		life histories of Araucaria	a			
	4.	Structure (Exomorphic	3	K4(An)	Lecture using	Finish a
		and endomorphic),			videos	procedure in
		anatomy, reproduction an	d			many steps,
		life histories of				Differentiate
		Podocarpus				betweenvarious
		1				ideas,Map
						knowledge
	5.	Structure (Exomorphic	3	K5(E)	PPT	Longer essay/
		and endomorphic),				Evaluation
		anatomy, reproduction an	d			essay
		life histories of <i>Gnetum</i>				
	6.	Structure (Exomorphic	4	K5(E)	PPT	Evaluation
		and endomorphic),				essay
		anatomy, reproduction an	d			5
		life histories of the				
		following genera:				
		Ephedra.				
V		Epiteuru:				
•						
	1.	PALEOBOTANY:	1	K2(U)	Lecture using	Evaluation
					Chalkandtalk	through short
1		Geological Scale;			Demonstration	test, MCQ,
		Radiocarbon dating;.				True/False,
		Fossilization and fossil				Short essays,
		types.				Concept
						explanations,
						Shortsummary
1						or overview
	2.	Contribution of	3	K1(R)	Introductory	Simple
1	∠.	BirbalSahni to	J	$\mathbf{K}_{\mathbf{I}}(\mathbf{K})$	•	-
					session, Group	definitions,
		Paleobotany, Gondwana			Discussion,	MCQ, Recall
1		flora of India.				steps,Concept
						definitions

3.	Study of fossils in		K3(Ap)	Lecture and Chalk	00
	understanding evolution,			method	idea/concept
	Economic importance of				with examples
	fossils. fossil fuels and				
	industrial raw materials				
	and uses				
4.	Study of organ genera:	3	K4(An)	Lecture using	Differentiate
	Rhynia, Lepidocarpon			videos	betweenvarious
					ideas,Map
					knowledge
5.	Study of organ genera:	3	K5(E)	Lecture and PPT	Longer essay/
	Calamites, Cordaites				Evaluation
					essay
6.	Study of organ	3	K5(E)	Lecture and PPT	Longer essay/
	genera:Lyginopteris.				Evaluation
					essay

CourseFocussingonEmployability/Entrepreneurship/SkillDevelopment: Activities (Em/En/SD): Skill Development

CourseFocussingonCrossCuttingIssues(ProfessionalEthics/HumanValues/Environment Sustainability/ Gender Equity): **Environment Sustainability**

Activities related to Cross Cutting Issues: Field Visit

Assignment: Economic importance of Pteridophytes

Seminar Topic: Study of fossils in understanding evolution, Economic importance of fossils.

Part-A

- 1. Spores of Pteridophytesare
 - a. Haploid b. Diploid c. Triploid d. Tetraploid
- 2. In Pteridophytes, the dominant generation is

a. Gametophytic (b) haploid (c) diploid (d) triploid

- 3. Reduction division in pteridophytes occurs in
 - (a) Prothallus is formed (b) Gametes are formed
 - (c) spores are formed (d) sex organs are formed
- 4. In pteridophytes, the gametophyte is dominant, while sporophyte is a dependent generation-State True or False.
- 5. The phloem of pteridophytes does not possess _____ cells.

Part-B

- 1. Describe the structure and reproduction in Coniferales
- 2. Write an essay on evolution of Gymnosperms
- 3. Discuss the variation in the structure of female gametophyte in Gymnosperms
- 4. Write short notes on Cordaitales
- 5. Comment on Lyginopteris

Part-C

- 1. Write a classification of Bryophytes in detail.
- 2. Explain the life history of Ricca in detail.
- 3. Write a detail account on "Telome theory".
- 4.Explain the lifecycle of Isoetes.
- 5. Give a detail account on lifecycle of Marsilea.

Head of the Department

Course Instructor Dr. W. Vincy

Shared in

Snam	<u>.</u>		
Br. A. ANALMA AUGUSTUS AND Association Products of Department of 1	L. Co., and and Head Interv	C Phot	
Huty Cross College (A Mager set)	olarisinaa L	<u>.</u>	Т
Department	:	Botan	v

Teaching Plan

Depurtment	· Douity
Class	: I M.Sc Botany
Title of the Course	: Elective I MICROBIOLOGY, IMMUNOLOGY AND PLANT PATHOLOGY
Semester	: I
Course Code	: BP231EC1

Comme Code	т	т	р	Cara ll'Ar	T	Total	Marks		
Course Code	L	1	r	Credits	Inst.Hours	Hours	CIA	External	Total
BP23ED11	4	1	-	3	5	75	25	75	100

Objectives

- 1. To provide comprehensive knowledge about microbes and its effect on man and environment.
- 2. To provide comparative analysis of major groups of microbes.

3. To study the principles of immune system, immunizing agents like antibodies and vaccines and gene therapy methods.

Course Outcomes

СО	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive level
CO- 1	Recognize the general characteristics of microbes, plant defense and immune cells.	PSO-1	K1 (K)
CO- 2	Explain about the stages in disease development and various defense mechanisms in plants and humans.	PSO-2	K2 (U)
CO- 3	Elucidate concepts of microbial interactions with plant and humans	PSO-3	K3 (AP)
CO- 4	Analyze the importance of harmful and beneficial microbes and immune system	PSO-3	K4 (AN)
CO- 5	Determine and interpret the detection of pathogens and appreciate their adaptive strategies.	PSO-3	K5 & K6(C & E)

Total Contact Hours: 75 (Including Lectures, Assignments and Tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
I	1.	Types of microorganisms. General characteristic of bacteria – Outline classification of Bergey's manual of 9th edition.	2	K2(U)	Lecture using Chalk and talk Mind mapping,	Evaluation through short test, MCQ, True/False,
	2.	Classification of bacteria based on Morphological, cultural, physiological and molecular characteristics.	2	K 3(Ap)	PPT	Simple definitions, Concept definitions
	3.	Bacterial growth – batch culture and continuous culture. Growth Curve. Factors affecting growth	2	K1(K)	Introductory session, Group Discussion	Suggest idea/concept with examples,
	4.	Determination of bacterial growth – Direct method: Haemocytometer, Viable plate count; Indirect method: Turbidity. Nutritional types.	3	K4(An)	Group Discussion, Mind mapping	Differentiate between various ideas, Map knowledge
	5.	Reproduction - Fission and sporulation. Genetic recombination- Transformation, Transduction and Conjugation	3	K5(E)	Demonstration, PPT	Longer essay/ Evaluation essay
	6.	Isolation and cultivation of bacteria. Maintenance of bacterial culture.	3	K2(U)	Lecture using Chalk and talk	MCQ, True/False

	1.	General characters, Classification, Structure, Multiplication of virus		K2(U)	Lecture using Chalk and talk ,Introductory session,	Concept explanations, Short summary or overview
	2.	Overview of Phycoviruses and Mycoviruses. Viruses of Eukaryotes – Animal & Plant viruses.		K 3(Ap)	Mind mapping, Peer tutoring, PPT, Review	Evaluation through short test, MCQ, True/False,
	3.	Cultivation of viruses – in embryonated egg and in plants. Control of viral infections.	3	K1(K)	Lecture using videos,Demonst ration,	Suggest idea/concept with examples,
	4.	Bacteriophages- classification, replication of DNA and RNA phages -Lytic and Lysogenic cycle.	3	K4(An)	Mind mapping, Peer tutoring,	Differentiate between various ideas,
	5.	Viroids and prions. Mycoplasma: Structure and classification.	3	K5(E)	Lecture using Chalk and talk PPT,	Map knowledge
III	Food	Microbiology	I	I	,	
	1.	Beneficial role of microbes – yoghurt, Olives, Cheese, Bread, Wine, Tempeh, Miso & Fermented green tea.	3	K 3(Ap)	Peer tutoring, Lecture using videos, Demonstration,	Evaluation through short test, MCQ, True/False,
	2.	Spoilage of fruits, vegetables, meats, poultry, eggs, bakery products, dairy products and canned foods.	3	K1(K)	Lecture using Chalk and talk ,Introductory session,	Simple definitions, Concept definitions
	3.	Microbial toxins - Exotoxin, Endotoxin & Mycotoxin. Action of Enterotoxin, Cytotoxin& Neurotoxin. Food Preservation – temperature, drying, radiation and chemicals.		K4(An)	Demonstration, PPT, Review	Suggest idea/concept with examples,
	4.	Soil Microbiology: Importance of Microbial flora of soil and factors affecting the microbial community in soil. Interaction among soil microbes (positive and negative interactions) & with higher plants	2	K5(E)	Lecture using Chalk and talk ,Introductory session,	Differentiate between various ideas, Map knowledge

		(rhizosphere &phyllosphere).				
	5.	Environmental Microbiology: Microbiology of water and air. Water borne diseases - diphtheria, chicken pox.	2	K2(U)	Peer tutoring, Lecture using videos, Demonstration,	Longer essay/ Evaluation essay
	6.	Air borne diseases - Swine flu and Measles. Microbial degradation of chemical pesticides and hydrocarbon.	2	K 3(Ap)	Demonstration, PPT, Review	Simple definitions, Concept definitions
IV	Imn	nunology	1			
	1.	Introduction; Immune System; Types of Immunity - Innate and Acquired.Immune Cells - Hematopoiesis, B and T lymphocytes - Maturation, NK cells	3	K4(An)	Lecture using Chalk and talk ,Demonstration,	Concept explanations, Short summary or overview
	2.	Introduction to inflammation, Adaptive immune system, Innate Immune system. Antigen: Definition, Properties and types. Antibody – Structure, types and function.	3	K5(E)	Demonstration, PPT, Review	Evaluation through short test, MCQ, True/False,
	3.	•1	3	K2(U)	PPT, Review	Suggest idea/concept with examples,
	4.	Immune Response – Humoral and Cell Mediated. Vaccines – history, types and recombinant vaccines	2	K 3(Ap)	Lecture using Chalk and talk ,Introductory session,	Differentiate between various ideas,
	5.	Immunodiagnosis – Blood Grouping, Widal test, Enzyme-Linked Immunosorbent Assay (ELISA).	2	K1(K)	Mind mapping, Peer tutoring,	Map knowledge

	6.	Immunoelectrophoresis and Immunodiffusion.	2	K4(An)	Mind mapping, Peer tutoring, Lecture using videos.	Concept explanations, Short summary or overview
V	Plant	t Pathology				
	1.	History and significance of plant pathology. Classification of plant diseases, Symptomology (important symptoms of plant pathogens).		K2(U)	Mind mapping, Peer tutoring, PPT, Review	Evaluation through short test, MCQ, True/False,
	2.	Causal agents of plant diseases - biotic causes (fungi, bacteria virus, mycoplasma, nematodes, parasitic algae	2	K 3(Ap)	Lecture using videos,Demonst ration,	Evaluation through short test, MCQ, True/False,
	3.	Angiospermic parasites - Abiotic causes (Physiological, deficiency of nutrients & minerals and pollution).Mechanism of penetration- Disease development of pathogen (colonization) and dissemination of pathogens.		K1(K)	Mind mapping, Peer tutoring,	Suggest idea/concept with examples,
	4.	Role of enzymes and toxins in disease development. Important diseases of crop plants in India - Sheath blight of rice, Late blight of potato, Little leaf of Brinjal and Red rust of tea	3	K4(An)	PPT, Review	Differentiate between various ideas,
	5.	Principles of disease management – Cultural practices, physical, chemical and biological methods, disease controlled by immunization	3	K4(An)	PPT, Review	Map knowledge
	6.	Biocontrol - merits and demerits; Diagnostic technique to detect pest/pathogen infection -	2	K5(E)	Lecture using videos,Demonst ration,	Evaluation through short test, MCQ, True/False,

Immunofluorescence		
(IF).		

Course Focussing on Employability/Entrepreneurship/Skill Development: Activities (Em/ En/SD): **Employability**

Course Focussing on Cross Cutting Issues (Professional Ethics/Human Values/Environment Sustainability/ Gender Equity): **Environment Sustainability**

Activities related to Cross Cutting Issues: Industrial Visit - Milk Plant, Microbiology Lab

Assignment: Classification, Structure, Multiplication of virus - Online

Genetic recombination- Transformation, Transduction and Conjugation

Seminar Topic: Spoilage of fruits, vegetables, meats, poultry, eggs, bakery products, dairy products and canned foods.

Sample questions

Part A

1. Which of the following immunity is obtained during a lifetime?

a. Acquired immunity b. Active immunity c. Passive immunity d. None of the above.

2. Which of these bacterial components is least likely to contain useful antigens?

a. Cell wall b. Flagella c. Ribosomes d. Capsule

3. Which of the following contains structures composed of N-acetylmuramic acid and N-acetylglucosamine?

a. Mycoplasmas b. Amoeba c. E.coli d. Spheroplast

4. The association of endotoxin in gram-negative bacteria is due to the presence of

a. Steroids b. Peptidoglycan c. Lipopolysaccharides d. Polypeptide

5. Which of the following is a gram-positive eubacterium?

a. Actinomyces	b. Clostridium
c. Rhizobium	d. Clostridium, Actinomycetes

PartB

- 1. Determine the bacterial count methods
- 2. Discuss viriods.
- 3. Define the spoilage of microbes in fruits.
- 4. Differentiate Acquired Immunity & Innate Immunity.
- 5. Recall Citrus Canker.

PartC

- 1. Explain the Bacterial growth culture and its methods.
- 2. Formulate the nomenclature and classification of virus.
- 3. Criticize the beneficial role of microbes with a relevant example.

4. Analyze, how cytokines act as a signalling molecules to mediate and regulate immunity?

5. Recall Late Blight of Potato with respect to its casual organism, disease cycle, symptoms and control measures.

Head of the Department

Course Instructor

Dr. S. Kala Vetha Kumari

1815

a, annan an cais Market Market a, nag ЪŘ 11

	Teaching Plan
Department	: Botany
Class	: I M.Sc Botany
Title of the Course	: Elective I ETHNOBOTANY, NATUROPATHY AND TRADITIONAL HEALTH CARE
Semester	: I

. .

Course Code : BP231EC4

Course Code	т	т	п	Creadita	In at II anna	Total	Marks		
Course Code	L	1	Р	Creatts	Inst.Hours	Hours	CIA	External	Total
BP23ED21	4	1	-	3	5	75	25	75	100

Objectives

1. Understand the concept of ethnobotany and the life style and traditional practices of plants by Indian tribals.

2. Emphasize the importance of non-timber forest products for Indian tribal people livelihoods.

Course Outcomes

СО	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive level
CO- 1	Recall or remember concept of	PSO-1	K1
	ethnobotany.		
CO- 2	Understand the life style and	PSO-2	K2 & K6
	traditional practices of plants by		
	Indian tribals.		
CO- 3	Highlight the role of Non-	PSO-3	K3
	Timber Forest products for		
	livelihood of tribal people of		
	India		
CO- 4	Assess the methods to transform	PSO-3	K4
	ethnobotanical knowledge into value		
	added products.		
CO- 5	Build idea to make digitization of	PSO-3	K5
	ethnobotanical knowledge.		

Total Contact Hours : 75 (Including Lectures, Assignments and Tests)

Unit I	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
	1.	Concept, important landmarks in the development, scope, sub disciplines of ethno botany.:	4	K2(U)	Lecture using Chalk and talk	Evaluation through short test, MCQ,
	2.	Interdisciplinary approaches. Knowledge of following sociological and anthropological terms	4	K1(R)	Lecture using videos	Simple definitions, MCQ,
	3.		4	K3(Ap)	Demonstration, PPT, Review	short test
	4.	History of ethnobotany: A brief history of ethno botanical studies in the world and in India.	3	K4(An)	Demonstration, PPT, Review	Differentiate betweenvarious ideas, Map knowledge

1.	Distribution of tribes in	3	K2(U)	Mind mapping,	Simple
	India.			Peer tutoring	definitions,
2.	. Basic knowledge of	4	К 3(Ар)	Lecture using	Evaluation
	following tribes of			Chalk and talk	through short
	Tamil Nadu: Irulas,			Mind mapping,	test, MCQ,
	Kanis,			11 0,	True/False
3.	PaliyarsBadagas,	4	K1(K)	PPT	Simple
	Kurumbres,				definitions,
4.	Thodas and Malayalis.	4	K4(An)	Introductory	Evaluation
	Plants used by tribals of			session, Group	through short
	Tamil Nadu.			Discussion	test, MCQ,
					True/False,
1.	Primary - archeological	3	K2(U)	Lecture using	Evaluation
	sources and inventories,			Chalk and talk	through short
	Secondary - travelogues,			Mind mapping,	test, MCQ,
	folklore and literary				True/False,
	sources.				
2.	Herbaria, medicinal	3	K 3(Ap)	PPT	Simple
	texts and official				definitions,
	records. Methods in				Concept
	ethnobotanical research				definitions
3.	Prior Informed Consent,	3	K1(K)	Introductory	Suggest
	PRA techniques,			session, Group	idea/concept
	interviews and			Discussion	with examples,
	questionnaire methods,				-
	choice of resource				
	persons				
4.	Folk taxonomy – plants	3	K4(An)	Group Discussion,	Differentiate
	associated with culture			Mind mapping	between
	and socio- religious				various
	activities				ideas, Map
					knowledge
5.	Non – timber forest	3	K5(E)	Demonstration,	Longer essay/
	products (NTFP) and			PPT	Evaluation
	livelihood – Sustainable				essay
	harvest and value				-
	addition.				
		1	1		
1.	Role of plants in	3	K2(U)	Lecture using	Evaluation
	naturopathy- Importance			Chalk and talk	through short
	and relevance of medicina	ıl		Mind mapping,	test, MCQ,
	drugs in India.				True/False,

	2.	Indian Systems of Medicine (Ayurveda, Siddha, Allopathy, Homeopathy, Unani, Tibetan, Yoga and Naturopathy)	3	K 3(Ap)	PPT	Simple definitions, Concept definitions
	3.	Disease diagnosis, treatment, and cure using natural therapies including dietetics, botanical medicine, homeopathy, fasting, exercise, lifestyle counseling, detoxification, and chelation		K1(K)	Introductory session, Group Discussion	Suggest idea/concept with examples,
	4.	clinical nutrition, hydrotherapy, naturopathic manipulation, spiritual healing, environmental assessment,		K2(U)	Lecture using Chalk and talk Mind mapping,	Evaluation through short test, MCQ, True/False,
	5.	Health practices, approaches, knowledge and beliefs incorporating plant, animal and mineral based medicines, spiritual therapies.	2	К 3(Ар)	РРТ	Simple definitions, Concept definitions
	6.	-	2	K1(K)	Introductory session, Group Discussion	Suggest idea/concept with examples,
V						
	1.	Bioprospecting of drug molecules derived from Indian traditional plants.	3	K2(U)	Lecture using Chalk and talk Mind mapping,	Evaluation through short test, MCQ, True/False,
	2.	Methods for bioprospecting of natural resources	4	К 3(Ар)	РРТ	Simple definitions, Concept definitions
	3.	From folk Taxonomy to 4 species confirmation - evidences based on phylogenetic and metabolomic analyses	4	K1(K)	Introductory session, Group Discussion	Suggest idea/concept with examples,

4.	Ethno botanical	4	K4(An)	Group Discussion,	Differentiate
	databases and			Mind mapping	between
	Traditional knowledge				various
	Digital Library (TKDL).				ideas, Map
					knowledge

Course Focussing on Employability/Entrepreneurship/Skill Development:(Mention) Activities (Em/ En/SD): Entrepreneurship

Course Focussing on Cross Cutting Issues(ProfessionalEthics/HumanValues/Environment Sustainability/ Gender Equity): **Environment Sustainability**

Activities related to Cross Cutting Issues: Collection of Medicinal herbs from Tribal Areas

Assignment: Herbaria, medicinal texts and official records. Methods in ethnobotanical research

Seminar Topic: Bioprospecting of drug molecules derived from Indian traditional plants

Sample questions

Part A

1. The word "ethno" in ethnobotany refers to ?

a. region- locality- people b. culture c. civilization d. all of above

2. The concept and idea of greeks that walnut could be used to heal ailments of the human brain is known as?

a. doctrine of signatures b. doctrine of homeopathy c. doctrine of Allelopathy d. None of these

3. The cereals belong to the family ?

a. Fabaceae b. Poaceae c. Solanaceae d. Rosaceae

4. The search for previously unknown compounds in organisms that have been never used in traditional medicines is

a. Molecular farming b. Bioremediation c. Biopiracy d. Bioprospecting

5. The Siddha science is a traditional treatment system generated from ______culture.

a. Indian b. Tamil c. Kerala d. Maharastra

Part B

1. Write the botanical name, family, important plant part and traditional uses of 'Ashwagandha'.

- 2. Differentiate between Ethnobotany and Economic botany.
- 3. Explain the ethnomedicinal uses of Janakiaarayalpatra.
- 4. Differentiate Ayurvedic pharmacopoeia from pharmacology.
- 5. Explain the importance of phyto-pharmacological screening in herbal drug development. Part C
- 1. Analyze the history of ethnobotany.
- 2. Discuss about the tribes of Tamilnadu.
- 3. Evaluate the importance of folk taxonomy.
- 4. List out the traditional healthcare practices.
- 5. Summarize hydrotherapy.

Head of the Department

Course Instructor

Dr. S. Kala Vetha Kumari

Department: BotanyClass: I M.Sc. BotanyTitle of the Course: CORE COURSE VI: CELL AND MOLECULAR BIOLOGYSemester: IIICourse Code: BP233CC1

Course Code	L	т	Р	S	Credits	Inst. Hours	Total		Marks	
	-	-	-	D			Hours	CIA	External	Total
BP233CC1	4	2	-	-	5	6	90	25	75	100

Objectives:

1.To understand the cell division and its molecular mechanism so as to appreciate and manipulate normal and abnormal cell and tissue growth.

2. A thorough examination of DNA structure, replication process, transcription process and translation processes.

Course outcomes

	On completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO			
	understand the scope and importance of population	PSO-1	K1& K2
CO -1	ecology, plant communities and ecosystem ecology.		
	understand the applied aspect of environmental botany.	PSO-2	K1&K4
CO -2			
	students will spot the sources and pollution and seek	PSO-3	K2& K6
CO -3	remedies to mitigate and rectify them.		
	identify different plant communities, categorize plant	PSO-4	K3& K6
CO -3	biomes and identify threatened, endangered plant species		
	and create awareness program in protection of		
	biodiversity.		
	analyze insight into the vegetation types, species	PSO-5	K5
CO -4	interaction and their importance and the factors		
	influencing the environmental conditions.		

Teaching plan Total Contact hours :90 (including lectures, assignments and test)

Unit	Module	Торіс	Teach ing Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	1	Concept of prokaryote and Eukaryote. Structural organization of plant cell, specialized plant cell types chemical foundation.	5	K1(R)	Introductory session	Edpuzzle, Short Essay, oral test, online assignment, student presentations, Summarize, debate, observation note, class test
	2	Cell wall- Structure and functions	3	K1(R)	Brainstorming sessions,	Oral test
	3	Plasmamembrane;structure,modelsandfunctions,siteforATPase,ioncarrierschannelsandpumps,receptors.statestate	5	K1(R)	Lecture using slido	Suggest idea/concept with examples, Suggest formulae, Solve problems, Explain
	4	Plasmodesmata and its role in movement of molecule.	4	K2(U)	Lecture using PPT	Class test
II	1	Chloroplast-structure and function,	2	K1(U)	Lecture using gamma PPT, online videos	Oral test, questioning in classroom class test, Mentimeter Slip test, Seminar presentation, open book test
	2	genome organization, gene expression,	4	K2(R)	Interactive PPT	Oral test
	3	Mitochondria; structure, genome organization, biogenesis.	4	K3(An)	Lecture using slido	Problem- solving questions,
	4	Plant Vacuole - Tonoplast membrane, ATPases transporters as a storage organelle.	5	K3(Ap)	Lecture	Longer essay/ Evaluation essay,
	5	Structure and function of other cell organelles- Golgi apparatus, lysosomes, endoplasmic reticulum and microbodies.	5	K4(An)	Flipped classroom,	Differentiate between various ideas

III	1	Nucleus: Structure and function, nuclear pore, Nucleosome organization, euchromatin and heterochromatin.	5	K1 (U)	Lecture using slido	Quiziz, album preparation, open book test, online assignment, oral test, observation note
	2	Ribosome- Structure and functional significance. RNA and DNA Structure. A, B and Z Forms.	5	K4 (An)	Group discussion	Evaluation through short test, Seminar
	3	DNA damage and repair (Thymine dimer, photoreactivation, excision repair).	4	K4 (An)	Interactive PPT	Definitions, MCQ, Recall steps, Concept definitions
	4	Cell cycle and Apoptosis; Control mechanisms.	4	K4(An)	Nearpod, Group discussion	Essay questions, Concept definitions
	5	Cytokinesis and cell plate formation, mechanisms of programmed cell death.	4	K3(Ap)	Lecture using Youtube videos	
IV	1	DNAreplication(prokaryotesandeukaryotes),enzymesinvolved in replication,DNArepair.DNAsequencing.	5	K1(U)	Introductory session, Lecture using nearpod	Mentimeter, surprise test, oral test,
	2	Transcription, enzymes involved in transcription,	4	K2(R)	Flipped classroom	.Class test, essay questions
	3	posttranscriptionchanges,reversetranscription,	5	K3(Ap)		Student presentations.
	4	Translation. overlapping genes.	3	K4(An)	Lecture using PPT Videos	Chart presentations
V	1	DNA/gene manipulating enzymes: endonuclease, ligase, polymerase, phosphatase, transcriptase, transferase, topoisomerase.	5	K3(Ap)	Nearpod class, blended learning	Google forms, oral test, Assignments, student presentations, surprise test, class test
	2	Gene cloning: cloning vectors, molecular cloning and DNA libraries, transposons.	5	K4(Ap)	Flipped classroom	Album preparation

3	Recombinant DNA. Direct and indirect gene transfer.	5	K5(Ev)	Integrative learning	online assignment
4	Detection of recombinant molecule, production of gene products from cloned genes.	5	K4(Ap)	Flipped classroom	Critique or justify with pros and cons
5	Genome library, cDNA library.	4	K5(Ev)	Integrative learning	Flipped classroom

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development Activities (Em/ En/SD): Visit to Cell biology Laboratory

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Environment Sustainability

Activities related to Cross Cutting Issues :-

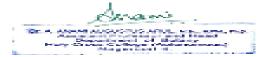
Assignment : Genome library, cDNA library./ online

Seminar Topic: DNA replication.

Sample questions (minimum one question from each unit)

Part A

- 1. What is a cell?
 - a) smallest and advanced unit of lifeb) smallest and basic unit of lifec) largest and basic unit of lifed) largest and advanced unit of life
- 2. Which of the following is a functional unit of a body?a) Mitochondria b) Cytoplasm c) Spleen d) Cell
- 3. Which of the following is known as the powerhouse of a cell?a) Mitochondria b) Cytoplasm c) Lysosome d) Nuclei
- 4. DNA is stored in which of the following cell organelle?a) Cell wall b) Cell Membrane c) Nucleus d) Cytoplasm
- 5. Protein synthesis takes place in which of the following cell organelle?a) Cell wall b) Ribosome c) Nucleus d) Cytoplasm


Part B

- 1. Write short note on Plasmodesmata and its role in movement of molecule.
- 2. Enlist the characters of ATPases transporters.
- 3. Differentiate euchromatin and heterochromatin.
- 4. Criticize on DNA sequencing.
- 5. Enlist the cloning vectors used in recombinant DNA Technology.

Part C

- 1. Evaluate the structure, models and functions Plasma membrane.
- 2. Illustrate the Chloroplast-structure and function.
- 3. Discuss the structure and function of Ribosome.
- 4. Illustrate the process of DNA replication.
- 5. Explain direct and indirect gene transfer methods in prokaryotic cell.

Head of the Department

Course Instructor

Dr. J.Celin Pappa Rani

				Teach	ning Plan				
Department		:	Bo	tany					
Class	: II M.Sc. Botany								
Title of the Course	of the Course : GENETICS, PLANT BREEDING AND BIOSTATISTICS					ICS			
Semester		:	Ш						
Course Code		:	BP	233CC2					
CourseCode	L	Т	Р	Cradita	Inst.Hours	Total	Marks	•	
CourseCoue	L	1	r	Creans	IIISt.Hours	Hours	CIA	External	Total
BP233CC2	4	2	-	5	6	75	25	75	100

Objectives

1. The students will be able to have conceptual understanding of laws of inheritance, genetic basis of loci and alleles and their linkage.

2. Develop critical understanding of chemical basis of genes and their interactions at population and evolutionary levels.

СО	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive level
CO- 1	Understand the Mendal's Law of inheritance and gene interactions	PSO-1	K1 (K)
CO- 2	Analyse the various factors determining the heredity from one generation to another.	PSO-2	K2 (U)
CO- 3	Explain Gene mapping methods: Linkage maps.	PSO-3	K3 (AP)
CO- 4	Compare and contrast the genetic basis of breeding self and cross – pollinated crops.	PSO-3	K4 (AN)
	Discuss and develop skills for statistical analysis of biological problems	PSO-3	K5 & K6(C & E)

Course Outcomes

Total Contact Hours: 90 (Including Lectures, Assignments, seminars and Tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	1.	Mendal's Law of inheritance. Gene interactions and modified dihybrid ratios.	3	K2(U)	Lecture using Chalk and talk Mind mapping,	Evaluation through short test, MCQ, True/False,
	2.	Quantitative inheritance. Sex determination in plants and theories of sex determination.	3	K 3(Ap)	Interactive PPT	Simple definitions, Online quiz, slip test
	3.	Sex linked characters. Structure of Gene ,Operon , inducible operon , Operator site, Promoter, Polycistronic m RNA, Regulator, regulator constitutive.	3	K1(K)	Introductory session, Group Discussion, Lecture using videos	Short essays, MCQ, True/False
	4.	Gene function and regulation in prokaryotes with reference to Lac operon and trp operon.	3	K4(An)	Group Discussion, Mind mapping Peer teaching	Differentiate between various ideas, Map knowledge
	5.	Producer gene , structural gene and integrator gene. Gene Regulation eukaryotes –Britten and Davidson model.	3	K5(E)	Demonstration, PPT, Group Discussion	Longer essay/ Evaluation essay
	6.	Arabidopsis- gene regulation in flowering.	3	K2(U)	Lecture using Chalk and talk	MCQ, True/False, slip test

II						
	1.	Recombination: Homologous and non- homologous recombination, site- specific recombination.	4	K2(U)	Lecture using Chalk and talk ,Introductory session,	Concept explanations, Short summary or overview, class test
	2.	Holiday model of recombination. Transposable genetic elements: transposase, transposon, simple transposon, composite transposon.	4	K 3(Ap)	Mind mapping, Peer tutoring, PPT, Review	Evaluation through short test, MCQ, True/False, online quiz(mentimeter)
	3.	Transposons in <i>Zea</i> <i>mays</i> . Transposable elements in prokaryotes.	4	K1(K)	Lecture using videos,Demonst ration,	Suggest idea/concept with examples,
	4.	UV induced mutation and its repair mechanism. Mismatch DNA repair mechanism.	3	K4(An)	Mind mapping, Peer tutoring,	Differentiate between various ideas, Open book test
	5.	Mutation types- frame shift mutation, addition, deletion, substitution, transition and transversion.	3	K5(E)	Lecture using Chalk and talk PPT,	Map knowledge
II						
	1.	ABO blood group in humans.	6	K 3(Ap)	Peer tutoring, Lecture using videos, Demonstration,	Evaluation through short test, MCQ, True/False,
	2.	QTL mapping, Gene mapping methods: Linkage maps, tetrad analysis, mapping with molecular markers ,mapping by using somatic cell hybrids.	6	K1(K)	Lecture using Chalk and talk Brainstormihg	Simple definitions, Observation note, Dictation
	3.	Extra chromosomal inheritance, maternal inheritance.	6	K4(An)	Demonstration, PPT, Interactive e- book	Creative writing, Quiz, slip test
V						
	1.	Objectives of plant breeding, characteristics improved by plant breeding.	4	K4(An)	Lecture using Chalk and talk ,Demonstration,	Short summary or overview, panel discussion Peer review

	2.	Genetic basis of breeding self and cross - pollinated crops.	4	K5(E)	Demonstration, PPT, Review	Evaluation through short test, MCQ, True/False,
	3.	Pure line theory, pure line selection and mass selection,	4	K2(U)	PPT, Review, you tube videos	Suggest idea/concept with examples,
	4.	clonal selection methods. , Hybridization.	3	K 3(Ap)	Lecture using Chalk and talk ,Introductoryses sion,	Oral presentatio n, observatio n notes
	5.	Genetics and physiological basis of heterosis.	3	K1(K)	Mind mapping, Peer tutoring,	Surprise test, Quiziz, oral test
V						
	1.	Measures of central tendency (Mean , Median , Mode)	4	K2(U)	Mind mapping, Peer tutoring, PPT, Review	Evaluation through short test, MCQ, problem solving
	2.	Dispersal (Mean deviation, standard deviation), standard errors ANOVA (One way).	4	K 3(Ap)	Lecture using videos,Demonst ration,	Oral presentation, observation notes, Home work
	3.	Sampling distribution; levels of significance;	4	K1(K)	Mind mapping, Peer tutoring, Problem solving	Assignments, slip test, home work
	4.	Regression and correlation;	3	K4(An)	PPT, solving problems, Research projects	Observatio n notes, class test, Mind map
	5.	t-test; analysis of variance; X2 test.	3	K4(An)	PPT, Brainstorming	Slip test, online quiz, home work

Course Focussing on Employability/Entrepreneurship/Skill Development: Activities (Em/En/SD): **Employability**

Course Focussing on Cross Cutting Issues (Professional Ethics/Human Values/Environment Sustainability/ Gender Equity): **Environment Sustainability**

Activities related to Cross Cutting Issues: Poster Presentation, Album making,

Assignment: Producer gene, structural gene and integrator gene. Gene Regulation eukaryotes –Britten and Davidson model.

Seminar Topic: Measures of central tendency (Mean, Median, Mode)

Sample questions

Part : A

- What is the structural unit of a gene?
 Exon b. Intron c. both a&b d. None of these
- 2. In a dihybrid cross, the phenotypic ratio of 9:3:3:1 represents ______ inheritance.
- According to the Britten and Davidson model, what are gene batteries? a. Genes regulating metabolism b. Genes regulating development
 c. Sets of coordinately regulated gene d. Genes involved in energy production
- 4. QTL mapping is used to identify ______ associated with quantitative traits.
- Maternal inheritance is often associated with which type of genetic material? a. Nuclear DNA
 Chloroplast DNA c. Mitochondrial DNA d. Both B and C
- 6. Transposable elements in Zea mays are also known as _____ genes.
- 7. Heterosis is also known as -----
- 8. The mean is a measure of central _____, while standard deviation is a measure of _____.

Part: B

- 1. Describe Mendel's Law of Segregation with an example
- 2. Interpret the basic structure of a gene and its components
- 3. Predicting the role of transposase in the mobility of transposable elements.?
- 4. Describe the principle of QTL mapping and its applications in plant breeding?
- 5. Highlight the ABO blood group system in human health and medical practice.
- 6. Role of pure line selection in breeding justify
- 7. Illustrate the genetic basis of breeding in self-pollinated crops.
- 8. Categorize the measures of central tendency and their significance in statistical analysis
- 9. Analyze the types of correlation & its advantages

Part: C

- 2. Summarize sex determination in plants and discuss various theories of sex determination.
- 3. Compare and contrast homologous recombination and non-homologous recombination .
- 4. Classify the methods of gene mapping with molecular markers. Include examples of markers used.
- 5. Determine the genetic and physiological basis of heterosis, including its application in plant breeding.?
- 6. Calculate and interpret the mean, median, mode, standard deviation, and mean deviation for the following data set: [5, 8, 12, 15, 18, 22, 26)
- 7. Illustrate the use of one-way ANOVA in comparing means with a detailed example and interpretation of results.

Head of the Department

Course Instructor

Dr. S. Kala Vetha Kumari

		Teach	ning Plan				
Department	: B	otany					
Class	: II M.Sc. Botany						
Title of the Course	: EN	TREPREN	EURIAL OP	PORTU	NITIES	S IN BOTA	NY
Semester	: 11	I					
Course Code	: B	P233EC1					
Course Code	L T P	Credits	Inst.Hours	Total	Marks		
				Hours	CIA	External	Total
BP233EC1	4	3	4	60	25	75	100

Objectives

1. Understand the different classifications of horticultural crops, nursery management, and use of technology in horticulture.

2. Evaluate the importance of floriculture and contribution spices and condiments on economy. **Course Outcomes**

СО	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive level
CO- 1	Students can acquire knowledge about organic farming and their advantages	PSO-1	K1
CO- 2	Understand both the theoretical and practical knowledge in understanding various horticultural techniques.		K2 & K6
CO- 3	To develop kitchen garden or terrace garden in their living area.	PSO-3	К3
CO- 4	Evaluate the horticultural techniques to students can develop self-employment and economical improvement.		K4
CO- 5	Create and develop skills for mushroom cultivation.	PSO-3	К5

Total Contact Hours: 60 (Including Lectures, Assignments, seminar and Tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι					•	
	1.	Organic manures and fertilizers. Composition of fertilizer, NPK content of various fertilizers.	3	K2(U)	Lecture using Chalk and talk	Creative writing, Quiz, slip test
	2.	Common organic manures bone meal, cow dung, poultry waste, oil cakes, organic mixtures and compost.	3	K1(R)	Lecture using videos	Oral presentatio n, observatio n notes
	3.	Preparation of compost, aerobic and anaerobic – advantages.	3	K3(Ap)	Demonstration, PPT, Review	Surprise test, Quiziz, oral test
	4.	Vermicompost preparation, Panchakaviyam.	3	K4(An)	Demonstration, PPT, Review	

II						
	1.	Common garden tools.	3	K2(U)	Mind mapping, Peer tutoring	Oral presentatio n, observatio n notes
	2.	Methods of plant propagation by seeds.	3	K 3(Ap)	Lecture using Chalk and talk Mind mapping,	Surprise test, Quiziz, oral test
	3.	Vegetative propagation, cutting, grafting, budding and layering.	3	K1(K)	Interactive PPT, You tube videos	Simple definitions, class test
	4.	Use of growth regulators for rooting.	3	K4(An)	Introductory session, Group Discussion	Evaluation through short test, MCQ, True/False,
II						
	1.	Gardening – types of gardens, ornamental, indoor garden, kitchen garden, terrace garden, vegetable garden for marketing.	3	K2(U)	Lecture using Chalk and talk Mind mapping,	Panel discussion, oral presentation, online quiz
	2.	Rockery and artificial ponds.	3	K 3(Ap)	PPT, Lecture with videos, Peer teaching	Debate, seminar presentation, slip test
	3.	Ornamental garden designing.	3	K1(K)	Introductory session, Group Discussion	Suggest idea/concept with examples,
	4.	Garden components flower beds, borders, hedges, edges, drives, paths, garden adornments.	3	K4(An)	Group Discussion, Mind mapping	Creative writing, Quiz, slip test
V		adoniments.				
	1.	Packaging of fruits, vegetables.	4	K2(U)	Lecture using Chalk and talk Mind mapping, Demonstration	Evaluation through short test, MCQ, True/False,
	2.	Preservation techniques drying, heat treatment, low temperature storage and by chemicals.	4	K 3(Ap)	PPT, Interactive e books, you tube videos	Panel discussion, oral presentation, online quiz
	3.	Preparation of wine, vinegar and dairy products.	4	K1(K)	Introductory session, Group Discussion	Debate, seminar presentation, slip test

V						
	1.	Significance of mushrooms. Cultivation.	3	K2(U)	Lecture using Chalk and talk Mind mapping,	Quiziz, online assignments, oral presentation
	2.	Types of mushrooms (button mushroom, oyster mushroom).	3	K 3(Ap)	PPT, Demonstration, Brainstorming	Debate, seminar presentation, slip test
	3.	Spawn isolation and preparation.	3	K1(K)	Introductory session, Group Discussion	Preparation of questions, Open book test
	4.	Value added products from mushroom – pickles, candies and dried mushrooms.	3	K4(An)	Group Discussion, Mind mapping, caes study method	JAM, observatio n notes, slip test

Course Focussing on Employability/Entrepreneurship/Skill Development:(Mention) Activities (Em/ En/SD): Entrepreneurship

Course Focussing on Cross Cutting Issues(ProfessionalEthics/HumanValues/Environment Sustainability/ Gender Equity): **Environment Sustainability**

Activities related to Cross Cutting Issues: Demonstration of gardens, construction of ornamental garden, Preparation of Mushroom receipes.

Assignment: Gardening – types of gardens, ornamental, indoor garden, kitchen garden, terrace garden, vegetable garden for marketing.

Seminar Topic: Types of mushrooms (button mushroom, oyster mushroom). Spawn isolation and

preparation.

Sample questions

Part :A

- 1. Which organic manure is known for its high nitrogen content?
 - a. Bone meal b. Cow dung c. oil cakes d. Poultry waste
- 2. Panchakaviyam includes which of the following components?
- a. Milk, curd, ghee, cow urine, and cow dung b. Milk, ghee, honey, water, and compost c. Milk, oil, leaves, water, and compost d. Milk, water, cow urine, leaves, and ghee
- 3. The tool commonly used for digging and turning soil in the garden is called a _____.
- 4. The hormone commonly used to stimulate root formation in cuttings is _____.
- 5. Rockeries are gardens that primarily feature rocks and alpine plants, whether the statement is True/

False

- 6. A kitchen garden is specifically designed to grow herbs, vegetables, and fruits for household use, whether the statement is True/ False
- 7. What is the primary purpose of drying fruits and vegetables?.

a. To enhance their flavor b. To improve their color c. To reduce their moisture content d. To increase their weight

8. Which chemical is commonly used for the preservation of fruits and vegetables?

a. Sodium chloride b. Sodium benzoate c. Calcium carbonate d. Potassium chloride

Part: B

- 1. Compare and contrast cow dung and poultry waste as organic manures in terms of their nutrient content and application
- 2. Interpret the composition and NPK content of bone meal and its use in agriculture.
- 3. Assessing five common garden tools and their primary uses in gardening.
- 4. Describe the concept of a terrace garden and its advantages?
- 5. Role of acetic acid bacteria in the production of vinegar.- justify
- 6. Explain the characteristics and uses of button mushrooms.
- 7. Analyze the spawn preparation for mushroom cultivation.

Part :C

- 1. Summarize the steps involved in the preparation of Panchakaviyam and its benefits in organic farming.
- 2. Discuss the process of vermicompost preparation and the benefits of vermicomposting over traditional composting methods.
- 3. Compare and contrast the different methods of vegetative propagation, including cuttings, grafting, budding, and layering.
- 4. Analyze the economic and environmental impacts of vegetable gardens for marketing purposes.
- 5. Determine the process of making wine from grapes and the biochemical changes that occur during fermentation.
- 6. Distinguish the different packaging materials used for fruits and vegetables and their impact on shelf life and quality?
- 7. Compare and contrast button mushrooms and oyster mushrooms in terms of their cultivation requirements and market potential.

Head of the Department

Course Instructor Dr. S. Kala Vetha Kumari

	Teaching Plan
Department	: Botany
Class	: II M.Sc. Botany
Title of the Course:	SKILL ENHANCEMENT COURSE II: AGRICULTURE AND FOOD
	MICROBIOLOGY
Semester	: 111

Course Code : BP233SE1

Course Code	L	Τ	Р	Credits	Inst. Hours	Total	Marks		
						Hours	CIA	External	Total
BP233SE1	3	-	-	-	3	45	25	75	100

Objectives

1. To provide comprehensive knowledge about plant – microbe interactions.

2. To provide basic understanding about factors affecting growth of microbes

Course Outcomes

СО	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive level
CO- 1	Recognize the general characteristics of microbes and factors affecting its growth	PSO-1	K1 &K3
CO- 2	Explain the significance of microbes in increasing soil fertility	PSO-2	K3 & K4
CO- 3	Elucidate concepts of microbial interactions with plant and food.	PSO-3	K3 & K5
CO- 4	Analyze the impact of harmful microbes in agriculture and food Industry.	PSO-3	К2
CO- 5	Determine and appreciate the role of microbes in food preservation and as biocontrol.		K1 & K3

Total Contact Hours:45 (Including Lectures, Assignments and Tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation	
Ι		·					
	fr c	ole of symbiotic and ree-living bacteria and yanobacteria in griculture.	4	K2(U)	Lecture using Chalk and talk Demonstration	Evaluation through short test, MCQ, True/False, Short essays, Short summary or overview	
	C M	Aycorrhiza, Plant Growth Promoting Aicro-organism PGPM) and	4	K1(R)	Introductory session, Group Discussion,	Simple definitions, MCQ, Recall steps, Concept definitions	
	S	hosphate olubilizing Micro- rganism (PSM).	4	K3(Ap)	Mind mapping,	Suggest idea/concept with examples	

Π						
	1.	Biocontrol of plant pathogens, pests and weeds.	4	K2(U)	Lecture using Chalk and talk Demonstration	Evaluation through short test, MCQ Short summary
	2.	Restoration of waste and degraded lands.	4	K1(R)	Introductory session, Group Discussion,	Simple definitions, MCQ, Concept definitions
	3.	Biofertilizers: Types, technology for their production and application.	4	K3(Ap)	Mind mapping,	Suggest idea/concept with examples
	4.	Vermi-compost.	4	K4(An)	Lecture using videos	Finish a procedure in many steps, Differentiate between various ideas, Map knowledge
III	T		<u> </u>			
	1.	Intrinsic and extrinsic factors influencing growth of microorganisms in food.	4	K2(U)	Lecture using Chalk and talk Demonstration	Evaluation through short test
	2.		4	K1(R)	Introductory session, Group Discussion,	Simple definitions, Concept definitions
	3.	Single cell protein.	4	K3(Ap)	Mind mapping,	Suggest idea/concept with examples
IV			<u> </u>	I	I	
	1.	Microbial spoilage of foo and food products: Cereals.	od4	K2(U)	Lecture using Chalk and talk Demonstration	Evaluation through short test, MCQ, True/False, Short essays,

						Concept explanations, Short summary or overview
	2.	Vegetables, prickles, fish and dairy products.	4	K1(R)	Introductory session, Group Discussion,	Simple definitions, MCQ, Recall steps, Concept definitions
	3.	Food poisoning and food intoxication.	3	K3(Ap)	Mind mapping,	Suggest idea/concept with examples
	4.	Food preservation processes.	3	K4(An)	Lecture using videos	Finish a procedure in many steps, Differentiate between various ideas, Map knowledge
	5.	Microbes and fermented foods: Butter.	3	K5(E)	PPT	Longer essay/ Evaluation essay
	6.	Cheese and bakery products.	4	K5(E)	PPT	Evaluation essay
V						
	1.	PREDICTIVE 4 METHODS: Food quality control Act and Regulations ,	ŀ	K2(U)	Lecture using Chalk and talk Demonstration	Evaluation through short test, MCQ, True/False, Short essays, Concept explanations, Short summary or overview
	2.	Food 3 safety, trade regulation of	3	K1(R)	Introductory session, Group Discussion,	Simple definitions, MCQ, Recall steps, Concept definitions

3.	Food materials,	5	· • ·	Lecture and Chalk method	Suggest idea/concept with examples
	Instrumentation in food analysis	3		C	Differentiate between various ideas, Map knowledge

Course Focussing on Employability/Entrepreneurship/Skill Development: Activities (Em/ En/SD): Skill Development

Course Focussing on Cross Cutting Issues (Professional Ethics /Human Values/ Environment Sustainability/ Gender Equity): **Environment Sustainability**

Activities related to Cross Cutting Issues: Field Visit

Assignment: Microbial spoilage of food and food products: Cereals.

Seminar Topic: Food poisoning and food intoxication.

Sample Question

Part-A

- 1. What is the role of symbiotic bacteria in agriculture?
 - a) Fixation of atmospheric nitrogen b) Decomposition of organic matter
 - c) Pest control d) Soil aeration
- 2. Which of the following is not a benefit of mycorrhizal associations in agriculture?
 - a) Improved nutrient uptake b) Enhanced tolerance to drought
 - c) Prevention of soil erosion d) Increased resistance to pathogens
- 3. Plant Growth Promoting Microorganisms (PGPM) primarily enhance plant growth by: a) Providing mechanical support to roots b) Suppressing weed growth
 - c) Enhancing nutrient availability d) Increasing water content in soil
- 4. Phosphate Solubilizing Microorganisms (PSM) play a crucial role in agriculture by:
 - a) Increasing soil pH b) Converting organic matter into inorganic phosphorus
- c) Facilitating the uptake of phosphorus by plants d) Inhibiting plant growth 5. Cyanobacteria contribute to agriculture by:
 - a) Producing antibiotics for plant protection b) Fixing atmospheric carbon dioxide

c) Enhancing soil fertility through nitrogen fixation d) Providing natural colors for crop protection

Part-B

- 1. Discuss the role of mycorrhiza in agriculture and how it enhances plant growth.
- 2. Explain the technology used for the production and application of biofertilizers.
- 3. Describe the intrinsic and extrinsic factors influencing the growth of microorganisms in food.

- 4. How do microbes contribute to the spoilage of dairy products?
- 5. What are the different trade regulations of food materials?

Part-C

- 1. Discuss the significance of plant growth-promoting microorganisms (PGPM) in agriculture, highlighting their mechanisms of action and potential benefits for crop production.
- 2. Explain the concept of biocontrol in agriculture, focusing on its role in managing plant pathogens, pests, and weeds. Provide examples of biocontrol agents and their modes of action.
- 3. Evaluate the importance of vermicompost in sustainable agriculture, detailing its production process, benefits for soil health, and potential challenges.
- 4. Compare and contrast the microbial spoilage of cereals, vegetables, fruits, fish, and dairy products, discussing common spoilage microorganisms and their effects on food quality.
- 5. Analyze the Instrumentation in food analysis.

Head of the Department

Course Instructor Dr. W. Vincy