# Holy Cross College (Autonomous), Nagercoil-629004 Kanyakumari District, Tamil Nadu.

Nationally Re-Accredited with A+ by NAAC IV cycle - CGPA 3.35

Affiliated to Manonmaniam Sundaranar University, Tirunelveli



# DEPARTMENT OF ZOOLOGY POST-GRADUATE PROGRAMME



TEACHING PLAN EVEN SEMESTER 2024 – 2025

# **DEPARTMENT OF ZOOLOGY**



# Vision

Empower the students with Academic skills, Research aptitude and social commitment through holistic education.

### Mission

- 1. Foster knowledge and skills through innovative teaching and instill moral and ethical values.
- 2. Render opportunities for critical thinking, communication, and collaboration.
- 3. Create research ambience to promote innovations and contemporary skills relevant to local and global needs.
- 4. Inspire to explore the natural resources and connect with nature.
- 5. Promote passion to serve the local community by creating empowered women of
- 6. Commitment and social consciousness through outreach and exposure programmes.
- 7. Facilitate life-long learning, participatory leadership, and commitment to society.

### Upon completion of M.A./ M. Sc. /MSW Degree | Mapping Pos with Programme, the graduates will be able to: Mission PEO1 apply scientific and computational technology to solve M1, M2 socio ecological issues and pursue research. PEO2 continue to learn and advance their career in industry both M4 & M5 in private and public sectors PEO3 develop leadership, teamwork, and professional abilities M2, M5 & M6 to become a more cultured and civilized person and to tackle the challenges in serving the country.

### PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

| PO  | Upon completion of M.Sc. Degree Programme, the graduates          | Mapping with  |
|-----|-------------------------------------------------------------------|---------------|
|     | will be able to:                                                  | PEOs          |
| PO1 | apply their knowledge, analyze complex problems, think            | PEO1 & PEO2   |
|     | independently, formulate and perform quality research.            |               |
| PO2 | carry out internship programmes and research projects to develop  | PEO1, PEO 2 & |
|     | scientific and innovative ideas through effective communication.  | PEO3          |
| PO3 | develop a multidisciplinary perspective and contribute to the     | PEO 2         |
|     | knowledge capital of the globe.                                   |               |
| PO4 | develop innovative initiatives to sustain ecofriendly environment | PEO1, PEO 2   |
| PO5 | pursue active career, team work and using managerial skills guide | PEO 2         |
|     | people to the right destination in a smooth and efficient way.    |               |
| PO6 | employ appropriate analysis tools and ICT in a range of learning  | PEO1, PEO 2 & |
|     | scenarios, demonstrating the capacity to find, assess, and apply  | PEO3          |
|     | relevant information sources.                                     |               |
| PO7 | learn independently for lifelong to execute professional, social  | PEO3          |
|     | and ethical responsibilities promoting sustainable development.   |               |

### **PROGRAMME OUTCOMES (POS)**

# PROGRAMME SPECIFIC OUTCOMES (PSOs)

| PSO   | Upon completion of M.Sc. Programme, the graduates will be able            | РО        |
|-------|---------------------------------------------------------------------------|-----------|
|       | to:                                                                       | addressed |
| PSO1  | explain the various aspects of life sciences including Biochemistry, Cell | PO1, PO2  |
|       | and Molecular Biology, Biosystematics, Genetics, Evolution,               |           |
|       | Physiology, Developmental Biology, Immunology, Microbiology,              |           |
|       | Endocrinology, Bioinformatics, Biotechnology and Nanobiology.             |           |
| PSO2  | carryout experimental techniques, analyze statistically, draw             | PO2, PO4, |
|       | conclusions, write report, present effectively and publish in             | PO5, PO6  |
|       | indexed journals effectively                                              |           |
| PSO 3 | develop personal and key transferable skills and entrepreneurial skills   | PO2, PO3  |
|       | through industrial / field visits and internships.                        |           |
| PSO 4 | independently assemble facts, summarize and draw conclusions              | PO1, PO2, |
|       | from scientific text and develop competence in the design and             | PO3, PO4, |
|       | execution of research.                                                    | PO6       |
| PSO 5 | discriminate societal and environmental problems, adopt relevant          | PO4, PO5, |
|       | technology, synthesis solution and claim for IPR                          | PO7       |

| Class               | : I M.Sc. Zoology                | <b>Core Course – III</b> |
|---------------------|----------------------------------|--------------------------|
| Title of the Course | : Cellular and Molecular Biology |                          |
| Semester            | : II                             |                          |
| <b>Course Code</b>  | : ZP232CC1                       |                          |

| Course   | т | т | D | G | Cradita | Inst. | Total |     | Marks    |       |
|----------|---|---|---|---|---------|-------|-------|-----|----------|-------|
| Code     | L | T | Г | 3 | Creans  | Hours | Hours | CIA | External | Total |
| ZP232CC1 | 4 | 1 | - | 1 | 5       | 6     | 90    | 25  | 75       | 100   |

### **Pre-requisite**

Students should have knowledge of the basic cellular structures and their salient functions.

# **Learning Objectives**

1. To acquire knowledge on molecular organization of the cell and cell organelles, growth, and communications.

2. To develop skills needed to innovate and contribute to the advancement in cell and molecular biology.

### **Course Outcomes**

| On t | On the successful completion of the course, students will be able to:                       |    |  |  |  |  |
|------|---------------------------------------------------------------------------------------------|----|--|--|--|--|
| 1.   | recall general concepts of cell biology and fundamental cellular structures and organelles. | K1 |  |  |  |  |
| 2.   | explain the various cellular components and their activities.                               | K2 |  |  |  |  |
| 3.   | identify the changes or losses in cell function caused by dysregulation.                    | K3 |  |  |  |  |
| 4.   | compare different cellular processes, their regulation, and their significance.             | K4 |  |  |  |  |
| 5.   | assess the societal and environmental impacts through cellular and molecular research.      | K5 |  |  |  |  |

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate

|                      | Total Contact hours: 90 (Including lectures, assignments and tests) |     |          |                     |                |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------|-----|----------|---------------------|----------------|--|--|--|--|--|
| Modul Topic          |                                                                     | Hou | Cognitiv | Pedagogy            | Assessment/    |  |  |  |  |  |
| e                    |                                                                     | rs  | e level  |                     | Evaluation     |  |  |  |  |  |
|                      | Unit I                                                              |     |          |                     |                |  |  |  |  |  |
| 1.                   | General features of the cell:                                       | 3   | K1 (R)   | Collaborative       | Slip test,     |  |  |  |  |  |
|                      | Cell theory; Diversity of cell                                      |     |          | Learning -Think –   | MCQ            |  |  |  |  |  |
|                      | size and shapes                                                     |     |          | Pair - Share        |                |  |  |  |  |  |
| 2.                   | Protoplasm and deutroplasm                                          | 4   | K1 (R)   | Group discussion,   | Class test,    |  |  |  |  |  |
|                      | – cell organelles;                                                  |     |          | Jigsaw method       | Just a minute  |  |  |  |  |  |
| 3.                   | Membrane structure and                                              | 4   | K2 (U)   | Index cards,        | Word splash,   |  |  |  |  |  |
| functions - membrane |                                                                     |     |          | Interactive PPT     | objective test |  |  |  |  |  |
| models               |                                                                     |     |          |                     |                |  |  |  |  |  |
| 4.                   | 4. membrane/channel proteins,                                       |     | K4 (An)  | Mind mapping, chalk | Oral test,     |  |  |  |  |  |
|                      | diffusion, osmosis.                                                 |     |          | and Board, lecture  | Mind Map       |  |  |  |  |  |

# **Teaching plan with Modules** Total Contact hours: 90 (Including lectures, assignments and tests)

| 5. | active transport, ion pumps<br>(Sodium and potassium<br>pump).                                                                      | 4 | K5 (E)           | Peer tutoring, jigsaw                               | Long essay<br>test, oral test                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------|---|------------------|-----------------------------------------------------|-----------------------------------------------------------|
| 1  | Cell organelles: Ultra-<br>structure and functions of<br>intracellular organelles –<br>nucleus, nuclear pore<br>complex, nucleolus, | 4 | K2 (U)           | Blended learning,<br>Lecture,<br>Demonstration      | seminar,<br>preparation<br>of question<br>bank            |
| 2  | Chromosomes,<br>mitochondria,                                                                                                       | 5 | K3 (Ap)          | Demonstration,<br>lecture using videos              | online<br>Assignments,<br>peer review                     |
| 3  | Golgi bodies, lysosomes,                                                                                                            | 3 | K3 (Ap)          | Interactive PPT, group discussion                   | MCQ, Group<br>discussion                                  |
| 4  | Endoplasmic reticulum, centrosomes,                                                                                                 | 3 | K4 (An)          | Review, mind map                                    | Short essays,<br>Quizzes                                  |
| 5  | Peroxisomes, ribosomes.                                                                                                             | 3 | K3 (Ap)          | Chalk and Board,<br>Lecture, you tube<br>videos     | Open book<br>test,<br>assignment                          |
| 1  | Cell cycle and cell division:<br>Phases of Cell Cycle                                                                               | 2 | K3 (Ap)          | Group Discussion,<br>Interactive PPT                | Objective test<br>(Fill in the<br>blanks), word<br>splash |
| 2  | Mitosis, Significance of<br>Mitosis                                                                                                 | 3 | K4 (An)          | Mind mapping,<br>Debate                             | MCQ, mind<br>map                                          |
| 3  | Meiosis, significance of meiosis.                                                                                                   | 2 | K4 (An)          | Peer tutoring, lecture<br>using videos              | Slip test,<br>poster<br>making                            |
| 4  | Control of the cell cycle -<br>regulator molecules -<br>positive regulation - negative<br>regulation.                               | 3 | K2 (U)           | Flipped classroom,<br>Peer tutoring                 | MCQ, Oral<br>test                                         |
| 5  | Structure of DNA and RNA;<br>Process of DNA replication,                                                                            | 4 | K3 (Ap)          | PPT, Group<br>discussion                            | Model<br>making,<br>seminar                               |
| 6  | transcription, and translation<br>in pro- and eukaryotic cells.                                                                     | 4 | K4 (An)          | Brainstorming, You<br>tube videos, team<br>teaching | Quizziz,<br>panel<br>discussion                           |
| 1  | Cell communication and cell signaling-                                                                                              | 2 | K1 (R)<br>K2 (U) | KWL, Inquiry based<br>& Interactive PPT             | Mind<br>mapping<br>Model<br>making                        |
| 2  | Membrane- associated                                                                                                                |   | K4 (An)          | Flipped classroom,<br>Socratic method               | Quiz                                                      |

| 0 |                              | 4 | $\mathbf{V}$                 |                        |              |
|---|------------------------------|---|------------------------------|------------------------|--------------|
| 2 | Signaling through G-protein  | 4 | КЗ (Ар)                      | Learning – group       | manning      |
|   | coupled receptors.           |   |                              | work to map the        | mapping      |
|   |                              |   |                              | GPCR pathway for a     |              |
|   |                              |   |                              | specific signal        |              |
|   |                              |   |                              | molecule.              |              |
| 3 | Signal transduction          | 4 | K3 (Ap)                      | Inquiry-Based          | Role play    |
|   | pathways (RTK pathway        |   |                              | Learning: Online       |              |
|   | and MAP kinase pathway).     |   |                              | animations- pathway    |              |
|   |                              |   |                              | kinasa                 |              |
| 4 | Conjunction and tight        | 3 | K4(An)                       | Seminar Peer group     | Ouizzes      |
|   | iunction extracellular space | 5 |                              | teaching. Group        | Summarisatio |
|   | and matrix                   |   |                              | discussion.            | n, Oral test |
| 5 | Interaction of cells with    | 3 | K4 (An)                      | KWL, Interactive PPT   | Short test   |
|   | other cells and non-cellular |   | . ,                          | Collaborative learning |              |
|   | structures.                  |   |                              | Group discussion-      |              |
| 1 | Cancer cells: Characteristic | 3 | K2 (U)                       | Collaborative learning |              |
|   | features of normal and       |   |                              | Peer group teaching    |              |
|   | cancer cells.                |   |                              | Seminar,               |              |
| 2 | Carcinogens: types and       | 4 | K2 (U)                       | Problem-Based          | Quizzes,     |
|   | cancer induction.            |   | K4 (An)                      | Learning:              | Summarisatio |
|   | Metastasis.                  |   |                              | Seminar,               | n            |
|   |                              |   |                              | Jigsaw, Group          |              |
| 3 | Operation and tymes          | 3 | <b>K2</b> (II)               | Seminar Index card     | Short test   |
| 5 | Suppressor genes             |   | $\mathbf{X}_{2}(\mathbf{U})$ | Interactive PPT        | with open    |
|   | suppressor genes.            |   |                              |                        | ended        |
|   |                              |   |                              |                        | question     |
| 4 | Therapeutic                  | 4 | K4 (An)                      | Interactive PPT,       | Oral test    |
|   | interventions of             |   |                              | Jigsaw                 |              |
|   | uncontrolled cell growth.    |   |                              |                        |              |
| 5 | Apoptosis –                  | 4 | K4 (An)                      | Seminar & Index card,  | Mind         |
|   | mechanism and regulation.    |   |                              | Chunking method        | mapping,     |
|   | Ageing and senescence.       |   |                              |                        | Quizzes      |

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill

Development, Employability

Activities (Em/ En/SD): Differentiation of various stages of Mitosis and Meiosis (Practical) and structure of DNA (Model making)

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human

Values/Environment Sustainability/ Gender Equity):

Activities related to Cross Cutting Issues: -

Assignment: 1. Compare prokaryotic and eukaryotic ribosomes.

Assignment: 2. Model making: Cell signalling. (Group work)

# Seminar Topics:

- 1. Protoplasm and deuteroplasm
- 2. Structure and function of Plasma membrane
- 3. Membrane proteins
- 4. Active transport
- 5. Structure and function of nucleus and nuclear pore complex
- 6. Structure and function of chromosomes
- 7. Structure and function of Golgi bodies
- 8. Structure and function of centrosome
- 9. Cell cycle and its phases
- 10. Mitosis
- 11. Structure of DNA
- 12. Structure of RNA
- 13. Cell communication
- 14. Gap junction and tight junction.
- 15. Extracellular space and matrix.
- 16. Oncogenes and tumour suppressor genes.
- 17. Characteristic features of normal and cancer cells
- 18. Types of cancer.
- 19. Carcinogens: types and cancer induction
- 20. Ageing and senescence.

# Sample questions

### Part A

1. Which of the following processes involves the movement of molecules from an area of high concentration to an area of low concentration?

a. Active transport b. Osmosis c. Diffusion d. Endocytosis

- 2. The nucleus is the site of protein synthesis in the cell. (State True or False)
- 3. In the cell cycle, the phase where the cell undergoes division of its nucleus and cytoplasm is called \_\_\_\_\_\_.

4 Which type of signalling molecules can cross the cell membrane to bind with intra cellular receptors

a) Steroid hormones b) Protein hormones c) Peptide hormones d) Amino acid derivatives

5. Which one of the following is the oncogenes

a) APC b) p53 c) Ras d) MAPK

# Part B

- 1. Discuss the fluid mosaic model and the roles of membrane proteins.
- 2. Elaborate on the structure and functions of lysosomes. Discuss how lysosomes are involved in the breakdown of cellular waste and the digestion of foreign substances.
- 3. Explain the significance of mitosis in maintaining genetic stability and ensuring proper growth, repair, and maintenance of multicellular organisms.
- 4. Discuss the role of cell adhesion molecules in mediating interactions between adjacent cells.

5. Discuss the role of proto-oncogenes in normal cellular functions.

### Part C

- 1. Discuss the diversity of cell size and shape among different organisms. Provide examples of specialized cell shapes and their functions.
- 2. Explain the ultrastructure of mitochondria and their role in cellular respiration. Include the key steps of cellular respiration and the importance of this process in providing energy for the cell.
- 3. Explain the process of meiosis, including the key events in both meiosis I and meiosis II. Discuss the significance of meiosis in the generation of genetic diversity and the formation of haploid cells.
- 4. Explain the concept of cell- cell communication in the context of development and tissue homeostasis.
- 5. Analyse the role of angiogenesis in the process of cancer progression.

| Course Instructor    | Head of the Department |
|----------------------|------------------------|
| Dr. X. Venci Candida | Dr. A. Shyla Suganthi  |
| Dr. F. Brisca Renuga |                        |

| Class                      | : | I M. Sc. Zoology      | Core Course – IV |
|----------------------------|---|-----------------------|------------------|
| Semester                   | : | II                    |                  |
| <b>Title of the Course</b> | : | Developmental Biology |                  |
| <b>Course Code</b>         | : | ZP242CC2              |                  |

| Course Code | L | т | D | G | Cradita | Inst. | Total |     | Marks    |       |
|-------------|---|---|---|---|---------|-------|-------|-----|----------|-------|
| Course Code |   | I | P | 3 | Creans  | Hours | Hours | CIA | External | Total |
| ZP242CC1    | 4 | 1 | - | 1 | 5       | 6     | 90    | 25  | 75       | 100   |

# Pre-requisite

A basic understanding of biology and genetics is recommended to effectively grasp the concepts in developmental biology.

# **Learning Objectives**

- 1. Understand the principles of developmental biology to analyze and compare the embryonic development of different animal species.
- 2. Study the concepts, procedures, and uses of genes and hormones to propose strategies to improve and control the development of certain animal species.

| On the s | uccessful completion of the course, student will be able to:                                                                                 |    |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| CO - 1   | recall and summarize the chief events in animal development, recognizing their significance and historical context                           | K1 |
| CO - 2   | understand the different mechanisms and how extrinsic and<br>intrinsic factors influence embryonic development in various<br>animal embryos. | K2 |
| CO - 3   | apply their knowledge to explain the role of hormones in animal development.                                                                 | К3 |
| CO - 4   | analyze the different stages of embryonic development and the genetic control mechanisms involved.                                           | K4 |
| CO - 5   | critically evaluate ethical issues associated with cryopreservation in mammalian reproduction.                                               | K5 |
| CO - 6   | design and propose experiments related to biochemical changes<br>during regeneration or cryopreservation techniques.                         | K6 |

# **Course Outcome**

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

# **Teaching plan with Modules** Total Contact hours: 90 (Including lectures, assignments, and tests)

| Units | Modules | Topics                                                                  | Hours | Cognitive<br>level | Pedagogy                                       | Assessment                         |
|-------|---------|-------------------------------------------------------------------------|-------|--------------------|------------------------------------------------|------------------------------------|
| Ι     | Pattern | of animal development (18 I                                             | Hrs.) |                    |                                                |                                    |
|       | 1       | Pattern of animal<br>development: Chief events in<br>animal development | 2     | K1 (R)<br>K2 (U)   | Inquiry based<br>learning, Group<br>discussion | Quizzes,<br>Oral test,<br>Mind map |

|     | 2         | Origin of germ cells,           | 3  | K1 (R)  | Interactive PPT. |             |
|-----|-----------|---------------------------------|----|---------|------------------|-------------|
|     |           | spermatogenesis - sperm         |    | K2 (U)  |                  |             |
|     |           | morphology in relation to the   |    |         |                  |             |
|     |           | type of fertilization           |    |         |                  |             |
|     | 3         | oogenesis - oogenesis in        | 5  | K1 (R)  | Flipped          | MCQ, Flow   |
|     |           | insects and amphibians;         |    | K2 (U)  | learning, Brain  | chart       |
|     |           | composition and synthesis of    |    |         | storming         |             |
|     |           | yolk in invertebrates (insects  |    |         |                  |             |
|     |           | and crustaceans)                |    |         |                  |             |
|     | 4         | oogenesis - oogenesis in        | 4  | K1 (R)  | Seminar,         | MCQ, Flow   |
|     |           | vertebrates; composition and    |    | K2 (U)  | Blended          | chart       |
|     |           | synthesis of yolk in            |    |         | learning         |             |
|     |           | vertebrates                     |    |         | U                |             |
|     | 5         | Genetic control of vitellogenin | 4  | K2 (U)  | Peer group       | Mind map,   |
|     |           | synthesis in amphibians.        |    |         | discussion,      | MCQ, Oral   |
|     |           |                                 |    |         | Brain storming   | test        |
| II  | Fertiliza | ation (18 Hrs.)                 |    |         |                  |             |
|     | 1         | Fertilization: Sperm            | 4  | K1 (R)  | Inquiry based    | Quiz Group  |
|     | -         | aggregation, sperm activation.  | -  | K2 (U)  | learning. Group  | discussion  |
|     |           | chemotaxis, sperm maturation    |    | (-)     | discussion       | u130u331011 |
|     |           | and capacitation in mammals.    |    |         | Team-based       |             |
|     |           | acrosome reaction. sperm –      |    |         | learning         |             |
|     |           | egg interaction                 |    |         | 8                |             |
|     | 2         | Sperm entry into the egg - egg  | 3  |         | Flipped          | Flow chart, |
|     |           | activation - intracellular      |    | K1 (R)  | learning, Brain  | Peer review |
|     |           | calcium release - cortical      |    | K2 (U)  | storming         |             |
|     |           | reaction                        |    | ~ /     | U                |             |
|     | 3         | Physiological polyspermy -      | 5  | K2 (U)  | Seminar,         | MCO Sliv    |
|     |           | fusion of male and female       |    |         | Blended          | MCQ, Shp    |
|     |           | pronuclei post fertilization    |    |         | learning         | test        |
|     |           | metabolic activation            |    |         | e                |             |
|     | 4         | parthenogenesis                 | 6  | K2 (U)  | Peer group       | Slip test,  |
|     |           |                                 |    |         | discussion,      | Oral test   |
|     |           |                                 |    |         | Brain storming   |             |
| III | Cleavag   | e and gastrulation (18 Hour     | s) |         |                  |             |
|     | 1         | Cleavage and gastrulation:      | 5  | K4 (An) | Peer group       | Diagnostic  |
|     |           | Pattern of embryonic            |    |         | discussion,      | Assessment  |
|     |           | cleavage, mechanisms of         |    |         | Brain storming   | Dictation,  |
|     |           | cleavage                        |    |         | Didactive        | Peer review |
|     |           |                                 |    |         | teaching         |             |
|     | 2         | Gastrulation - morphogenic      | 5  | K4 (An) | Flipped          | Mind map,   |
|     |           | movements - gastrulation in     |    |         | learning, Brain  | Slip test   |
|     |           | respective animal embryos -     |    |         | storming         |             |
|     |           | Sea urchin                      |    |         |                  |             |

|    | 3 | Gastrulation - morphogenic<br>movements - gastrulation in<br>respective animal embryos -<br>Amphibians                                                        | 3 | K4 (An)           | Seminar,<br>Blended<br>learning                                          | Mind map<br>Class test            |
|----|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------|--------------------------------------------------------------------------|-----------------------------------|
|    | 4 | Gastrulation - morphogenic<br>movements - gastrulation in<br>respective animal embryos -<br>Mammals                                                           | 2 | K4 (An)           | Inquiry based<br>learning, Group<br>discussion                           | Flow chart<br>Self-<br>Assessment |
|    | 5 | Fate maps - (Amphibian and<br>Chick),                                                                                                                         | 2 | K4 (An)           | Inquiry based<br>learning, Group<br>discussion<br>Team-based<br>learning | Quizzes<br>through<br>menti-meter |
|    | 6 | Epigenesis and preformation –<br>Formation of primary germ<br>layers                                                                                          | 1 | K4 (An)           | Flipped<br>learning, Brain<br>storming                                   | Quizzes<br>through<br>slido       |
| IV | 1 | Embryonic Development;<br>Embryonic development of<br>fish                                                                                                    | 3 | K2 (U)<br>K3 (Ap) | Seminar,<br>Blended<br>learning                                          | Illustration<br>Open book<br>test |
|    | 2 | Embryonic Development;<br>Embryonic development of<br>birds,                                                                                                  | 2 | K2 (U)<br>K3 (Ap) | Cooperative<br>learning,<br>Expository<br>teaching                       | Flowchart/<br>Mind map            |
|    | 3 | Formation of extra embryonic membranes in mammal                                                                                                              | 2 | K2 (U)            | Scaffolding<br>Peer interaction                                          | Seminar                           |
|    | 4 | Formation and migration of<br>neural crest cells - types of<br>neural crest cells - primary and<br>secondary neurulation.                                     | 2 | K2 (U)            | Collaborative<br>learning,<br>Interactive PPT                            | Quizzes                           |
|    | 5 | Organogenesis (mammal):<br>Development of ectodermal<br>derivatives (nervous system).<br>endodermal (digestive<br>system), mesodermal<br>(circulator system). | 2 | K2 (U)            | Flipped<br>learning, Brain<br>storming                                   | Conceptual<br>puzzles,            |
|    | 6 | Gene and development:<br>Anterior- posterior axis in<br>determination in drosophila                                                                           | 2 | K2 (U)<br>K3 (Ap) | Seminar,<br>Blended<br>learning                                          | Diagnostic<br>Assessment          |
|    | 7 | Maternal effect genes - <i>Bicoid</i> and <i>Nanos</i> proteins;                                                                                              | 2 | K2 (U)            | PPT<br>Peer coaching                                                     | Online quiz:<br>Slido             |
|    | 8 | Generation of dorsal - ventral<br>polarity- Genetic control of<br>segmentation – Gap genes                                                                    | 2 | K2 (U)            | PPT<br>Jigsaw method                                                     | Instant test                      |
|    | 9 | Pair rule genes; Homeotic genes                                                                                                                               | 1 | K2 (U)            | Team-based<br>learning                                                   | pons                              |

| V | 1 | Post embryonic development<br>metamorphosis: Endocrine<br>control of metamorphosis in<br>insect                                                                              | 3 | K2 (U)<br>K3 (Ap)           | Chalk and talk<br>Peer<br>observation                                    | Oral<br>question<br>MCQ             |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------|--------------------------------------------------------------------------|-------------------------------------|
|   | 2 | Post embryonic development<br>metamorphosis: Endocrine<br>control of metamorphosis in<br>amphibian                                                                           | 3 | K2 (U)<br>K4 (An)           | Flipped<br>classroom<br>Jigsaw method                                    | Open book<br>test<br>Flow chart     |
|   | 3 | Endocrine control of moulting<br>and growth in crustaceans and<br>insects - Neoteny and<br>pedogenesis                                                                       | 3 | K2 (U)<br>K4 (An)           | PPT<br>Fish bowl<br>discussion                                           | Mind map<br>Class test              |
|   | 4 | Regeneration: Types of<br>regeneration, Regeneration in<br>planaria and frog -<br>Regenerative ability in<br>different animal groups.<br>Factors stimulating<br>regeneration | 2 | K1 (R)<br>K4 (An)<br>K6 (C) | Collaborative<br>learning<br>Team-based<br>learning                      | Online<br>Assignment<br>K1(R)       |
|   | 5 | Aging and senescence:<br>Biology of senescence- cause<br>of aging- mechanism involved<br>in apoptosis.                                                                       | 2 | K1(R)<br>K2 (U)             | Real –world<br>application<br>Animation<br>video                         | Class test<br>Online<br>assessments |
|   | 6 | Experimental Embryology:<br>Mammalian reproduction:<br>Mammalian reproductive<br>cycle, Hormonal regulation                                                                  | 2 | K1(R)<br>K2 (U)             | Inquiry based<br>learning, Group<br>discussion<br>Team-based<br>learning | Seminar<br>Models/<br>Charts        |
|   | 7 | Endocrine changes associated<br>with normal pregnancy,<br>Induced ovulation in humans                                                                                        | 2 | K1(R)<br>K2 (U)<br>K3(Ap)   | Flipped<br>learning, Brain<br>storming                                   |                                     |
|   | 8 | Cryopreservation of<br>gametes/embryos - Ethical<br>issues in cryopreservation                                                                                               | 1 | K3(Ap)<br>K5 (E)<br>K6 (C)  | Collaborative<br>learning<br>Team-based<br>learning                      |                                     |

**Course Focusing on Employability/ Entrepreneurship/ Skill Development:** Skill Development **Activities (Em/ En/SD):** Clinical implications of the development, gender based reproductive disorders and intervening mechanism.

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Human Values

Activities related to Cross Cutting Issues:

**Assignment:** Cause of aging, induced ovulation in humans, Pattern of embryonic cleavage, mechanisms of cleavage

### **Seminar Topic:**

- 1. Sperm morphology in relation to the type of fertilization.
- 2. oogenesis in insects
- 3. oogenesis in amphibians.
- 4. synthesis of yolk in invertebrates insects and crustaceans)
- 5. synthesis of yolk in invertebrates crustaceans)
- 6. Sperm aggregation, activation, chemotaxis, maturation and capacitation in mammals
- 7. sperm egg interaction. Sperm entry into the egg egg activation
- 8. parthenogenesis
- 9. Pattern of embryonic cleavage, mechanisms of cleavage
- 10. Gastrulation morphogenic movement
- 11. Gastrulation in Amphibians
- 12. Gastrulation in Mammals
- 13. Formation of primary germ layers
- 14. Embryonic development of fish,
- 15. Embryonic development of birds,
- 16. Primary and secondary neurulation
- 17. Genetic control of segmentation Gap genes; pair rule genes.
- 18. Endocrine control of metamorphosis in insect.
- 19. Endocrine control of metamorphosis in amphibian.
- 20. Aging and senescence
- 21. Mammalian reproductive cycle
- 22. Ethical issues in cryopreservation.

### Sample questions

### Part A

- 1. In invertebrates like crustaceans, the yolk serves as a source of \_\_\_\_\_\_ for developing embryos.
- 2. Chemotaxis plays a role in guiding sperm towards the egg during fertilization. (**True/False**).
  - 3. Which of the following animals is commonly used to study gastrulation processes? a. Fruit fly (Drosophila b. Sea urchin c. Zebrafish d. All of the above
  - 4. What is the role of extraembryonic membranes in mammalian development?
  - 5. Assertion: Thyroxine plays a crucial role in the endocrine control of metamorphosis in amphibians.

**Reason:** Thyroxine stimulates the breakdown of larval tissues and promotes the development of adult structures during metamorphosis.

- a. Both assertion and reason are correct
- b. Assertion is correct and reason is wrong
- c. Both assertion and reason are wrong
- d. Assertion is wrong and the reason is correct

### Part B

- 1. Discuss vitellogenin synthesis in amphibians.
- 2. Analyze Parthenogenesis with example.
- 3. Differentiate the structure of blastula and gastrula.
- 4. Explain embryonic development in fish.
- 5. Summarize the ethical issues in cryopreservation.

### Part C

- 1. Analyse Oogenesis in insects.
- 2. Describe the steps involved in fertilization.
- 3. Discuss gastrulation in respective to amphibian.
- 4. Differentiate *Bicoid* and *Nanos* proteins.
- 5. Summarize Endocrine control of moulting and growth in crustaceans.

| Course Instructor    | Head of the Department |
|----------------------|------------------------|
| Dr. A. Punitha       | Dr. A. Shyla Suganthi  |
| Dr. S. Prakash Shoba |                        |

# Class:M.Sc.Zoology Core Lab Course: VISemester:IICourse:Lab Course in Cell Biology and Developmental BiologyCourse Code:ZP232CP1

| Course Code | т | т | р | G | Credita | Inst. | Total |     | Marks    |       |
|-------------|---|---|---|---|---------|-------|-------|-----|----------|-------|
| Course Code | L | I | r | 3 | Creans  | Hours | hrs   | CIA | External | Total |
| ZP232CP1    | • | - | 4 | - | 2       | 4     | 60    | 25  | 75       | 100   |

### **Pre-requisite**

Students should have acquired basic knowledge relevant to this lab course.

# **Learning Objectives**

- 1. To demonstrate significant cellular, molecular biological principles into practical understanding.
- 2. To gain theoretical knowledge and hands-on skills in developmental biology.

### **Course Outcomes**

| On the | On the successful completion of the course, student will be able to:                                                                      |    |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| 1.     | recall the principles of using a micrometer for cell size determination<br>and the stages of mitosis & meiosis and their characteristics. |    |  |  |  |  |
| 2.     | comprehend the steps involved in preparing blood smears and mounting the muscle fibres using microscopy.                                  | K2 |  |  |  |  |
| 3.     | develop handling - skills through the wet-lab course.                                                                                     | K3 |  |  |  |  |
| 4.     | interpret observations & make connections between reproductive processes and the ecological context of the organisms studied              | K4 |  |  |  |  |
| 5.     | evaluate and compare different developmental stages in chick embryos.                                                                     | К5 |  |  |  |  |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

# **Teaching plan with Modules**

Total hours 30 (Including instructions, practical, assessments)

| Units | Contents                                                                              | Hours | Cognitive          | Pedagogy             | Assessment                                   |
|-------|---------------------------------------------------------------------------------------|-------|--------------------|----------------------|----------------------------------------------|
|       |                                                                                       |       | Level              |                      |                                              |
| 1     | Determination of cell size                                                            | 2     | K3 (Ap)<br>K4 (An) | Hands on activity    | Calculate the cell size                      |
| 2     | Identification of Mitotic stages<br>in onion root tips.<br>Dr. S. Prakash Shoba       | 2     | K3 (Ap)<br>K4 (An) | Hands on<br>activity | Identify the<br>mitotic stages               |
| 3     | Identification of various stages<br>of meiosis in the testes of<br>grasshopper.       | 2     | K3 (Ap)<br>K4 (An) | Hands on<br>activity | Identify the<br>meiotic<br>stages            |
| 4     | Observation of polytene<br>chromosome in salivary gland<br>cells of Chironomus larva. | 2     | K3 (Ap)<br>K4 (An) | Hands on<br>activity | Identification<br>of polytene<br>chromosomes |

| 5      | Detection of sex chromatin in squamous epithelium.                                                         | 2  | K3 (Ap)<br>K4 (An) | Hands on<br>activity | Identification<br>of squamous<br>epithelium    |
|--------|------------------------------------------------------------------------------------------------------------|----|--------------------|----------------------|------------------------------------------------|
| 6      | Identification of blood cells in<br>the haemolymph of the<br>cockroach.                                    | 2  | K3 (Ap)<br>K4 (An) | Hands on<br>activity | Identification<br>of blood cells               |
| 7      | Identification of blood cells in human blood.                                                              | 2  | K3 (Ap)<br>K4 (An) | Hands on<br>activity | Identification<br>of blood cells               |
| 8      | Mounting of the coxal striated muscle fibers of cockroach.                                                 | 2  | K3 (Ap)<br>K4 (An) | Hands on<br>activity | Identification<br>of striated<br>muscle fibres |
| 9      | Observation of adipocytes - fat body of cockroach.                                                         | 2  | K3 (Ap)<br>K4 (An) | Hands on activity    | Identification of adipocytes                   |
| 10     | Isolation of total RNA from<br>bacterial cells/ tissues.<br>(Demonstration)                                | 2  | K1 (R )            | Virtual<br>Learning  | Isolation of<br>total RNA                      |
| Spotte | rs                                                                                                         | 1  | Π                  | 1                    |                                                |
|        | Spotters<br>Fluid mosaic model, Golgi<br>complex, Cancer cell,<br>Cadherins, Karyotype,<br>Haemocytometer. | 10 | K1 (R )<br>K2 (U)  | Observation          | Identify the<br>Spotters                       |

# **Developmental Biology**

| Module | Торіс                                                                                  | Hours | Cognitive<br>level | Pedagogy                                        | Assessment/<br>Evaluation                                                |  |  |  |  |
|--------|----------------------------------------------------------------------------------------|-------|--------------------|-------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| Develo | Developmental Biology (30 hrs)                                                         |       |                    |                                                 |                                                                          |  |  |  |  |
| Gamete | Gametogenesis - Observation of gametes from gonadal tissue sections                    |       |                    |                                                 |                                                                          |  |  |  |  |
| 1      | <b>Oogenesis:</b> Section through ovary of shrimp, fish, frog and mammals              | 4     | K4 (An)<br>K5 (E)  | Experiential<br>and<br>demonstratio<br>n        | Identification<br>of structures in<br>ovary                              |  |  |  |  |
| 2      | <b>Spermatogenesis</b> : Section through testis of shrimp, fish, calottes and mammals. | 4     | K4 (An)<br>K5 (E)  | Hands-on<br>Demonstratio<br>n                   | Dissection,<br>Report in<br>Observation<br>Note, Practical<br>Assessment |  |  |  |  |
| 3      | Fertilization:Inducedspawning in fish.                                                 | 4     | K4 (An)<br>K5 (E)  | Step-by-step<br>guidance,<br>Visual<br>learning | Demonstration                                                            |  |  |  |  |
| 4      | <b>Embryogenesis</b> : Observation and whole mount preparation of                      | 4     | K4 (An)<br>K5 (E)  | Experiential learning,                          | Mounted specimen,                                                        |  |  |  |  |

|   | <ul> <li>the</li> <li>I. Chick blastoderm - 18 hours<br/>of development</li> <li>II. Chick embryonic stage - 24<br/>hours of development</li> <li>II. Chick embryonic stage - 48<br/>hours of development</li> <li>V. Chick embryonic stage - 72<br/>hours of development</li> <li>V. Chick embryonic stage - 96<br/>hours of development</li> </ul> |   |                   | Inquiry-based<br>investigation,                              | report in<br>observation<br>note.                |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------|--------------------------------------------------------------|--------------------------------------------------|
| 5 | Histological observation:<br>Section through various<br>developmental stages in chick<br>embryo                                                                                                                                                                                                                                                      | 3 | K4 (An)<br>K5 (E) | Observation<br>and hands-on<br>identification                | Mounting of<br>specimen<br>Report,               |
| 6 | <b>Experimental Embryology:</b><br>Regeneration in Frog Tadpoles<br>- Blastema formation.                                                                                                                                                                                                                                                            | 3 | K4 (An)<br>K5 (E) | Experiential<br>learning,<br>Inquiry-based<br>investigation, | Mounting of<br>specimen<br>Report<br>submission  |
| 7 | Metamorphosis:Demonstrationofmetamorphosis in Frog Tadpoleusing exogenous Iodine                                                                                                                                                                                                                                                                     | 4 | K4 (An)<br>K5 (E) | Experiential<br>learning,<br>Inquiry-based<br>investigation, | Mounting of<br>specimen<br>Report<br>submission  |
| 8 | Cryopreservation:<br>Demonstration of<br>cryopreservation of gametes of<br>fin fish/shell fish                                                                                                                                                                                                                                                       | 4 | K4 (An)<br>K5 (E) | Experiential<br>learning,<br>Inquiry-based<br>investigation, | Dissection,<br>Report in<br>Observation<br>Note, |

| Course Instructor     | Head of the Department |
|-----------------------|------------------------|
| Dr. Venci Candida, X. | Dr. A. Shyla Suganthi  |
| Dr. S. Prakash Shoba  |                        |

| Class               | : I M. Sc. Zoology    | <b>Elective III - (a)</b> |
|---------------------|-----------------------|---------------------------|
| Title of the Course | : Economic Entomology |                           |
| Semester            | : II                  |                           |
| <b>Course Code</b>  | : ZP232EC1            |                           |

| Course Code     | т | т | р | G | Credits Inst Hours | Total       |       | Marks |          |       |
|-----------------|---|---|---|---|--------------------|-------------|-------|-------|----------|-------|
| Course Coue     | L | I | Г | 3 | Creans             | Inst. Hours | Hours | CIA   | External | Total |
| <b>ZP232EC1</b> | 2 | 1 |   | 1 | 3                  | 4           | 60    | 25    | 75       | 100   |

# **Learning Objectives**

- 1. To develop the ability to identify and classify insects into major orders and understand their economic importance.
- 2. To acquire practical skills in observing and documenting the life cycles and behaviors of beneficial and destructive insects.

| СО | Upon completion of this course the students will be able to:                                                                                        | CL |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1  | recall the features of various insect orders and describe the life history, social organization, and management practices of insects.               | K1 |
| 2  | understand the biology of insects associated with medical, household, and veterinary/public health importance.                                      | K2 |
| 3  | apply their knowledge of pest biology to assess damage and beneficial insect life cycles to practical rearing.                                      | K3 |
| 4  | analyze the causes of pest outbreaks and the economic threshold levels.                                                                             | K4 |
| 5  | synthesize knowledge to propose effective control measures for vectors associated with medical, household, and veterinary/public health importance. | K5 |

### **Course Outcomes**

# Teaching plan with modules

# Total Contact Hours: 60 (Including lectures, assignments and tests)

| Modu   | Торіс                                                    | Hou | Cognitive | Pedagogy          | Assessment       |  |  |  |  |  |
|--------|----------------------------------------------------------|-----|-----------|-------------------|------------------|--|--|--|--|--|
| le     |                                                          | rs  | level     |                   |                  |  |  |  |  |  |
| Unit I | Unit I: Overview of insects and insect taxonomy (12 hrs) |     |           |                   |                  |  |  |  |  |  |
| 1      | Insects and their                                        | 3   | K2 (U)    | Lecture and Group | Slip Test MCO    |  |  |  |  |  |
|        | biological success                                       |     |           | discussion        | Sup rest, meQ    |  |  |  |  |  |
| 2      | Salient features of Class                                | 3   | K2 (U)    | Interactive PPT,  | Seminar          |  |  |  |  |  |
|        | Insecta and orders                                       |     |           | Peer Teaching     | Semmar           |  |  |  |  |  |
| 3      | Basic concepts in Insect                                 | 3   | K2 (U),   | Flipped learning, | Class Test, Oral |  |  |  |  |  |
|        | Taxonomy                                                 |     | K3        | Collaborative     | Test, Essay      |  |  |  |  |  |
|        |                                                          |     | (AP)      | teaching          | writing,         |  |  |  |  |  |

| 4                                    | Classification of           | 3                         | K3          | Interactive PPT,                      | Class Note                              |  |  |  |
|--------------------------------------|-----------------------------|---------------------------|-------------|---------------------------------------|-----------------------------------------|--|--|--|
|                                      | insects                     |                           | (AP)        | Group Discussion                      |                                         |  |  |  |
| Unit II: Beneficial insects (12 hrs) |                             |                           |             |                                       |                                         |  |  |  |
| 1                                    | Silkworms: Types,           | 3                         | K1 (R),     | Brainstorming, PPT                    | Mind Map                                |  |  |  |
|                                      | life cycle, diseases,       |                           | K2 (U)      | (GC)                                  | Summary                                 |  |  |  |
|                                      | rearing methods             |                           |             |                                       | Writing                                 |  |  |  |
| 2                                    | Honey bees: Types,          | 3                         | K2          | Inquiry based                         | Short Essay,                            |  |  |  |
|                                      | life history, social        |                           | (U), K3     | Learning, Peer-                       | Online                                  |  |  |  |
|                                      | organization                |                           | (Ap)        | instruction                           | assignment                              |  |  |  |
|                                      |                             |                           |             |                                       | Seminar                                 |  |  |  |
| 3                                    | Lac insects: Life           | 3                         | K2 (U)      | Online Videos,                        | MCO, Rapid                              |  |  |  |
|                                      | history, cultivation        |                           |             | Illustrative lecture,                 | Fire and Slip                           |  |  |  |
|                                      |                             |                           |             | Case Study based                      | Test                                    |  |  |  |
| 4                                    |                             | 2                         |             | discussion, Quiz                      | <b>X</b> 7 <b>1 1</b> <i>i i i</i>      |  |  |  |
| 4                                    | Pollinators, predators,     | 3                         | $K^{2}(U),$ | Interactive Lecture,                  | Vocabulary test,                        |  |  |  |
| TI                                   | parasitoids, scavengers     | <b>) h</b> )              | K3 Ap)      | Reasoning                             | Seminar                                 |  |  |  |
|                                      | II: Destructive insects (12 | $\frac{2 \text{ nrs}}{2}$ |             | Callabarativa                         |                                         |  |  |  |
| 1                                    | Insect pests: Definition,   | 3                         | K2(0)       |                                       | Open Book Test                          |  |  |  |
|                                      | damage to plants by         |                           |             | Croup discussion                      | - Quiz, Seminar                         |  |  |  |
|                                      | inspots                     |                           |             | Droup discussion,<br>Poviow of insoct |                                         |  |  |  |
|                                      | Insects                     |                           |             | nests                                 |                                         |  |  |  |
| 2                                    | Causes of pest outbreak     | 3                         | К3          | Reflective thinking                   | Slip test                               |  |  |  |
| _                                    | Economic threshold          | 5                         | (Ap)        | Peer teaching                         | Seminar                                 |  |  |  |
|                                      | level                       |                           | (           | 1 001 00000008                        | ~ • • • • • • • • • • • • • • • • • • • |  |  |  |
| 3                                    | Biology of the insect       | 3                         | K4          | Illustrative lecture,                 | Class Note,                             |  |  |  |
|                                      | pests                       |                           | (An)        | PPT, WordPress                        | Seminar                                 |  |  |  |
| 4                                    | Pests of paddy, cotton,     | 3                         | K4          | Blended learning,                     | seminar,                                |  |  |  |
|                                      | sugarcane, vegetables,      |                           | (An)        | Lecture,                              | preparation of                          |  |  |  |
|                                      | etc.                        |                           |             | Demonstration                         | question bank                           |  |  |  |
| Unit I                               | V: Pest management/Cor      | ntrol st                  | rategies (1 | 2 hrs)                                |                                         |  |  |  |
| 1                                    | Methods and principles      | 3                         | K3          | Demonstrative                         | Online                                  |  |  |  |
|                                      | of pest control             |                           | (Ap)        | Lecture, PPT (GC),                    | assignment. Slip                        |  |  |  |
|                                      |                             |                           |             | Case study-based                      | Test. Seminar                           |  |  |  |
|                                      |                             | -                         | /           | Learning.                             | ,                                       |  |  |  |
| 2                                    | Natural control,            | 2                         | K4          | Inquiry based                         |                                         |  |  |  |
|                                      | Artificial control          |                           | (An)        | Learning,                             |                                         |  |  |  |
|                                      |                             |                           |             | PPT (GC), Peer                        |                                         |  |  |  |
|                                      |                             |                           |             | teaching,                             |                                         |  |  |  |
|                                      |                             |                           | V.O         | Unline Video links                    | TT                                      |  |  |  |
| 3                                    | Merits and demerits of      | 2                         | $K^2$       | Illustrative lecture,                 | Home                                    |  |  |  |
|                                      | pest control methods        |                           | (U), K5     | Keffective thinking                   | Assignment                              |  |  |  |
|                                      |                             |                           | (E)         |                                       |                                         |  |  |  |

| 4      | Development and uses<br>of pest resistant plant<br>varieties | 3 | K3<br>(AP)            | Brainstorming,<br>PPT, Peer teaching                | Short test, Quiz,<br>Slip Test        |
|--------|--------------------------------------------------------------|---|-----------------------|-----------------------------------------------------|---------------------------------------|
| 5      | Integrated pest<br>management: Concepts<br>and practice      | 2 | K1 (R),<br>K3<br>(Ap) | Illustrative lecture,<br>Group Discussion           | Discussion,<br>Seminar                |
| Unit V | V: Vector biology (12 hrs)                                   | ) |                       |                                                     |                                       |
| 1      | Stable fly, cattle fly,<br>Fowl-shaft louse,<br>chicken flea | 3 | K1 (R),<br>K3<br>(Ap) | Illustrative Lecture,<br>presentation PPT-<br>Video | Online<br>assignment –<br>Peer Review |
| 2      | Insects associated with medical importance                   | 3 | K4<br>(An)            | Illustration, Flipped<br>learning, Ms-PPT           | Class Notes,<br>Short Essay           |
| 3      | Insects associated with household insects                    | 3 | K2 (U),<br>K3<br>(Ap) | Illustrative Lecture,<br>Peer teaching              | Summary<br>Writing, Oral<br>Test      |
| 4      | Vectors of veterinary<br>and public health<br>importance     | 3 | K5 (E)                | Brainstorming, PPT,<br>Interactive Lecture          | MCQ<br>Seminar<br>Short answers       |

**Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development Activity related to Skill Devt.:** Debate on "The most beneficial insect : Silk Worm or Honey Bee?

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human

Values/Environment Sustainability/ Gender Equity): Environment Sustainability

Activity: Field visit

### Activities related to Cross Cutting Issues : -

Assignment : 1. Flow Chart: Classification of insects

Assignment: 2. Mind Map: Classification of pollinators

# **Seminar Topics:**

- 1. Salient features of Class Insecta and orders
- 2. Classification of insects
- 3. Silkworms: Types,
- 4. Honey Bee-Social Organisation
- 5. Lac insects: Life history,
- 6. Pollinators, predators,
- 7. Parasitoids, scavengers
- 8. Economic threshold level
- 9. Biology of the insect pests
- 10. Pests of paddy, cotton,
- 11. Pests of sugarcane, vegetables
- 12. Principles of pest control
- 13. Natural control, Artificial control
- 14. Merits and demerits of pest control methods

- 15. Development of pest resistant plant varieties
- 16. Integrated pest management
- 17. Stable fly, cattle fly,
- 18. Fowl-shaft louse, chicken flea
- 19. Vectors of veterinary animals

### ii) Assignment Topics and Type:

Flow Chart: Classification of insects Mind Map: Classification of pollinators

### Sample questions:

### Section A

What are the key factors contributing to the biological success of insects?

- A) Warm-blooded metabolism
- B) Exoskeleton and flight capabilities
- C) High reproductive potential
- D) Social organization
- 2. Define the term "biological success" in the context of insects and provide two examples.
- 3. Match the following insect orders with their salient features:
  - A) A) Coleoptera i. Complete metamorphosis
  - B) B) Lepidoptera ii. Forewings modified into hard elytra
  - C) C) Diptera

- iii. Two pairs of membranous wings
- D) D) Hymenoptera IV. Stinging structures in females
- 4. Fill in the blank: Silkworms undergo \_\_\_\_\_\_ metamorphosis.
- 5. Match the following:

ii. Artificial control

- i. Pollinators A. Honey bees
- ii. Predators B. Ladybugs
- iii. Parasitoids C. Wasps
- iv. Scavengers D. Dung beetles
- 6. Fill in the blank: Insects causing damage to vegetables are classified as \_\_\_\_\_ pests.
- 7. Match the following pest control methods with their characteristics:
- i. Natural control A. Use of chemical pesticides
  - B. Predators and parasites

### C. Crop rotation

- 8. Discuss one merit and one demerit of using pest-resistant plant varieties.
- 9. Define integrated pest management in one sentence.

10. Fill in the blank: Insect pests cause damage to crops by \_\_\_\_\_.

### Section B

Describe two adaptations that contribute to the success of insects in diverse environments.

- 1. Explain the concept of "metamorphosis" and its significance in the life cycle of insects.
- 2. Discuss the economic importance of insects belonging to the order Hymenoptera.
- 3. Explain how the structure of elytra in Coleoptera is related to their ecological roles.
- 4. Compare and contrast the Linnaean and cladistic systems of insect classification.

- 5. Provide examples of two insect species that were initially misclassified but later corrected through molecular analysis.
- 6. Illustrate the hierarchical levels used in classifying insects, giving examples at each level.
- 7. Discuss the challenges associated with classifying insects solely based on morphological characteristics.
- 8. Evaluate the role of honey bees in pollination and its impact on crop production.
- 9. Compare the life history and cultivation methods of lac insects with silkworms.

### Section C

- 1. Analyze the ecological roles of scavenger insects in various ecosystems.
- 2. Discuss the impact of social organization on the survival and reproduction of honey bees.
- 3. Evaluate the economic significance of insects belonging to the order Diptera in agriculture.
- 4. Explore the evolutionary advantages of having two pairs of wings in insects.
- 5. Develop an argument supporting the use of molecular data over morphological characteristics in modern insect taxonomy.
- 6. Construct a flowchart illustrating the process of identifying an unknown insect species using taxonomic keys.
- 7. Examine the role of molecular techniques in resolving taxonomic uncertainties within insect orders.
- 8. Justify the importance of understanding insect classification for effective pest management strategies.
- 9. Propose an integrated pest management plan for a crop of your choice, emphasizing the use of beneficial insects.
- 10. Evaluate the impact of insect pollinators on biodiversity and ecosystem stability.

| Course Instructor      | Head of the Department |
|------------------------|------------------------|
| Dr. Jeni Chandar Padua | Dr. A. Shyla Suganthi  |
| Dr. A. Shyla Suganthi  |                        |

| Class               | : I M. Sc. Zoology     | <b>Elective Course IV (a)</b> |
|---------------------|------------------------|-------------------------------|
| Title of the Course | : Research Methodology |                               |
| Semester            | : II                   |                               |
| <b>Course Code</b>  | : ZP232EC4             |                               |

| Course Code     | ТТ |   | D | G | Cradita | Inst. | Total |     | Marks    |       |
|-----------------|----|---|---|---|---------|-------|-------|-----|----------|-------|
| Course Code     | L  | I | r | 3 | Creans  | Hours | hours | CIA | External | Total |
| <b>ZP232EC4</b> | 2  | 1 |   | 1 | 3       | 4     | 60    | 25  | 75       | 100   |

### **Pre-requisite**

Students should have a good understanding of the fundamental methods used in experimental biology.

# Learning Objectives

- 1. To impart knowledge on the basic principle, methodologies and applications of instruments in biological sciences.
- 2. To develop essential research skills to operate and apply various biological science instruments.

|        | Course Outcomes                                                                                                                                                                                                                                                                                               |          |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CO     | Upon completion of this course the students will be able to:                                                                                                                                                                                                                                                  | CL       |
| 1      | recall the principles of laboratory equipment, research techniques and the process of scientific report writing.                                                                                                                                                                                              | K1       |
| 2      | explain the procedures involved in operating laboratory equipment, applying research techniques, and engaging in scientific writing.                                                                                                                                                                          | K2       |
| 3      | apply biological techniques in laboratory settings to gain practical experience in research processes and scientific report writing.                                                                                                                                                                          | K3       |
| 4      | analyze the principles and techniques to make wise choices in experimental design, data interpretation, and research reports in biological sciences.                                                                                                                                                          | K4       |
| 5      | evaluate the quality, reliability, and limitations of data generated by research techniques and obtained from literature for specific research goals.                                                                                                                                                         | K5       |
| 4<br>5 | analyze the principles and techniques to make wise choices in experimental design, data interpretation, and research reports in biological sciences.<br>evaluate the quality, reliability, and limitations of data generated by research techniques and obtained from literature for specific research goals. | K4<br>K5 |

### **Course Outcomes**

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

# **Teaching Plan with Modules Total Hours 60 (Incl. Assignment & Test)**

| Mod  | 1                                       | Topic    | Hour  | Cognitiv | Pedagogy          | Assessment/    |  |  |  |
|------|-----------------------------------------|----------|-------|----------|-------------------|----------------|--|--|--|
| ule  |                                         |          | S     | e level  |                   | Evaluation     |  |  |  |
| Unit | Unit I: Analytical Techniques (12 Hrs.) |          |       |          |                   |                |  |  |  |
| 1    | Good                                    | laborato | ory 3 | K1 (R),  | Brainstorming,    | Experiment     |  |  |  |
|      | practice                                | (GLP), p | рН    | K2 (U),  | Inquiry based     | – find the pH  |  |  |  |
|      | meter                                   |          |       | K3 (Ap)  | learning,         | of the sample, |  |  |  |
|      |                                         |          |       |          | Performance based |                |  |  |  |
|      |                                         |          |       |          | learning          | Seminar        |  |  |  |

| 2 3  | Colorimeter,<br>Spectrophotometer -<br>UV-Visible, Atomic<br>Absorption<br>Flame photometer                                   | 5 2 2     | K1 (R),<br>K2 (U),<br>K3 Ap),<br>K4 An),<br>K5 (E)<br>K1 (R),<br>K2 (U),<br>K4 (An) | Illustrative lecture,<br>Reflective<br>Thinking,<br>Performance based<br>learning.<br>Reasoning,<br>Demonstrative<br>lecture | Flow chart,<br>Experiment –<br>find the OD<br>of the sample,<br>Seminar<br>Slip Test,<br>Flow chart |
|------|-------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| -    | TTIK spectrometry                                                                                                             |           | K1 (K),<br>K2 (U),<br>K4 (An)                                                       | Demonstration,<br>YouTube Videos                                                                                             | Preparation of MCOs                                                                                 |
| Unif | II: Microscopy & Micro                                                                                                        | technia   | ues (12 Hrs                                                                         |                                                                                                                              | megs                                                                                                |
| 1    | Principle, working<br>mechanism and<br>applications of Bright<br>field, Phase contrast<br>microscope.                         | 4         | K1 (R),<br>K2 (U),<br>K3 (Ap)<br>K4 (An)<br>K5 (E)                                  | Peer teaching, Ms-<br>PPT Video                                                                                              | Oral test,<br>Seminar,<br>Preparation<br>of study<br>materials                                      |
| 2    | Principle, working<br>mechanism and<br>applications of<br>Electron, Confocal<br>Microscope and<br>Atomic force<br>microscope. | 3         | K1 (R),<br>K2 (U),<br>K4 (An)                                                       | Blended learning,<br>Illustrative lecture,<br>YouTube Videos                                                                 | Illustrative<br>Diagrams,<br>Online<br>Assignment                                                   |
| 3    | Histology – Fixation,<br>Sectioning and<br>Staining.                                                                          | 2         | K1 (R),<br>K2 (U),<br>K3 (Ap)<br>K4 (An)                                            | Ms-PPT, Prezi<br>video, Peer<br>teaching                                                                                     | Quiz,<br>Experiment –<br>staining &<br>presentations                                                |
| 4    | Histochemistry for<br>carbohydrates, proteins,<br>lipids.                                                                     | 3         | K1 (R),<br>K2 (U),<br>K3 (Ap)<br>K5 (E)                                             | Brainstorming,<br>Reasoning,<br>Demonstrations,<br>Quizlet                                                                   | Class test -<br>MCQ,<br>Preparation of<br>Questions                                                 |
| Unit | III: Separation Techniq                                                                                                       | ues (12 I | Hrs.)                                                                               |                                                                                                                              |                                                                                                     |
| 1    | Centrifugation –<br>Differential and<br>Density gradient, types<br>and applications of<br>Centrifuges.                        | 3         | K1 (R),<br>K2 (U),<br>K3 (Ap)                                                       | Open ended<br>questioning<br>Demonstration<br>Video lecture                                                                  | Mind map<br>Seminar                                                                                 |
| 2    | Chromatography -<br>Principle, HPLC and<br>Affinity<br>chromatography.                                                        | 3         | K1 (R),<br>K2 (U),<br>K3 (Ap)<br>K4 (An)                                            | Demonstration, PPT                                                                                                           | Seminar                                                                                             |
| 3    | GAS Chromatography<br>Mass Spectrometry.                                                                                      | 2         | K1 (R),<br>K2 (U),                                                                  | PPT                                                                                                                          | Oral questioning                                                                                    |

|      |                                |          | K3 (Ap) |                     |               |
|------|--------------------------------|----------|---------|---------------------|---------------|
|      |                                |          | K4 (An) |                     |               |
| 4    | Electrophoresis -              | 4        | K1 (R), | Virtual demo of     |               |
|      | Principle, Agarose gel         |          | K2 (U), | electrophoresis,    | Sominor       |
|      | electrophoresis and            |          | K3 (Ap) | Interactive lecture | Seminai       |
|      | PAGE.                          |          | K4 (An) |                     |               |
| Unit | <b>IV: Tracer techniques</b> ( | 12 Hrs.) | -       |                     |               |
| 1    | Radioactive                    | 2        | K1 (R), | Discussion on       | Quiz using    |
|      | isotopes.                      |          | K2 (U), | radioisotopes       | Mentimeter    |
|      |                                |          | K3 (Ap) |                     |               |
|      |                                |          | K4 (An) |                     |               |
| 2    | Radiolabelling.                | 2        | K1 (R), | Lecture             |               |
|      |                                |          | K2 (U), |                     | Slip tost     |
|      |                                |          | K3 (Ap) |                     | Shp test      |
|      |                                |          | K4 (An) |                     |               |
| 3    | Radiocarbon dating.            | 2        | K1 (R), | Lecture-video       |               |
|      |                                |          | K2 (U), |                     | Assistant     |
|      |                                |          | K3 (Ap) |                     | Assignment    |
|      |                                |          | K4 (An) |                     |               |
| 4    | Radioactivity counters -       | 6        | K1 (R), | Lecture – PPT,      | Quiz          |
|      | Scintillation Counter,         |          | K2 (U), | Demonstration,      | Short test    |
|      | Geiger Muller Counter.         |          | K3 (Ap) | Experiential        |               |
|      |                                |          | K4 (An) | learning            |               |
| Unit | t V: Scientific Writing (12    | 2 Hrs.)  |         |                     |               |
| 1    | Essential steps in             | 3        | K1 (R), | Prepare a review    | Assignment:   |
|      | research, Review of            |          | K4 (An) | of an article -     | Write a       |
|      | literature, Literature         |          | K5 (E)  | lecture             | research      |
|      | citation.                      |          |         |                     | proposal      |
| 2    | Research report –              | 3        | K1 (R), | Preparation of a    | Assignment:   |
|      | Abstract, Tables -             |          | K4 (An) | report using MS-    | Write an      |
|      | Figures - Formatting           |          | K5 (E)  | word                | article for a |
|      | and typing.                    |          |         |                     | journal       |
|      |                                |          |         |                     | without       |
|      |                                |          |         |                     | plagiarism    |
| 3    | Open access                    | 2        | K1 (R), | Brainstorming,      |               |
|      | journals, Predatory            |          | K3 (Ap) | Interactive         | MCQ, Peer     |
|      | journals.                      |          | K4 (An) | Lecture, Study      | Discussion    |
|      |                                |          | K5 (E)  | with examples       |               |
| 4    | Impact factor, Citation        | 4        | K4 (An) | Illustrative        | Group         |
|      | index, H-index,                |          | K5 (E)  | lecture, Theme      | Discussion    |
|      | Plagiarism, Copy Right.        |          | K3 (Ap) | based Interaction   |               |

- 1. Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development
- 2. Activities for Skill development
- i) Operation of pH meter, Colorimeter, UV-Vis Spectrophotometer,

Microscope, Centrifuge.

ii) Group discussion: Open access journals and Predatory journals

iii) Seminar: (Invitation, Study material with reference, PPT/ Video, questions, Attendance)

- Principle, Working mechanism and applications of pH meter
- Principle, Working mechanism and applications of Colorimeter
- Principle, Working mechanism and applications of Bright field microscope
- Principle, Working mechanism and applications of Phase contrast microscope
- Principle, Working mechanism and applications of Electron microscope
- Fixation and Fixatives
- Sectioning and Microtome
- Staining and Stains
- Types of centrifuges
- Affinity chromatography
- Agarose gel electrophoresis
- Geiger Muller Counter
- Essential steps in research
- 2. Course Focusing on Cross Cutting Issues (Professional Ethics/ Human

Values/ Environment Sustainability/ Gender Equity): Professional ethics

# Activities related to Cross Cutting Issues: Professional ethics

i) Assignment: Prepare a research review with less than 20% plagiarism.

ii) Group discussion: Plagiarism and Copyright

# Sample questions

# Part A (1 mark)

1. Beer Lambert's law gives the relation between which of the following?

a) Reflection of light and concentration

- b) Scattered light radiation and concentration
- c) Light energy absorption and concentration
- d) Heat energy absorption and concentration

2. Assertion (A): Atomic Absorption Spectroscopy is an analytical technique used to determine how much of certain elements are in a sample.

**Reason** (**R**): It uses the principle that atoms (and ions) can absorb light at a specific, unique wavelength.

a) Statement 'A' is correct and 'R' is the correct explanation of 'A'.

b) Statement 'A' and 'R' are wrong

c) Statement 'A' is correct, but 'R' is wrong.

- d) Statement 'A' is wrong and 'R' is correct.
- 3. Which part of the compound microscope helps in gathering and focusing light rays on the specimen to be viewed?
- 4. Paraffin embedded sections of tissues are cut by Laser. (State True or False)
- 5. Which of the following statements is correct?
  - i) Centrifugation works on the principle of sedimentation.
  - ii) Large particles settle faster.

iii) The unit is rpm.

- iv) Optimum pH is required for centrifugation.
  - a) i, ii and iii b) i, iii and iv c) ii, iii and iv d) All of the above
- 6. HPLC works on the principle of —-----.
- 7. Which of the following techniques is used to identify the molecular weight of the sample?a) pH b) Electrophoresis c) Affinity chromatography d) GM counter
- 8. Kanyakumari is prone to radiation problems. Name an instrument which can be used to identify the radiation.
- 9. A title must be first fixed before deciding the area of research. (State True or False)

# 10. Match the following

Impact factor - number of publications for which an author has been cited

Citation index - unethical practice of an author

H-index - relative importance of a journal

Plagiarism - legal protection provided to the author

### Part B (6 marks)

- 1. Appraise good laboratory practice.
- 2. Evaluate FTIR spectrometry.
- 3. Explain the structure and function of the confocal microscope.
- 4. Elucidate the histochemistry for carbohydrates.
- 5. Differentiate density from differential centrifugation.
- 6. Clarify the principle of centrifugation.
- 7. Comment on the principle and procedure of affinity chromatography.
- 8. How is the molecular weight of DNA identified using AGE?
- 9. Highlight on the methods of review of literature.
- 10. Discuss Open access journals and Predatory journals.

# Part C (12 marks)

- 1. Inspect the principle, instrumentation and application of pH meter.
- 2. Analyse the role of the Flame photometer in the biological field.
- 3. Illustrate the principle and working mechanism of Electron microscope.
- 4. Classify stains and describe the staining of histological specimens.
- 5. Discuss the types of centrifuges in view of its application.
- 6. A researcher would like to separate a protein from a tissue. Which method would give 99% purity? Discuss the method.
- 7. Discuss the protocol applied in PAGE.
- 8. Explain the principle and working procedure of GCMS.
- 9. Discuss the essential steps in research.
- 10. Analyse the importance of i) Impact factor ii) Citation index iii) H-index

| Course Instructor              | Head of the Department |
|--------------------------------|------------------------|
| Dr. S. Mary Mettilda Bai       | Dr. A. Shyla Suganthi  |
| Dr. J. Vinoliya Josephine Mary |                        |

# Class: I M.Sc. ZoologyElective Lab Course IITitle of the Course: Economic Entomology & Research MethodologySemester: IICourse Code: ZP232EP1

| Course Code | т | т | р | G | Crodits | Inst Hours | Inst Hours Total Marks |     |          |       |  |
|-------------|---|---|---|---|---------|------------|------------------------|-----|----------|-------|--|
| Course Coue | L |   | ľ | 3 | Creuits | mst. mours | Hours                  | CIA | External | Total |  |
| ZP232EP1    | - | - | 2 |   | 3       | 2          | 30                     | 25  | 75       | 100   |  |

# **Pre-requisite:**

Students should have knowledge relevant to economic entomology & research methodology. Learning Objectives:

- 1. To equip students with skills in both the practical aspects of economic entomology and the essential research methodology.
- 2. To acquire skills necessary for conducting meaningful studies in these field.

|            | Course Outcomes                                                                                                                                 |    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----|
| On the suc | cessful completion of the course, student will be able to:                                                                                      |    |
| CO1        | comprehend the principles and concepts of economic entomology &                                                                                 | K1 |
| CO2        | summarize the economic impact of insect pests.<br>explain the principles behind different ttechniques & research designs                        | K2 |
| CO3        | utilize appropriate methodologies to collect and analyze data of insects<br>and apply statistical techniques to interpret and draw conclusions. | K3 |
| CO4        | interpret practical solutions to address challenges in economic<br>entomology, incorporating research methodology principles.                   | K4 |
| CO5        | evaluate research methodologies and experimental designs used in economic entomology studies.                                                   | К5 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

# Teaching plan with Modules

Total hours 30 (Including instructions, practical, assessments)

| I Init | Modu | Торіс Н                 |      | Cognitive | Dadagagy         | Assessment/          |
|--------|------|-------------------------|------|-----------|------------------|----------------------|
| Umt    | le   |                         |      | level     | redagogy         | Evaluation           |
| Ι      | Econ | omic Entomology (15 ho  | urs) |           |                  |                      |
|        | 1    | Collect and identify    | 4    | K1 (R),   | Experiential and | Field visit –        |
|        |      | common insect pests in  |      | K3 (Ap)   | Collaborative    | Collection,          |
|        |      | your local environment. |      | K4 (An)   | Learning         | Identification Test, |
|        |      |                         |      | K5 (E)    |                  | Group Presentation.  |
|        | 2    | Dissection: Silk glands | 2    | K1 (R),   | Hands-on         | Dissection, Report   |
|        |      | of silkworm.            |      | K2 (U),   | Demonstration,   | in Observation       |
|        |      |                         |      |           | Guided inquiry   | Note, Assessment     |
|        | 3    | Mounting: Mouth parts   | 2    | K2 (U),   | Step-by-step     | Assessment, Oral     |
|        |      | of honey bee. Mosquito. |      | K4 An)    | guidance, Visual | inquiry              |
|        |      |                         |      |           | learning         |                      |
|        | 4    | Photo-tactic behaviour  | 2    | K2 (U),   | Experiential     | Lab report in        |
|        |      | of insect pests.        |      | K3 (Ap)   | learning,        | observation note,    |

|                             |        |                           |      | K4 (An)                              | Inquiry-based   | presentation of     |  |  |
|-----------------------------|--------|---------------------------|------|--------------------------------------|-----------------|---------------------|--|--|
|                             |        |                           |      | K5 (E)                               | investigation,  | insects.            |  |  |
|                             |        |                           |      |                                      | Collaborative   |                     |  |  |
|                             | 5      | Collection and            | 3    | <b>V</b> 1 ( <b>D</b> )              | Field research  | Collection Papart   |  |  |
|                             | 5      | Identification of insect  | 3    | KI(K),<br>K3(An)                     | Observation and | Practical           |  |  |
|                             |        | pests in the mulberry     |      | K5 (AP)<br>K5 (E)                    | bands-on        | identification test |  |  |
|                             |        | plants                    |      | $\mathbf{K} \mathbf{J} (\mathbf{L})$ | identification  | Identification test |  |  |
| Snecimen/ Snotters/ Models: |        |                           |      |                                      |                 |                     |  |  |
| ~p~                         | 6      | Silk worm: larva, pupa    | 2    | K1 (R).                              | Observation.    | Specimen Analysis.  |  |  |
|                             |        | Adult. Honey bee colony.  | -    | K2 (U).                              | Hands-on        | Spotter exercises.  |  |  |
|                             |        | Rhinoceros beetle, Red    |      | K3 (Ap)                              | Analysis and    | Diagrams in         |  |  |
|                             |        | Palm Weevil, Banana       |      | K4 (An)                              | Identification  | Observation note    |  |  |
|                             |        | Stem Weevil               |      | K5 (E)                               |                 |                     |  |  |
| II                          | Rese   | earch Methodology (15 ho  | urs) |                                      |                 |                     |  |  |
|                             | 1      | Whole mount               | 5    | K1 (R),                              | Practice with   | Slide Submission    |  |  |
|                             |        | preparation of two        |      | K2 (U),                              | Supervision &   |                     |  |  |
|                             |        | specimens.                |      | K3 (Ap)                              | Video based     |                     |  |  |
|                             |        | -                         |      | K4 (An)                              | learning        |                     |  |  |
|                             | 2      | Separation of amino       | 3    | K1 (R),                              | Hands-on        | Performance &       |  |  |
|                             |        | acids using thin layer    |      | K2 (U),                              | Training &      | Observation Note    |  |  |
|                             |        | chromatography.           |      | K3 (Ap)                              | Video based     |                     |  |  |
|                             |        |                           |      | K4 (An)                              | learning        |                     |  |  |
|                             | 3      | Sectioning and staining   | 2    | K2 (U),                              | Hands-On        | Performance         |  |  |
|                             |        | of a tissue.              |      | K3 (Ap)                              | Practice &      |                     |  |  |
|                             |        |                           |      | K4 (An)                              | Video based     |                     |  |  |
|                             |        |                           |      | K5 (E)                               | learning        |                     |  |  |
|                             | 4      | Separation of pigments    | 2    | K2 (U),                              | Demonstration   | Observation Note    |  |  |
|                             |        | by column                 |      | K3 (Ap)                              | & Video based   |                     |  |  |
|                             |        | chromatography using      |      | K4 (An)                              | learning        |                     |  |  |
|                             |        | plant extract             |      | K5 (E)                               |                 |                     |  |  |
|                             | 5      | Agarose Gel               | 2    | K3 (Ap)                              | Demonstration   | Observation Note    |  |  |
|                             |        | electrophoresis           |      | K4 (An)                              | & Video based   |                     |  |  |
|                             |        | -                         |      | K5 (E)                               | learning        |                     |  |  |
|                             | 6      | Instruments/ Charts/      | 1    | K1, K2                               | Object & Video  | Observation Note    |  |  |
|                             |        | Models:                   |      |                                      | based learning  |                     |  |  |
|                             |        | Phase contrast &          |      |                                      |                 |                     |  |  |
|                             |        | fluorescent microscope,   |      |                                      |                 |                     |  |  |
|                             |        | spectropnotometer,        |      |                                      |                 |                     |  |  |
|                             |        | HPLC, Flame               |      |                                      |                 |                     |  |  |
|                             |        | photometer, Microtome,    |      |                                      |                 |                     |  |  |
|                             |        | Electrophoretic apparatus |      |                                      |                 |                     |  |  |
| Cou                         | ırse I | nstructor                 |      | Head of                              | the Department  |                     |  |  |
| Dr. S.                      | . Mary | v Mettilda Bai            |      | Dr. A. S                             | hyla Suganthi   |                     |  |  |
| Dr. Je                      | eni Ch | andar Padua               |      |                                      |                 |                     |  |  |

| Class              |      | : I ] | M.S  | Sc. | Zoology |       | Skill Enhancement Course I |     |          |       |
|--------------------|------|-------|------|-----|---------|-------|----------------------------|-----|----------|-------|
| Title of the Cour  | se : | : Po  | oult | ry  | Farming | 5     |                            |     |          |       |
| Semester           | :    | II    |      |     |         |       |                            |     |          |       |
| <b>Course Code</b> |      | : Z   | P23  | 2S  | E1      |       |                            |     |          |       |
| Course Code        | т    | т     | р    | G   | Credita | Inst. | Total                      |     | Marks    |       |
| Course Code        | L    | 1     | r    | 3   | Creatts | Hours | hours                      | CIA | External | Total |
| ZP232SE1           | 2    | 1     |      | 1   | 2       | 4     | 60                         | 25  | 75       | 100   |

### **Pre-requisite**

Students should be aware of economic and cultural importance of Poultry farming.

# **Learning Objectives:**

- To know the needs for Poultry farming and the status of India in global market.
- Acquire the skills to apply the techniques and practices needed or Poultry farming.

### **Course Outcomes**

| СО | Upon completion of this course, the students will be able to:                                                    | CL |
|----|------------------------------------------------------------------------------------------------------------------|----|
| 1  | recall the key components of a poultry house to ensure optimal living conditions for poultry.                    | K1 |
| 2  | explain the different methods of rearing and the significance of proper vaccination programs in poultry farming. | K2 |
| 3  | develop a practical feeding plan for a specific stage of poultry considering their nutritional requirements.     | K3 |
| 4  | analyze the impact of different housing systems on poultry welfare<br>and productivity,                          | K4 |
| 5  | critically assess the effectiveness of poultry feeds and the disease control measures in poultry farming,        | K5 |
| 6  | design a comprehensive waste management and recycling system for poultry farms.                                  | K6 |

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6-Creative

# **Teaching plan with Modules**

# Total Contact hours: 60 (Including lectures, assignments and tests)

| Mod    |                         | Hour                     | Cognitiv | Dodogogy             | Assessment/    |
|--------|-------------------------|--------------------------|----------|----------------------|----------------|
| ule    | Topic                   | Topic s e level redagogy |          | Evaluation           |                |
| Unit l | [•                      |                          |          |                      |                |
| 1.     | General introduction to | 2                        | K1 (R)   | Brain storming,      | MCQ, Slip test |
|        | poultry farming -       |                          |          | Cooperative learning |                |
|        | Definition of Poultry - |                          |          |                      |                |
| 2.     | Past and present        | 4                        | K2 (U)   | Lecture, Group       | Seminar,       |
|        | scenario of poultry     |                          |          | discussion           | Summarisation, |
|        | industry in India       |                          |          |                      | Class test     |
| 3.     | Principles of poultry   | 4                        | K3 (Ap)  | PPT & Lecture        | Model making,  |
|        | housing - Poultry       |                          |          |                      | Oral test      |
|        | houses                  |                          |          |                      |                |

| -  |                                                                            |   |         |                                         |                                           |
|----|----------------------------------------------------------------------------|---|---------|-----------------------------------------|-------------------------------------------|
| 4. | Systems of poultry farming                                                 | 2 | K4 (An) | Blended learning                        | Mind mapping,<br>Open Book test           |
|    | Unit II                                                                    |   |         |                                         |                                           |
| 1  | Management of chicks<br>- growers                                          | 5 | K3 (Ap) | Flipped classroom                       | Seminar, Quiz<br>using Mentee<br>metre    |
| 2  | Management of layers,<br>Broilers.                                         | 5 | K3 Ap)  | Peer tutoring, lecture using videos     | Seminar, Class<br>test                    |
| 3  | Preparation of project<br>report for banking and<br>insurance.             | 2 | K6 (C)  | Project based                           | Slip test, Slido -<br>MCQ                 |
|    | Unit III                                                                   |   |         |                                         |                                           |
| 1  | Poultry feed<br>management-Principles<br>of feeding                        | 4 | K4 (An) | Collaborative<br>learning               | Oral presentation                         |
| 2  | Nutrient requirements<br>for different stages of<br>layers and broilers    | 4 | K3 (Ap) | Mind mapping,<br>Debate                 | Assignment,<br>mind mapping               |
| 3  | Feed formulation and Methods of feeding.                                   | 4 | K4 (An) | Peer tutoring, lecture<br>using videos  | Slip test, poster<br>making               |
|    | Unit IV                                                                    |   |         |                                         |                                           |
| 1  | Poultry diseases-viral, bacterial,                                         | 4 | K5 (E)  | KWL, Inquiry based & PPT                | Nearpod<br>Collaborative                  |
| 2  | fungal and parasitic<br>(two each);<br>symptoms, control<br>and management | 4 | K5 (E)  | Flipped classroom,<br>Socratic method   | Oral test, Slido -<br>MCQ                 |
| 3  | Vaccination<br>programme.                                                  | 4 | K3 (Ap) | PPT & lecture                           | Seminar, Mind<br>mapping                  |
|    | Unit V                                                                     |   |         | 1                                       |                                           |
| 1  | Selection, care and<br>handling of hatching<br>eggs - Egg testing          | 4 | K2 (U)  | Seminar,<br>Collaborative<br>learning   | Seminar,<br>Socrative,<br>Collaborative   |
| 2  | Methods of hatching<br>Brooding and rearing -<br>Sexing of chicks.         | 4 | K2 (U)  | Seminar, Jigsaw,<br>Group Discussion    | Quizzes, Oral<br>test,<br>Summarisation   |
| 3  | Farm and Water<br>Hygiene - Recycling<br>of poultry waste.                 | 4 | K5 (E)  | Seminar, Interactive<br>PPT, Index card | Short test with<br>open ended<br>question |

# Course Focussing on Employability/ Entrepreneurship/ Skill Development:

Entrepreneurship

Activities (Em/ En/SD): Preparation of a project report for banking and insurance.

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human

Values/Environment Sustainability/ Gender Equity): Environment Sustainability

Activities related to Cross Cutting Issues: Group Discussion on "Poultry Farming in relation to Environment Sustainability"

Assignment: Nutrient requirement for different stages of broilers (online assignment)

# **Seminar Topics**

- 21. Past and present scenario of poultry industry in India
- 22. Principles of poultry housing
- 23. Poultry houses Deep litter system.
- 24. Management of Broilers
- 25. Management of layers
- 26. Nutrient requirements for Broilers
- 27. Methods of feeding in poultry birds
- 28. Viral diseases of poultry birds
- 29. Fungal diseases of poultry birds
- 30. Sexing of chicks
- 31. Farm and water hygiene
- 32. Recycling of poultry waste
- 33. Vaccination programme in poultry birds

# Sample questions

# Part A

- 1. Droppings Pit is a raised platform constructed inside the \_\_\_\_\_\_ house.
- 2. The chick rearing is the most difficult of all the operations in poultry farming (**State True or False**).
- 3. Which nutrient is essential for promoting rapid growth and muscle development in broilers?

a) Fiber b) Phosphorus c) Vitamin K d) Sodium

- 4. External parasites like mites and lice can cause skin and feather problems in poultry (**State True or False**).
- 5. Assertion (A): Recycling poultry waste is an effective strategy for sustainable farming practices.
  - **Reason (R):** Poultry waste, when properly managed, can be converted into valuable fertilizers

or bioenergy, contributing to environmental sustainability.

- a) Both A and R are correct
- b) Both A and R are wrong
- c) A is correct and R is wrong
- d) A is wrong and R is correct

### Part B

- 6. List the factors to be considered while selecting a site for a poultry farm.
- 7. What is the optimal temperature range for a brooder house to ensure the health and wellbeing of chicks during the early stages of their development?
- 8. Identify the different methods of feeding poultry birds.
- 9. Elaborate on the key components of an effective poultry vaccination program.
- 10. Explain the steps involved in the selection, care, and handling of hatching eggs for successful incubation.

### Part C

6. Describe the optimal layout strategies for designing an efficient and productive broiler farm.

- 7. Explain the management techniques that contribute to successful broiler farming.
- 8. Examine the challenges faced in feed formulation for poultry production.
- 9.Discuss the lifecycle, clinical manifestations, and economic impact of any two bacterial infestations in poultry. Evaluate different methods of control and treatment.
- 10. Explore the significance of maintaining high levels of farm and water hygiene in poultry production.

| Course Instructor     | Head of the Department |
|-----------------------|------------------------|
| Dr. P.T. Arokya Glory | Dr. A. Shyla Suganthi  |
| Dr. C. Anitha         |                        |

**Core Course VII** 

| Class                      | : II M. Sc. Zoology |
|----------------------------|---------------------|
| <b>Title of the Course</b> | : Immunology        |
| Semester                   | : IV                |
| <b>Course Code</b>         | : ZU234CC1          |

| Course Code | LTI | р | G | Cradita | Credita Inst. Total |       |       | Marks |          |       |
|-------------|-----|---|---|---------|---------------------|-------|-------|-------|----------|-------|
| Course Code |     | I | r | B       | Creans              | Hours | Hours | CIA   | External | Total |
| ZP234CC1    | 3   | 2 | - | 1       | 5                   | 6     | 90    | 25    | 75       | 100   |

# **Pre-requisite:**

Students would have basic knowledge in animal science, particularly functional anatomy, cell biology and developmental biology.

### **Learning Objectives:**

- 1. To impart conceptual understanding of functional organization of immune system and its responsiveness in health and disease.
- 2. To enable a successful performance in Immunology component of CSIR-UGC NET.

| K1 |
|----|
|    |
| K2 |
|    |
| K3 |
|    |
| K4 |
|    |
| K5 |
| _  |

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate

| r   | 1000111                                 | 0415. 70         | (Incl. 115) | signment & rest)                                                      |                         |
|-----|-----------------------------------------|------------------|-------------|-----------------------------------------------------------------------|-------------------------|
| lod | opics                                   | Hours            | Cogniti     | Pedagogy                                                              | Assessment/             |
| les |                                         |                  | ve level    |                                                                       | Evaluation              |
| nit | I: Immune system in invertebra          | tes and <b>v</b> | ertebrates  | s (18 hrs.)                                                           |                         |
| 1   | Immunity - Innate and<br>acquired,Types | 4                | K1 (R)      | PPT, Lecture<br>Method,<br>Flipped Class<br>room, Group<br>discussion | MCQ, Short<br>test,     |
| 2   | Lymphoid organs and<br>immune cells     | 3                | K1 (R)      | Peer teaching,<br>You tube links,<br>PPT, Lecture<br>Method           | Slip test<br>Assignment |

# **Teaching Plan with Modules Total Hours: 90 (Incl. Assignment & Test)**

| 3                | Antigens, Immunoglobulins                     | 3        | K5 (E)                                                                          | PPT, Blende                 | MCQ, Flow       |
|------------------|-----------------------------------------------|----------|---------------------------------------------------------------------------------|-----------------------------|-----------------|
|                  | - characteristics                             |          |                                                                                 | learning,<br>Lecture method | chart           |
|                  | Traptens and types.                           |          |                                                                                 | Group discussion            |                 |
| 4                | Immune Response: Humoral                      | 4        | K5 (E)                                                                          | PPT, Inquiry                | Mind map,       |
|                  | immune response, Cell                         |          |                                                                                 | based learning,             | MCQ,            |
|                  | mediated immune response                      |          |                                                                                 | Lecture method              | Oral test       |
| 5                | Immunological memory                          | 2        | K5 (E)                                                                          | Flipped Class               | MCQ, Short      |
|                  | (Ananniesis).                                 |          |                                                                                 | discussion                  | test,           |
| 6                | Immunization:                                 | 2        | K3 (Ap)                                                                         | PPT, Inquiry                | Mind map,       |
|                  | immunization schedule and                     |          | × 17                                                                            | based learning,             | MCQ,            |
|                  | vaccines.                                     |          |                                                                                 | Lecture method              | Oral test       |
| Unit             | II: B and T cell (18 hrs.)                    |          |                                                                                 |                             |                 |
| 1                | P colla Dovelonment                           | 7        | $\mathbf{V}1$ ( <b>D</b> )                                                      | Locturo ppt                 | Flow about      |
| 1                | Maturation, activation.                       | /        | $\mathbf{K}^{\mathrm{I}}(\mathbf{K})$<br>$\mathbf{K}^{\mathrm{2}}(\mathrm{II})$ | Group                       | Mind man        |
|                  | differentiation, B cell                       |          | 112 (0)                                                                         | discussion,                 | ining map       |
|                  | receptor (BCR) and B cell                     |          |                                                                                 | Role play                   |                 |
|                  | co- receptor complex.                         |          |                                                                                 |                             |                 |
|                  | Signal transduction from B                    |          |                                                                                 |                             |                 |
|                  | cell antigen receptor and                     |          |                                                                                 |                             |                 |
|                  | Major pathways of BCR                         |          |                                                                                 |                             |                 |
| 2                | T cells $-$ maturation T                      | 7        | K1 (R)                                                                          | Lecture                     | MCO -           |
| 2                | cells - activation and                        | ,        | K1 (R)<br>K2 (U)                                                                | Blended                     | mentimeter      |
|                  | differentiation, T cell                       |          | (-)                                                                             | learning                    | Short answer    |
|                  | receptor (TCR). T cell co-                    |          |                                                                                 | C                           | test            |
|                  | receptor complex,                             |          |                                                                                 |                             |                 |
|                  | Formation of T and B cell                     |          |                                                                                 |                             |                 |
|                  | conjugates. Co-                               |          |                                                                                 |                             |                 |
|                  | stimulation in T cell                         |          |                                                                                 |                             |                 |
|                  | transduction Clonal                           |          |                                                                                 |                             |                 |
|                  | anergy                                        |          |                                                                                 |                             |                 |
| 3                | Antigen processing and                        | 4        | K1 (R)                                                                          | Lecture,                    | Model making    |
|                  | presentation – role of antigen                |          | K2 (U)                                                                          | Reflective                  | C               |
|                  | presenting cells, cytosolic                   |          |                                                                                 |                             |                 |
|                  | pathway and endocytic                         |          |                                                                                 | PPT                         |                 |
| <b>T</b> T • 4 1 | pathway                                       |          |                                                                                 |                             |                 |
| Unit             | III: Major and minor histocol                 | mpatibil | ity comple                                                                      | ex 18 hrs.)                 |                 |
| 1                | MHC class I and II                            | 6        | K1 (R)                                                                          | Blended learning,           | Quiz, Slip test |
|                  | molecules, cellular                           |          |                                                                                 | Lecture method,             |                 |
|                  | ulsiribution and regulation of MHC expression |          |                                                                                 | Group                       |                 |
|                  | with expression                               |          |                                                                                 | discussion, PP1             |                 |

| 2         | MHC in immune<br>responsiveness, MHC and<br>susceptibility to infectious<br>diseases.                                                                                                                            | 4            | K1 (R)                       | PPT, Lecture<br>Method,<br>Flipped Class<br>room, Group<br>discussion                                        | Mind map,<br>Flow chart              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 3         | (H) antigens. Immune<br>effector mechanisms:                                                                                                                                                                     | 3            | KI (K)                       | based learning,<br>Lecture method                                                                            | Flow chart,<br>Peer review           |
| 4         | Cytokines and their functions                                                                                                                                                                                    | 2            | K1 (R)                       | PPT, You tube<br>Video,<br>Collaborative<br>learning.                                                        | Quiz, Group<br>discussion            |
| 5         | Complement system –<br>classical and alternative<br>pathways, biological<br>functions                                                                                                                            | 3            | K1 (R)                       | Lecture using<br>PPT,<br>Cooperative<br>learning                                                             | MCQ,<br>Flow chart                   |
| Unit      | IV: Immune system in health                                                                                                                                                                                      | and dise     | eases (18 h                  | nrs.)                                                                                                        |                                      |
| 1         | Tumour immunology-<br>tumour antigens, immune<br>response to tumour and<br>immune surveillance.<br>Immunodiagnosis of tumour<br>antigens and immuno<br>therapy of tumour.                                        | 5            | K4 (An)                      | Lecture -ppt,<br>Discussion                                                                                  | Assignment                           |
| 2         | Hypersensitivity: factors<br>causing hypersensitivity,<br>Type I, II, III, and IV<br>reactions                                                                                                                   | 3            | K3 (Ap)                      | Seminar,<br>PPT/Video<br>lecture                                                                             | Preparation of chart                 |
| 3         | Immunodeficiency – primary<br>and secondary Autoimmune<br>diseases - characteristics,<br>causes, classification<br>Autoimmune diseases -<br>localized (Diabetes mellitus);<br>systemic (rheumatoid<br>arthritis) | 5            | K3 (Ap)<br>K4 (An)<br>K5 (E) | Self-directed<br>learning,<br>Computer<br>assisted<br>learning<br>Experiential<br>learning<br>through videos | Seminar                              |
| 4<br>Unit | Immune response to<br>infectious diseases and<br>treatment - Protozoan<br>disease (Malaria),<br>Bacterial disease<br>Tuberculosis) and Viral<br>disease (AIDS).<br>V: Antigen-antibody interacti                 | 5<br>on (18) | 4 (An)<br>K5 (E)             | Seminar-PPT,<br>Inquiry based<br>learning                                                                    | Mind map,<br>Quiz through<br>quizzez |

| 1 | Antigen-antibody<br>interaction, Complement<br>fixation test- precipitation<br>reaction in fluids and<br>precipitin curve.                                                  | 2 | K1 (R)<br>K2 (U)  | Seminar,<br>Demonstration.                                    | Oral test                                                       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------|---------------------------------------------------------------|-----------------------------------------------------------------|
| 2 | Radial immunodiffusion<br>and Double<br>immunodiffusion.                                                                                                                    | 2 | K2 (U)<br>K3 (Ap) | Lecture,<br>Demonstration<br>PPT,<br>Experimental<br>learning | Practical                                                       |
| 3 | Agglutination reaction–<br>hemagglutination and<br>bacterial agglutination.<br>Agglutination reaction-<br>coated particle<br>agglutination and<br>agglutination inhibition. | 4 | 2 (U)<br>3 (Ap)   | Seminar,<br>Lecture and<br>Video                              | Video<br>presentations<br>Observe and<br>deliver the<br>concept |
| 4 | Radio immuno assay,<br>ELISA and Western<br>blotting,<br>Immunofluorescence. Flow<br>cytometry.                                                                             | 5 | K2 (U)<br>K3 (Ap) | Seminar,<br>Virtual demo,<br>Experimental<br>learning         |                                                                 |
| 5 | Transplantation:<br>classification of grafts,<br>mechanism of graft<br>rejection, graft versus host<br>reaction,<br>immunosuppressive therapy<br>during transplantation     | 5 | K3 (Ap)<br>4 An)  | Seminar,<br>YouTube<br>Lecture, Case<br>studies               | Group<br>discussion                                             |

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Em/ En/SD): **Perform experiment to understand antigen antibody interaction and record the results** 

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): (Environmental sustainability)

Activities related to Cross Cutting Issues: Analyze the impact of pathogens and other pollutants on the immune response of human beings and prepare a report.

Assignment: Complement system – classical and alternative pathways, biological functions

### **Seminar Topic**

- 1. Immunity Innate
- 2. Immunity acquired
- 3. Lymphoid organs Primary
- 4. Lymphoid organs Secondary
- 5. Immunotherapy of tumor
- 6. Autoimmune diseases characteristics, causes, classification
- 7. Classification of Autoimmune diseases- localized (Diabetes mellitus)

- 8. Classification of Autoimmune disease systemic ( rheumatoid arthritis).
- 9. Structure MHC Class I
- 10. Structure MHC Class II
- 11. Structure Minor Histocompactability Antigen
- 12. Transplantation: classification of grafts
- 13. Hypersensitivity: factors causing hypersensitivity
- 14. Radial immunodiffusion and Double immunodiffusion
- 15. Radio immuno assay
- 16. ELISA
- 17. Western blotting
- 18. Immunofluorescence
- 19. Flow cytometry

### Part A (1 mark)

- 1. Immunity by birth is innate immunity. (State **True or False**)
- 2. Match the following:
  - 1. T<sub>H</sub> cells -a.Lethal to tissue cells.
  - 2. T<sub>S</sub> cells -b. T-delayed type Hypersensitivity
  - 3. T<sub>k</sub> cells -c. Immune tolerance
  - 4. T<sub>D</sub> cells -d. Phagocytosis
  - a) 1a, 2b,3c, 4d b) 1b, 2c, 3d, 4a c) 1c, 2d, 3a, 4b d) 1d, 2c, 3a, 4b.
- 3. Which of the following cytokines promote the development and differentiation of T and B cells?
  - a) IL b) Interferon c) FADD d) TRADD.
- 4. Give an example for auto-immune disease.
- 5. An interlocking of antigen and Antibody is called \_\_\_\_\_\_.

### Part B

- 1. Discuss Immunization schedule.
- 2. Illustrate B cell receptor (BCR) and B cell co-receptor complex.
- 3. Differentiate the structure of class I and II MHC molecules.
- 4. How does our immune system respond to protozoan disease?
- 5. Explain the principle and procedure of flow cytometry.

### Part C

- 6. Analyse Humoral and cell-mediated immune response with example each.
- 7. Correlate the development of B and T cells.
- 8. Dicuss minor histocompactibility antigen.
- 9. Explain the characteristics and types of autoimmune disease.
- 10. Discuss the types of agglutination reaction.
- 11. Explain the mechanism of graft rejection and immunosuppressive therapy adopted during transplantation.

| Course Instructor               | Head of the Department |
|---------------------------------|------------------------|
| Dr, C. Josephine Priyatharshini | Dr. A. Shyla Suganthi  |
| Dr. J. Vinoliya Josephine Mary  |                        |

# Class: II M. Sc. ZoologyTitle of the Course: MicrobiologySemester: IVCourse Code: ZU234CC2

### Total Marks Т Р S **Inst. Hours Course Code** L Credits Hours CIA External Total **ZP234CC2** 5 \_ 1 5 6 90 75 \_ 25 100

### **Pre-requisite:**

Students should have fundamental knowledge of Microorganisms.

### **Learning Objectives:**

- 1. To facilitate the students to understand the microbes and their significance.
- To develop skills in microbial techniques relevant to industries, environment and disease management.
   Course Outcomes

| On th | On the successful completion of the course, students will be able to:              |    |  |  |  |  |
|-------|------------------------------------------------------------------------------------|----|--|--|--|--|
| 1.    | recall the structure, distribution and life cycle of microorganisms and their role | K1 |  |  |  |  |
|       | in human welfare.                                                                  |    |  |  |  |  |
| 2.    | explain culture techniques, growth, fermentation and microbial products.           | K2 |  |  |  |  |
| 3.    | apply the microbiological laboratory skills in clinical research, food             | K3 |  |  |  |  |
|       | industries and environmental management.                                           |    |  |  |  |  |
| 4.    | analyze beneficial and harmful microbes                                            | K4 |  |  |  |  |
| 5.    | evaluate the microbial importance and applications in various fields.              | K5 |  |  |  |  |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

|            | Total Hours: 90 (Incl. Seminar & Test)                                                                                                             |       |                               |                                                  |                                    |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------|--------------------------------------------------|------------------------------------|--|--|--|--|
| Mod<br>ule | Торіс                                                                                                                                              | Hours | Cognitiv<br>e level           | Pedagogy                                         | Assessment/<br>Evaluation          |  |  |  |  |
| Unit I     | Unit I: Virus, Fungi and Protists (18 hrs.)                                                                                                        |       |                               |                                                  |                                    |  |  |  |  |
| 1          | History and scope of<br>microbiology.<br>Classification of<br>microorganisms -<br>Whittaker's five<br>kingdoms and three<br>domain classification. | 3     | K1 (R),<br>K2 (U),<br>K3 (Ap) | Brainstorming,<br>Inquiry based<br>Learning, PPT | Class test, Flow<br>chart, Seminar |  |  |  |  |
| 2          | Virus - General<br>properties, viral<br>taxonomy.                                                                                                  | 2     | K1 (R),<br>K3 (Ap)            | Brainstorming,<br>Discussion, PPT                | Assignment,<br>Flow chart,         |  |  |  |  |

### Teaching plan with Modules otal Hours: 90 (Incl. Seminar & Test

# **Core Course VII**

| 3    | Bacteriophages – life<br>cycle – Lytic and<br>Lysogenic.                                                                                            | 4         | K1 (R),<br>K3 (Ap),<br>K4 (An),<br>K5 (E) | Inquiry based<br>learning, Peer<br>teaching, Flipped<br>learning, Illustration | Seminar, Home<br>assignment, Slip<br>test, Illustration     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|
| 4    | Sub viral agents –<br>viroid, virusoids,<br>prions and satellite<br>viruses.                                                                        | 2         | K1 (R),<br>K4 (An),<br>K5 (E)             | Interactive lecture,<br>Group Discussion                                       | Study material<br>preparation,<br>Seminar                   |
| 5    | Cultivation of viruses<br>and purification assays.<br>Virus-host interactions.                                                                      | 4         | K1 (R),<br>K2 (U)                         | PPT, Video class,<br>Collaborative<br>learning                                 | Seminar, Open<br>book test                                  |
| 6    | Fungi: classification –<br>morphology –<br>filamentous, non-<br>filamentous and<br>dimorphic fungus.<br><i>Apicomplexa –</i><br><i>Toxoplasma</i> . | 3         | K1 (R),<br>K2 (U),<br>K3 (Ap)             | Interactive teaching,<br>PPT, Partnering<br>teaching                           | MCQ, Seminar,<br>Online<br>assignment,<br>Class interaction |
| Unit | II: Bacteria and culture t                                                                                                                          | echniques | s (18 hrs)                                |                                                                                |                                                             |
| 1.   | Bacteria -<br>classification –<br>Bergey's system.                                                                                                  | 2         | K1 (R),<br>K3 (Ap),<br>K4 (An)            | Collaborative<br>teaching, Peer<br>teaching, PPT                               | Mind map,<br>Oral test                                      |
| 2.   | Morphology, structure<br>and functions of cell<br>walls (Gram positive<br>& Gram negative),<br>flagella, fimbriae and<br>pili                       | 3         | K1 (R),<br>K3 (Ap),<br>K4 (An),<br>K5 (E) | Interactive lecture,<br>Group discussion,                                      | Diagrams -<br>Online<br>Assignment,<br>Seminar, MCQ         |
| 3.   | Fine structure of <i>Escherichia coli</i> .                                                                                                         | 2         | K1 (R),<br>K3 (Ap)                        | Illustrative<br>lecture, Peer<br>teaching,<br>YouTube videos                   | Diagrams,<br>Seminar                                        |
| 4.   | Bacterial nutrition -<br>nutrient requirements,<br>nutritional classes,<br>uptake of nutrients.                                                     | 3         | K3 (Ap),<br>K4 (An),<br>K5 (E)            | Brainstorming,<br>Mind map, peer<br>teaching                                   | Seminar,<br>Flow chart                                      |
| 5.   | Bacterial growth and measurements.                                                                                                                  | 3         | K3 (Ap),<br>K4 (An)                       | Video teaching,<br>Demonstration,<br>Interactive class                         | Discussion,<br>Case study<br>analysis                       |
| 6    | Types of culture media                                                                                                                              | 2         | K2 (U),<br>K3 (Ap)                        | Partnering,<br>Collaborative<br>learning                                       | Seminar<br>Class test                                       |

| 7       | Pure culture and                           | 3                 | K2 (U),                                 | Interactive class,  | Quiz,           |  |  |  |  |
|---------|--------------------------------------------|-------------------|-----------------------------------------|---------------------|-----------------|--|--|--|--|
|         | isolation techniques -                     |                   | K3 (Ap)                                 | Video class,        | Seminar         |  |  |  |  |
|         | Streak plate and pour-                     |                   |                                         | Demonstration       |                 |  |  |  |  |
|         | plate technique.                           |                   |                                         |                     |                 |  |  |  |  |
| Unit    | Unit III: Industrial Microbiology (18 hrs) |                   |                                         |                     |                 |  |  |  |  |
| 1       | Fermentation -                             | 3                 | K3 (Ap)                                 | Collaborative       | Quiz on         |  |  |  |  |
|         | microbial products -                       |                   |                                         | learning - Group    | fermentation    |  |  |  |  |
|         | alcohol (ethanol),                         |                   |                                         | Discussion,         | techniques,     |  |  |  |  |
|         | antibiotics (penicillin),                  |                   |                                         | Interactive PPT     |                 |  |  |  |  |
|         |                                            |                   |                                         | videos on ethanol   |                 |  |  |  |  |
|         |                                            | 2                 |                                         | production process  | <b>D</b> ·      |  |  |  |  |
| 2       | Production of vitamin                      | 3                 | K2(U)                                   | Collaborative       | Peer review     |  |  |  |  |
|         | $B_2$ and Vitamin $B_{12}$ .               |                   |                                         | learning Role       |                 |  |  |  |  |
|         |                                            |                   |                                         | reversal, Group     |                 |  |  |  |  |
| 2       | Diofortilizora stora                       | 2                 |                                         | Colloborativo       | Slip toot       |  |  |  |  |
| 3       | for preparing bacterial                    | 3                 | $\mathbf{K}^{2}(0)$                     | Learning Ligsaw     | Shp test        |  |  |  |  |
|         | biofertilizers                             |                   |                                         | Debate              |                 |  |  |  |  |
| 4       | Mass cultivation of                        | 3                 | K3(An)                                  | Flipped classroom   | Summarisation   |  |  |  |  |
| -       | Cyanobacteria Azolla                       | 5                 | <b>K</b> 5 ( <b>Ap</b> )                | Video Peer group    | Summarisation   |  |  |  |  |
|         | and Trichoderma                            |                   |                                         | teaching            |                 |  |  |  |  |
|         | Production of                              | 3                 | K2 (U)                                  | Personalised        | Presentation    |  |  |  |  |
|         | mycorrhizal fungi–                         | -                 | (-)                                     | learning, Seminar.  | assessment      |  |  |  |  |
|         | Vesicular Arbuscular                       |                   |                                         | 8,,                 |                 |  |  |  |  |
|         | Mycorrhiza (VAM)                           |                   |                                         |                     |                 |  |  |  |  |
|         | and yeast.                                 |                   |                                         |                     |                 |  |  |  |  |
|         | Industrial uses of yeast                   | 2                 | K2 (U)                                  | Flipped classroom.  | Listing out     |  |  |  |  |
|         | and moulds.                                |                   |                                         | Seminar             | important steps |  |  |  |  |
|         | Probiotics-                                |                   |                                         |                     |                 |  |  |  |  |
|         | Lactobacillus and                          |                   |                                         |                     |                 |  |  |  |  |
|         | Saccharomyces.                             |                   |                                         |                     |                 |  |  |  |  |
|         | Bacterial insecticides –                   | 1                 | K2 (U)                                  | Peer group teaching | Oral test       |  |  |  |  |
|         | Bacillus species.                          |                   |                                         | Listing out         |                 |  |  |  |  |
| TT-r=*4 | IV. Environment-1 NA                       | hiolog - (        | 10 TT                                   | important terms.    |                 |  |  |  |  |
|         | Vierebiele circlered                       | <b>D1010gy</b> (. | $\frac{10 \text{ Hrs}}{10 \text{ Mrs}}$ |                     | Destar          |  |  |  |  |
| 1       | where Coliforn test                        | 4                 | $\mathbf{K}_{4}(\mathbf{An})$           | loorning KWU        | roster          |  |  |  |  |
|         | Most Probable Number                       |                   | KJ (E)                                  | Internative DDT     | presentation    |  |  |  |  |
|         | (MPN) test and                             |                   |                                         |                     |                 |  |  |  |  |
|         | Membrane Filter (MF)                       |                   |                                         |                     |                 |  |  |  |  |
|         | test                                       |                   |                                         |                     |                 |  |  |  |  |
| 2       | Sewage treatment –                         | 3                 | K4 (An)                                 | Seminar, flipped    | Model making    |  |  |  |  |
| -       | small scale and large-                     |                   |                                         | classroom Model     | 110001 muxing   |  |  |  |  |
|         | scale treatment. Biogas                    |                   |                                         | making              | Presentation    |  |  |  |  |
|         | production –                               |                   |                                         |                     |                 |  |  |  |  |
|         | solubilization,                            |                   |                                         |                     |                 |  |  |  |  |

|      | acetogenesis                       |         |                              |                     |                   |
|------|------------------------------------|---------|------------------------------|---------------------|-------------------|
|      | methanogenesis                     |         |                              |                     |                   |
| 2    | Microbial leaching –               | 3       | K2 (U)                       | Interactive PPT &   | Traffic light and |
| 2    | copper and uranium                 | 5       | K2 (0)                       | lecture gallery     | Mind mapping      |
|      | leaching.                          |         |                              | Walk                | ining mapping     |
| 3    | Biogas production –                | 3       | K2 (U)                       | Seminar Interactive | Four corner and   |
| -    | solubilization.                    | -       | (-)                          | PPT & lecture Role  | Mind mapping      |
|      | acetogenesis and                   |         |                              | reversal            |                   |
|      | methanogenesis                     |         |                              |                     |                   |
| 4    | Biodegradation of                  | 2       | K2 (U)                       | Seminar, Peer       | Quizzes,          |
|      | petroleum and                      |         |                              | group teaching,     | Summarisation,    |
|      | xenobiotics,                       |         |                              | Group discussion.   | Oral test         |
|      | bioremediation and                 |         |                              | _                   |                   |
|      | biosorption.                       |         |                              |                     |                   |
| 5    | Microbes as biofilms,              | 3       | K4 (An)                      | KWL, Interactive    | Think and pair,   |
|      | biosensors,                        |         |                              | PPT                 | Oral test         |
|      | nanomaterials.                     |         |                              |                     |                   |
| Unit | V: Medical Microbiology (          | 18 hrs) |                              |                     |                   |
| 1    | Gnotobiotic animals,               | 2       | K2 (U)                       | Seminar,            | Model making      |
|      | distribution of normal             |         |                              | Collaborative       | & presentation    |
|      | microbiota of the human            |         |                              | learning            |                   |
|      | body                               | 2       |                              | о · т.              |                   |
| 2    | Nosocomial infections.             | 3       | K2(U))                       | Seminar, Jigsaw,    | Quizzes, Oral     |
|      | Fungal diseases -                  |         |                              | Group Discussion    | test,             |
|      | Candidiasis and                    |         |                              |                     | Summarisation     |
| 2    | Asperginosis<br>Restarial diseases | 2       |                              | Sominor             | Short tost with   |
| 3    | Stroptogogal                       | 2       | $\mathbf{K}^{2}(\mathbf{U})$ | Interactive DDT     | short test with   |
|      | pneumonia Typhoid                  |         |                              | Index card          | question          |
|      | Tetanus                            |         |                              | much caru           | question          |
| 4    | Viral diseases – SARS              | 2       | K2 (II)                      | Seminar Interactive | Think and pair    |
|      | MERS Covid-19                      | 2       | $\mathbf{K}^{2}(0)$          | PPT Jigsaw          | Oral test         |
|      | Ebola, Hepatitis-B                 |         |                              | 111,0185000         | of all tobe       |
|      | Rabies.                            |         |                              |                     |                   |
| 5    | Sexually transmitted               | 1       | K2 (U)                       | Seminar Chunking    | Quiz - Slido      |
|      | diseases – Gonorrhea,              |         |                              | method- Padlet      |                   |
|      | Syphilis,                          |         |                              |                     |                   |
| 6    | Microbial drugs - Drug             | 4       | K4 (An)                      | Seminar & Index     | Four corner and   |
|      | administration,                    |         |                              | card,               | Mind mapping,     |
|      | determination of                   |         |                              |                     |                   |
|      | antimicrobial activity,            |         |                              |                     | Quizzes           |
|      | mechanism of                       |         |                              |                     |                   |
|      | antimicrobial agents               |         |                              |                     |                   |
|      | effectiveness of                   |         |                              |                     |                   |
|      | antimicrobial drugs.               |         |                              |                     |                   |

| 6 | Methods of controlling | 4 | K4 (An) | Interactive PPT, | Ticket out the |
|---|------------------------|---|---------|------------------|----------------|
|   | microbes. Current      |   | K5 (E)  | Collaborative    | door method,   |
|   | problems of antibiotic |   |         | learning,        | Oral test,     |
|   | resistance in man.     |   |         | Reciprocal       |                |
|   |                        |   |         | teaching         |                |

# Activities (Em/ En/SD):

**Employability** – Culture techniques of microbes.

Entrepreneurship: Visit to a clinical laboratory /

Industry relevance discussion on culture techniques

Skill Development: Prepare fermented products and isolate and identify bacteria.

# Course Focusing on Cross Cutting Issues (Professional Ethics/ Human

### Values/Environment Sustainability/ Gender Equity):

Professional Ethics and Environment Sustainability

# Activities related to Cross Cutting Issues:

Professional Ethics – Killing bacteria after the study/ Debate on "Ethics in Microbial Research and Human Impact"

Environment Sustainability – Analyse water sample to find out microbial load and apply bioremediation and Biogas production.

### Seminar Topics

- 1. History and Scope of Microbiology.
- 2. Viruses General properties. Structure of viruses.
- 3. Viruses and cancer.
- 4. Viroids and Prions.
- 5. Bergey's system of bacterial classification.
- 6. Fine structure of *Escherichia coli*.
- 7. Bacterial nutrition Common nutrient requirements.
- 8. Mass cultivation of Cyanobacteria, Azolla and Trichoderma
- 9. Production of mycorrhizal fungi- Vesicular Arbuscular Mycorrhiza (VAM) and yeast.
- 10. Industrial uses of yeast and moulds.
- 11. Sewage treatment small scale, large scale
- 12. Biogas production- solubilization, acetogenesis and methanogenesis
- 13. Biodegradation of petroleum and xenobiotics.
- 14. Viral Diseases: SARS, MERS & Covid -19
- 15. Fungal diseases- Candidiasis and Aspergillosis.
- 16. Bacterial diseases Streptococcal pneumonia, typhoid and Tetanus.
- 17. Classification of Drug administration.
- 18. Current problems of antibiotic resistance in man.
- 19. Sexually Transmitted Diseases

### Assignment

1. Exhibition on Protozoan, Bacterial, Fungal and Viral diseases sexually transmitted

2. Mind map on Classifications of microorganisms/ Culture of bacteria and measurement of growth.

3. Model making on - distribution of normal microbiota of the human body, Sewage treatment in small- and large-scale mechanism of antimicrobial agent

## **Sample Questions**

# Part A

- 1. Virus is a living material. (State **True** or **False**)
- 2. Choose the dimorphic fungus from the following.
- a. Basidiomycota b. Afflatoxin c. *Toxoplasma gondii* d. *Histoplasma capsulatum* 3. The purpose of using fermenter is \_\_\_\_\_?
  - a) To cook raw materials b) To provide a controlled environment c) To filter fermentation products d) To speed up the fermentation process
- 4. Name the process which is commonly used in small scale sewage treatment.a. Activated sludge processb. Trickling filterc. Septic tankd. Aeration Pond derivatives
- 5. Which chemical agent is commonly used for hand hygiene in medical settings? a. Hydrgen peroxide b. Chlorine bleach c. Isopropyl alcohol d. Iodine tincture

### Part B

1. Point out the general characteristic features of viruses.

2. Choose the suitable culture media for bacterial growth.

3. Evaluate the role of Lactobacillus and Saccharomyces as probiotics in promoting human health.

4. Apply the Coliform test to assess the microbiological quality of a given water sample.

5. Apply principles of drug administration to outline best practices for using microbial drugs

### Part C

6. Explain the culture methods of viruses. Add a note on its purification assay.

7. Explain the culture and isolation techniques of bacteria. How will you measure their growth?

8. Elaborate the steps involved in the production of Vitamin B12 through fermentation. Include the microorganisms and key processes.

9. Design a small-scale sewage treatment system suitable for a rural community, considering local environmental conditions.

10. Analyze the differences in bacterial diseases, comparing Streptococcal pneumonia, Typhoid, and Tetanus.

| Course Instructor        | Head of the Department |
|--------------------------|------------------------|
| Dr. F. Brisca Renuga     | Dr. A. Shyla Suganthi  |
| Dr. S. Mary Mettilda Bai |                        |

| Class              | : II M.Sc. Zoology                   | <b>Core Lab Course</b> |
|--------------------|--------------------------------------|------------------------|
| Semester           | : IV                                 |                        |
| Course name        | : Lab on Immunology and Microbiology |                        |
| <b>Course Code</b> | : ZP234CP1                           |                        |

| Course          | L | Τ | P | S | Credits | Inst. | Total | Marks |          |       |
|-----------------|---|---|---|---|---------|-------|-------|-------|----------|-------|
| Code            |   |   |   |   |         | Hours | Hours | CIA   | External | Total |
| <b>ZP234CP1</b> | - | - | 6 | - | 5       | 6     | 90    | 25    | 75       | 100   |

### **Pre-requisite:**

Students should have knowledge relevant to Immunology and Microbiology.

# Learning Objectives:

1. To demonstrate competency in routine microbiological and Immunological techniques.

2. To develop skills in cell culture and analytical techniques for procuring employability in research laboratories.

|                                                                       | Course Outcomes                                                                                                     |    |  |  |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| On the successful completion of the course, students will be able to: |                                                                                                                     |    |  |  |  |  |  |  |
| 1.                                                                    | recall Immunological and Microbiological experiment                                                                 | K1 |  |  |  |  |  |  |
|                                                                       | protocols.                                                                                                          |    |  |  |  |  |  |  |
| 2.                                                                    | identify tools and techniques relevant to Immunology and Microbiology                                               | K2 |  |  |  |  |  |  |
| 3.                                                                    | perform Immunological and Microbiological experiments pertaining to the welfare of the environment and society.     |    |  |  |  |  |  |  |
| 4.                                                                    | analyse the impact of microbiological products and genetically modified organisms in bioremediation and Immunology. | K4 |  |  |  |  |  |  |
| 5.                                                                    | explore the role of agglutination in serological testing and blood typing.                                          | K5 |  |  |  |  |  |  |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

# **Teaching plan with Modules** Total Hours: 90 (Incl. Seminar & Test)

### Immunology

| Unit | Modules                     | Ho  | Cognitiv | Pedagogy         | Assessment/     |
|------|-----------------------------|-----|----------|------------------|-----------------|
| S    |                             | urs | e Level  |                  | Evaluation      |
| 1    | Identification of Lymphoid  | 3   | K1 (R)   | Virtual Learning | Identify the    |
|      | organs in rat               |     |          |                  | lymphoid organs |
| 2    | Identification of various   | 3   | K1 (R)   | Virtual Learning | Identify the    |
|      | types of immune cells in    |     |          |                  | immune cells    |
|      | peripheral blood smear      |     |          |                  |                 |
| 3    | Separation of RBC as intact | 3   | K3 (Ap)  | Hands on         | Presentation of |
|      | cellular antigen            |     | K4 (An)  | activity         | RBCs            |
| 4    | Agglutination reaction:     | 3   | K1 (R),  | Hands on         | Presentation of |
|      | Qualitative analysis of     |     | K3 (Ap)  | activity         | agglutination   |
|      | antigen-antibody reaction   |     | _        |                  |                 |

### **Course Outcomes**

|       | using human blood group        |        |         |             |                   |
|-------|--------------------------------|--------|---------|-------------|-------------------|
|       | system                         |        |         |             |                   |
| 5     | Agglutination reaction:        | 3      | K3 (Ap) | Hands on    | Presentation of   |
|       | Determination of               |        | K4 (An) | activity    | haemagglutination |
|       | hemagglutination titer         |        |         |             |                   |
| 6     | Single Radial Immuno           | 3      | K3 (Ap) | Hands on    | Presentation of   |
|       | Diffusion                      |        | K4 (An) | activity    | Radial            |
|       |                                |        |         |             | Immunodiffusion   |
| 7     | Double Immuno Diffusion        | 3      | K3 (Ap) | Hands on    | Presentation of   |
|       |                                |        | K4 (An) | activity    | Double            |
|       |                                |        |         |             | Immunodiffusion   |
| 8     | Detection of IgG by            | 3      | K3 (Ap) | Hands on    | Detection of IgG  |
|       | precipitation Ring test        |        | K4 (An) | activity    |                   |
| 9     | Separation of T cells          | 3      | K3 (Ap) | Hands on    | Separation of T   |
|       |                                |        | K4 (An) | activity    | cells             |
| 10    | Separation of B cells          | 3      | K3 (Ap) | Hands on    | Separation of B   |
|       |                                |        | K4 (An) | activity    | cells             |
| Chart | ts/ Slides/ Models/ Bookplates | / Inst | ruments |             |                   |
|       | Specimen/ Models/ Charts       | 15     | K1 (R), | Observation | Identify the      |
|       | Agglutination, Precipitation,  |        | K2 (U)  |             | Specimen, Model   |
|       | Immune response curve,         |        |         |             | and Chart         |
|       | Haemagglutination, HIV,        |        |         |             |                   |
|       | Malaria, Tuberculosis,         |        |         |             |                   |
|       | Vaccination chart – human,     |        |         |             |                   |
|       | ELISA                          |        |         |             |                   |

# Microbiology

| Unit | Modules                 | Hour | Cognitive | Pedagogy         | Assessment /        |
|------|-------------------------|------|-----------|------------------|---------------------|
| S    |                         | S    | Level     |                  | Evaluation          |
| 1    | Preparation of culture  | 3    | K3 (Ap)   | Group work-      | Presentation of     |
|      | media.                  |      | K4 (An)   | Hands on         | cultured plates     |
|      |                         |      |           | training         |                     |
| 2    | Isolation of bacteria   | 3    | K3 (Ap)   | Practice streak  | Identify and        |
|      | from soil and water     |      | K4 (An)   | plate method     | describe the        |
|      | (Streak plate method).  |      |           | using sterilized | isolated colonies   |
|      | _                       |      |           | tools.           |                     |
| 3    | Serial dilution         | 3    | K3 (Ap)   | Guided learning  | Calculating the     |
|      | technique.              |      | K4 (An)   | serial dilutions | dilution factor and |
|      | _                       |      |           | and plating      | CFU                 |
|      |                         |      |           | aliquots         |                     |
| 4    | Measurement of growth   | 3    | K3 (Ap)   | Guided learning  | Observation and     |
|      | of bacteria             |      | K4 (An)   | to measure       | Presentation of     |
|      | (turbidimetric method). |      |           | bacterial growth | results             |
|      |                         |      |           | at specific time |                     |
|      |                         |      |           | intervals.       |                     |

| 5    | Bacterial count by plate  | 3         | K3 (Ap)   | Demonstration -  | Evaluate          |
|------|---------------------------|-----------|-----------|------------------|-------------------|
|      | count method.             |           | K4 (An)   | spreading        | interpretation of |
|      |                           |           |           | samples from     | results           |
|      |                           |           |           | serial dilutions |                   |
| 6    | Observation of bacterial  | 3         | K3 (Ap)   | Hands on         | Performance,      |
|      | motility by Hanging       |           | K4 (An)   | activity         | Observation and   |
|      | Drop method.              |           |           |                  | report writing    |
| 7    | Gram staining of          | 3         | K3 (Ap)   | Hands on         | Performance,      |
|      | bacteria.                 |           | K4 (An)   | activity         | Observation and   |
|      |                           |           |           |                  | report writing    |
| 8    | Negative staining of      | 3         | K3 (Ap)   | Hands on         | Performance,      |
|      | bacteria.                 |           | K4 (An)   | activity         | Observation and   |
|      |                           |           |           |                  | report writing    |
| 9    | Methylene blue            | 3         | K3 (Ap)   | Hands on         | Performance,      |
|      | reduction test to assess  |           | K4 (An)   | activity         | Observation and   |
|      | the quality of milk.      |           |           |                  | report writing    |
| 10   | Antibiotic susceptibility | 3         | K3 (Ap)   | Group work-      | Presentation      |
|      | test by disc-diffusion    |           | K4 (An)   | Hands on         |                   |
|      | method.                   |           |           | training         |                   |
| Char | ts/ Slides/ Models/ Bookp | lates/ In | struments |                  |                   |
|      | Specimen/ Models/         | 15        | K1 (R),   | Observation      | Identification,   |
|      | Charts                    |           | K2 (U),   |                  | submission of     |
|      | Salmonella,               |           |           |                  | records           |
|      | Clostridium, Rabies       |           |           |                  |                   |
|      | virus, hepatitis – B,     |           |           |                  |                   |
|      | Entamoeba, Azolla,        |           |           |                  |                   |
|      | ocular and stage          |           |           |                  |                   |
|      | micrometer, inoculation   |           |           |                  |                   |
|      | loop, autoclave, laminar  |           |           |                  |                   |
|      | airflow chamber.          |           |           |                  |                   |

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability, Entrepreneurship and Skill Development

Activities for Employability, Entrepreneurship and Skill Development:

# Hands on activity of all practical.

# Course Focusing on Cross Cutting Issues: Professional ethics

### Activities related to Cross Cutting Issues:

- 1. Emphasis on Accuracy and Honesty in Data Handling.
- 2. Responsibility in Laboratory Practices
- 3. Adherence to Standards and Protocols

| Course Instructor        | Head of the Department |
|--------------------------|------------------------|
| Dr. F. Brisca Renuga     | Dr. A. Shyla Suganthi  |
| Dr. S. Mary Mettilda Bai |                        |

| Class       | : II M.Sc. Zoology |
|-------------|--------------------|
| Semester    | : IV               |
| Course name | : Forensic Biology |
| Course Code | : <b>ZP234EC2</b>  |

**ELECTIVE COURSE VI: b)** 

| <b>Course Code</b> | L | Т | P | S | Credits | Inst. Hours | Total | Marks |          |       |
|--------------------|---|---|---|---|---------|-------------|-------|-------|----------|-------|
|                    |   |   |   |   |         |             | Hours | CIA   | External | Total |
| <b>ZP234EC2</b>    | 3 | - | - | 1 | 3       | 4           | 60    | 25    | 75       | 100   |

### **Pre-requisite:**

Students should know the fundamentals of natural science and have a curiosity of criminology.

# Learning Objectives:

1. Students should emphasize the importance of scientific methods in crime detection and

disseminate information on the advancements in the field of forensic science.

2. Derive skills to identify crime through various forensic techniques

### **Course Outcomes**

| On tl | On the successful completion of the course, student will be able to               |            |  |  |  |  |
|-------|-----------------------------------------------------------------------------------|------------|--|--|--|--|
| 1     | recall the fundamentals of forensic biology, psychology, and criminal             | K1         |  |  |  |  |
| 2     | proming.                                                                          | V2         |  |  |  |  |
| 2     | fundamental principles, and functions of forensic science.                        | <b>K</b> 2 |  |  |  |  |
| 3     | apply the knowledge to render forensic service during real-time crime             | K3         |  |  |  |  |
|       | scenes.                                                                           |            |  |  |  |  |
| 4     | analyze fingerprints, personal identification evidence, bite marks and pug marks. | K4         |  |  |  |  |
| 5     | evaluate information to find strategies to resolve problems in forensic           | K5         |  |  |  |  |
|       | biology.                                                                          |            |  |  |  |  |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

# Teaching plan with Modules

Total Hours: 60 (Incl. Seminar & Test)

| Mo   | topic                               | Ho  | Cognitive | Pedagogy    | Assessment |  |  |  |  |
|------|-------------------------------------|-----|-----------|-------------|------------|--|--|--|--|
| dul  |                                     | urs | Level     |             |            |  |  |  |  |
| e    |                                     |     |           |             |            |  |  |  |  |
| Unit | Unit I (12 hrs)                     |     |           |             |            |  |  |  |  |
| 1    | Concepts and scope, functions, and  | 2   | K 1 (R)   | Didactic    | MCQ        |  |  |  |  |
|      | historical aspects of forensic      |     | K 2 (U)   | Teaching    | Seminar    |  |  |  |  |
|      | science.                            |     |           | PPT         |            |  |  |  |  |
| 2    | Importance, nature, location,       | 4   | K 2 (U)   | Cooperative | Seminar    |  |  |  |  |
|      | collection and preservation of      |     | K3 (Ap)   | learning    |            |  |  |  |  |
|      | biological exhibits and crime scene |     | K4 (An)   | Socratic    |            |  |  |  |  |
|      | -                                   |     |           | Questioning |            |  |  |  |  |

|    | investigation of biological evidence.                                                                                               |   |                               |                                                           |                                                     |
|----|-------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------|-----------------------------------------------------------|-----------------------------------------------------|
| 3  | Forensic dermatoglyphics -<br>biological basis of fingerprints,<br>formation of ridges, fundamental<br>principles of fingerprinting | 4 | K 2 (U)<br>K3 (Ap)<br>K4 (An) | Visualization,<br>Experiential<br>learning,<br>Index card | Class test<br>Assignment                            |
| 4  | Types of fingerprints, fingerprint<br>patterns, automated fingerprint<br>identification system.                                     | 2 | K4 (An)<br>K5 (E)             | Inquiry-Based<br>Learning,                                | Assignment<br>Identificatio<br>n of finger<br>print |
| UN | NIT II (12 hrs.)                                                                                                                    | 1 | I                             | Γ                                                         |                                                     |
| 1  | Forensic examination of hair - importance, nature, location.                                                                        | 2 | K2 (U)<br>K4 (An)             | Interactive presentation                                  | Short test<br>Seminar                               |
|    | Hair: structure, growth phases of<br>hair, collection, evaluation, and<br>tests for their identification                            | 2 | K1 (R)<br>K2 (U)<br>K5 (E)    | Flipped<br>Classroom                                      | Seminar                                             |
| 2  | Forensic Serology - identification<br>of body fluids                                                                                | 3 | K2 (U)<br>K3 (Ap)             | Cooperative<br>learning,<br>Storytelling<br>Method        | Traffic<br>lights.<br>MCQ                           |
| 3  | Collection and preservation of<br>blood evidence, distinction<br>between human and non-human<br>blood                               | 2 | K2 (U)<br>K4 (An)<br>K5 (E)   | Interactive<br>PPT, YouTube<br>Video                      | Seminar                                             |
| 4  | Semen - forensic significance                                                                                                       | 2 | K2(U)<br>K4(An)<br>K5 (E)     | Narrative-Based<br>Teaching                               | Exhibition                                          |
| 5  | Forensic significance of saliva, sweat, milk and urine.                                                                             | 3 | K4 (An)<br>K5 (E)             | Interactive PPT, videos                                   | Case study                                          |
| Ur | nit III (12 hrs.)                                                                                                                   |   |                               |                                                           |                                                     |
|    | Structural variation, types of teeth<br>- human and non-human teeth                                                                 | 3 | K2 (U)                        | Illustrative<br>lectures                                  | MCQ,<br>charts/poste<br>rs on types<br>of teeth and |
|    | Determination of age from teeth, eruption sequence,                                                                                 | 3 | K2 (U)<br>K4 (An)             | case-study-<br>based lectures                             | Short test<br>Time line<br>charts                   |
|    | Dental anomalies, their<br>significance in personal<br>identification                                                               | 1 | K3 (Ap)<br>K4 (An)<br>K5 (E)  | Lecture with<br>clinical images,<br>group discussion      | Quizzes                                             |
|    | Bite marks -forensic significance, collection and preservation of bite                                                              | 2 | K2 (U)<br>K3 (Ap)<br>K5 (E)   | live demos,<br>recorded videos,<br>Role-play              | Models of<br>bite marks,<br>Seminar                 |

|      | marks, photography and evaluation of bite marks |   |                  |                   |               |
|------|-------------------------------------------------|---|------------------|-------------------|---------------|
|      | Lip prints in forensic                          |   | K2 (U)           | images and        | Hands-on      |
|      | investigations                                  |   | K4 (An)          | video tutorials.  | activity to   |
|      |                                                 |   |                  |                   | collect and   |
|      |                                                 |   |                  |                   | analyze lip   |
|      |                                                 |   |                  |                   | prints        |
| Unit | IV (12 hrs)                                     | 1 | •                | 1                 |               |
| 1    | Forensic Entomology - insects of                | 4 | K2 (U)           | Photographs,      | Short test,   |
|      | forensic importance                             |   | K3 (Ap)          | YouTube videos    | MCQ           |
| 2    | Collection of etmbgalevidence                   | 4 | K3 (Ap)          | Interactive PPT,  | Performanc    |
|      | during death investigations.                    |   | K4 (An)          | Mock crime        | e based,      |
|      |                                                 |   |                  | scene             | Seminar       |
| 3    | The role of aquatic insects in                  | 3 | K2 (R)           | Seminar,          | Open book     |
|      | forensic investigations                         |   |                  | Interactive PPT   | test, MCQ     |
| 4    | Insect succession on carrion and                | 4 | K2 (U)           | Case study,       | Assignment    |
|      | its relationship to determine time              |   | K3 (Ap)          | Video class,      | - Poster      |
|      | since death, factors influencing                |   |                  | Discussion, field |               |
|      | insect succession on carrion, its               |   |                  | v1S1t             |               |
|      | application to forensic                         |   |                  |                   |               |
| 5    | Earonaia Microhiology types and                 | 2 | $V_2(\Lambda n)$ | Internative DDT   | Mindmon       |
| 3    | identification of microbial                     | 3 | $K_{1}(Ap)$      | interactive PP1,  | Draw the      |
|      | organisms of forensic                           |   | K4 (All)         | semma             | Draw the      |
|      | significance                                    |   |                  |                   | organ test    |
| Unit | V (12 hrs)                                      |   |                  |                   |               |
| 1    | Importance of Wildlife Protection               | 3 | K1 (R)           | Flipped           | Short quiz.   |
|      | Act-1972- Schedules in the                      |   | K2 (U)           | classroom.        | ·····,        |
|      | protection of endangered species                |   | K3 (Ap)          | Lecture based,    |               |
|      | of flora and fauna                              |   | × 17             | group discussion  |               |
| 2    | Schedules in the protection of                  | 3 | K2 (U)           | Jigsaw,           | Mind map,     |
|      | endangered species of flora and                 |   | K3 (Ap)          | Field visit       | Report of     |
|      | fauna                                           |   |                  |                   | field visit   |
| 3    | Identification of wildlife materials            | 2 | K2 (U)           | Interactive PPT,  | Quizzes,      |
|      | such as skin, fur, bones, nails,                |   | K3 (Ap)          | Visual            | Prepare an    |
|      | horn, teeth, plants, plant parts and            |   | K4 (An)          | identification    | identificatio |
|      | products by conventional and                    |   |                  | techniques        | n guide       |
|      | modern methods                                  |   |                  |                   |               |
| Δ    | Identification of nug marks of                  | 4 | <b>K2</b> (II)   | Seminar DDT       | MCO           |
| -    | various animals                                 | - | $K_{A}(0)$       | gamification      | Poster        |
|      | various animais                                 |   | $K_{5}(F)$       | identification of | making        |
|      |                                                 |   |                  | nug marks         | muning        |
| 5    | DNA techniques in wildlife                      | 4 | K3(An)           | Interactive PPT   | Subjective    |
|      | investigations.                                 | . |                  | Group             | test          |
|      |                                                 |   |                  | discussion        |               |
| 1    |                                                 | 1 |                  |                   |               |

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development

Activities (Em/ En/SD): Preparation of identification guide for pug marks, Hands-on activity to collect and analyze lip prints

**Course Focussing on Cross Cutting Issues:** Survey to study **local awareness** of the Wildlife Protection Act and its importance, Posters showcasing the use of DNA techniques in solving wildlife crimes

Professional Ethics/ Human Values/ Environment Sustainability/ Gender Equity Professional Ethics/ Human Values/ Environment Sustainability:

Activities: Mock crime scene, Debate: Ethical Limits of DNA Testing in Wildlife Assignment: Identification of finger print, Case study of a crime with special focus on women

# **Seminar topics**

- 1. Historical aspects of forensic science.
- 2. Importance, nature, location, collection and preservation ofbiological exhibits
- 3. Crime scene investigation of biological evidence.
- 4. Hair importance, nature, location, structure, growth phases.
- 5. Identification of body fluids, collection and preservation of blood evidence
- 6. Semen forensic significance
- 7. Forensic significance of saliva, sweat, milk and urine.
- 8. Structural variation, types of teeth
- 9. Dental anomalies, their significance in personal identification.
- 10. Bite marks -forensic significance, collection and preservation of bite marks.
- 11. Lip prints in forensic investigations.
- 12. Insects of forensic importance
- 13. Collection of entomological evidence during death investigations.
- 14. The role of aquatic insects in forensic investigations
- 15. Types and identification of microbial organisms of forensic significance.
- 16. Importance of Wildlife Protection Act-1972
- 17. Schedules in the protection of endangered species of flora and fauna
- 18. Identification of wildlife materials such as skin, fur, bones, nails, horn, teeth.
- 19. Identification of pug marks of various animals

### Sample questions

# Part A

- 1. The study of fingerprints is known as \_\_\_\_\_
- 2. The most crucial step in the collection of biological exhibits is: a) Documentation b) Location c) Preservation d) Testing
- 3. Human and non-human blood can be differentiated using forensic serology. **True or False**
- 4. Assertion: Hair analysis can determine the age of an individual.
  - Reason: The structure and growth pattern of hair are species-specific.
    - a) Statement A is correct, but B is wrong
    - b) Statement A is wrong and B is correct
    - c) Statement A and B are wrong
    - d) Statement A and B are correct
- 5. The study of bite marks in forensics is referred to as \_\_\_\_\_.

- 6. Assertion: Bite marks are admissible as evidence in court.
  - Reason: Bite mark patterns are always consistent and error-free.
  - a) Statement A is correct, but B is wrong
  - b) Statement A is wrong and B is correct
  - c) Statement A and B are wrong
  - d) Statement A and B are correct
- 7. The eruption sequence of teeth can provide information about:a) Age of an individual b) Dietary habits c) Genetic disorders d) All of the above
- 8. Which of the following insects is commonly used in forensic entomology?
  - a) Blowfly b) Ant c) Butterfly d) Mosquito
- 9. The Wildlife Protection Act protects only endangered animals.
- 10. **Assertion**: DNA techniques are highly reliable in wildlife crime investigations. **Reason**: DNA profiling ensures accurate species identification.
  - a) Statement A is correct, but B is wrong
  - b) Statement A is wrong and B is correct
  - c) Statement A and B are wrong
  - d) Statement A and B are correct

### Part B

- 1. Explain the importance of biological exhibits in reconstructing a crime scene.
- 2. Describe how fingerprint patterns can be used in personal identification.
- 3. Outline the structure and growth phases of hair and their forensic relevance.
- 4. Explain the methods used to distinguish between human and non-human blood in forensic investigations.
- 5. List the types of teeth and their structural variations in humans and non-humans.
- 6. Explain the process of determining age using teeth eruption sequences.
- 7. Illustrate the role of insect succession on carrion in determining the postmortem interval.
- 8. Analyze the factors influencing the succession of insects on carrion in forensic investigations.
- 9. Summarize the importance of the Wildlife Protection Act-1972 in the conservation of flora and fauna.
- 10. Describe how pug marks can be used to identify species and individual animals.

### Part C

- 1. Compare and contrast the different types of fingerprint patterns and their forensic significance.
- 2. Analyze the role of forensic science in locating, collecting, and preserving biological evidence during a crime scene investigation.
- 3. Analyze the forensic significance of body fluids such as semen and saliva in crime scene investigations.
- 4. Evaluate the challenges and limitations in using hair as evidence in forensic investigations.
- 5. Discuss the forensic significance of bite marks, including their collection and evaluation.
- 6. Design a systematic approach for investigating a crime scene involving bite mark evidence.
- 7. Evaluate the contribution of aquatic insects in solving death investigations.

- 8. Propose a step-by-step method for collecting and analyzing entomological evidence at a crime scene.
- 9. Analyze the role of conventional and modern methods in identifying wildlife materials like skin, bones, and fur.
- 10. Evaluate the effectiveness of DNA techniques in wildlife crime investigations.

| Course In-charge       | Head of the Department |
|------------------------|------------------------|
| Dr. A. Shyla Suganthi  | Dr. A. Shyla Suganthi  |
| Dr. Jeni Chandar Padua |                        |

| Class               | : II M. Sc. Zoology      | Elective Course VII: c) |
|---------------------|--------------------------|-------------------------|
| Semester            | : IV                     |                         |
| Title of the Course | : Medical Lab Technology |                         |
| <b>Course Code</b>  | : ZP234EC6               |                         |
|                     |                          |                         |

| Course Code     | L | Τ | Р | S | Credits | Inst. Hours | Total | Mark | S        |       |
|-----------------|---|---|---|---|---------|-------------|-------|------|----------|-------|
|                 |   |   |   |   |         |             | Hours | CIA  | External | Total |
| <b>ZP234EC6</b> | 3 | - | - | 1 | 3       | 4           | 60    | 25   | 75       | 100   |

### **Pre-requisite:**

Students should have fundamentals of medical lab technology.

# Learning Objectives

- 1. To impart knowledge on laboratory principles, clinical analysis and safety measures in handling samples.
- 2. To develop skills on laboratory investigations adopted in medical diagnostic laboratories

| Course Outcomes |                                                                                                             |    |  |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| On the          | On the successful completion of the course, students will be able to:                                       |    |  |  |  |  |
| 1.              | outline the laboratory principles applied in diagnosis of disease and methods of biomedical waste disposal. | K1 |  |  |  |  |
| 2.              | explain the type of specimens, collection and use of appropriate diagnostictechniques.                      | K2 |  |  |  |  |
| 3.              | prepare reagents, handle instruments and perform clinical analysis.                                         | K3 |  |  |  |  |
| 4.              | systematically analyze complex laboratory data, identifying patterns, trends, and anomalies                 | K4 |  |  |  |  |
| 5.              | critically evaluate and assess various laboratory methodologies and techniques in medical diagnostics       | K5 |  |  |  |  |

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate;

# **Teaching Plan with modules**

# Total Contact hours: 60 (Including lecture, assignment, seminar assignment & test)

| Modu<br>les | Topics                                | Hou<br>rs | Cognit<br>ive<br>level | Pedagogy      | Assessment |
|-------------|---------------------------------------|-----------|------------------------|---------------|------------|
| Unit I:     | Laboratory instruments and safety     | meası     | ares (12 Hrs           | 5.)           |            |
| 1           | Scope of Medical laboratory           | 3         | K1 (R),                | PPT, Lecture  | Slip test  |
|             | technology. Laboratory principles –   |           | K2 (U),                | Method,       | Assignment |
|             | Organization of clinical laboratory – |           | K3 (Ap)                | Flipped Class | 8          |
|             | Role of medical laboratory            |           | _                      | room,         |            |
|             | technician.                           |           |                        | Demonstration |            |
| 2           | Laboratory instruments: Common        | 2         | K1 (R),                | Lecture,      | MCQ, Quiz, |
|             | glass wares in clinical laboratory -  |           | K3 (Ap)                | PPT, Flow     | Oral test  |
|             | Water bath – Refrigerator – Hot air   |           |                        | Chart,        |            |
|             | oven                                  |           |                        | Demonstration |            |
| 3           | Mixer – Microscope – Analyser –       | 4         | K2 (U),                | Lecture,      | Mind map,  |

|         | Spectrometer – Cell counter – Blood<br>bank                                                                                                                    |       | K3<br>(Ap)                    | PPT, Blended<br>learning,<br>Demonstration                                                        | MCQ,<br>Open Book<br>test            |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------|
| 4       | Safety measures - Cleaning and<br>sterilization methods – antiseptics<br>and disinfectants –hospital and<br>clinic borne infection and personnel<br>hygiene.   | 3     | K2 (U),<br>K3 (Ap)            | Lecture,<br>PPT, Inquiry<br>based<br>learning,<br>Demonstration                                   | Flow chart,<br>Oral test             |
| Unit II | : Clinical sample collection, processi                                                                                                                         | ng an | d storage (                   | 12 Hrs.)                                                                                          |                                      |
| 1       | Specimen collection and processing<br>of blood, urine and cerebrospinal<br>fluid, separation of serum and<br>plasma.                                           | 3     | K2 (U),<br>K3 (Ap)            | Lecture,<br>PPT, Group<br>discussion,<br>Flipped Class<br>room                                    | Flow chart<br>MCQ                    |
| 2       | Handling of specimens for testing,<br>preservation and transport of<br>specimen, factors affecting the<br>clinical results, effect of storage<br>on sample.    | 3     | K2 (U),<br>K3 (Ap)            | Cooperative<br>learning,<br>Blended<br>learning,<br>Lecture method<br>Group<br>discussion,<br>PPT | Oral test<br>Assignment,<br>mind map |
| 3       | Anticoagulants: EDTA, Di-<br>potassium salts of EDTA, oxalate,<br>sodium citrate and sodium fluoride.                                                          | 3     | K3 (Ap),<br>K4 (An)           | Lecture, PPT<br>Inquiry<br>based<br>learning,                                                     | Mind map<br>True or False            |
| 4       | Techniques of sample processing:<br>Throat Swab, Sputum, blood, urine,<br>stool, pus, CSF, other body fluids,<br>other swabs like from wounds,<br>spore strips | 3     | K3 (Ap),<br>K4 (An)           | Lecture,<br>PPT,<br>Collaborativ<br>e learning                                                    | Slip test                            |
| Unit II | I: Body fluid analysis (12 Hrs.)                                                                                                                               |       |                               |                                                                                                   |                                      |
| 1       | Physical, chemical and<br>microscopical examination of<br>cerebrospinal fluid, pleural fluid,<br>synovial fluid.                                               | 3     | K2 (U),<br>K3 (Ap)<br>K5 (E)  | Lecture,<br>PPT,<br>Interactive<br>class                                                          | Mind map,<br>MCQ,<br>Oral test       |
| 2       | Haematological techniques -<br>Haemoglobin estimation,<br>Erythrocyte Sedimentation Rate.                                                                      | 3     | K3 (Ap),<br>K4 (An)<br>K5 (E) | Interactive<br>Class,<br>PPT,<br>Demonstrat<br>ion                                                | Flow chart,<br>Oral test             |
| 3       | Differential count, Total Red Blood<br>cell count, Total White blood cell<br>count, Platelet count.                                                            | 3     | K3 (Ap),<br>K4 (An)<br>K5 (E) | Lecture<br>method,<br>Demonstrativ<br>e learning                                                  | Slip test, Peer<br>review            |

| 4<br>Unit I | Blood banking technology,<br>collection and storage and<br>plasma separation. Diagnosis of<br>Covid-19.<br>V: Histopathology (12 Hrs.) | 3     | K2 (U),<br>K3 (Ap)<br>K5 (E)  | Brain<br>storming,<br>Lecture using<br>videos          | Brain storming,<br>MCQ                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------|--------------------------------------------------------|-----------------------------------------------------|
| 1           | Introduction of histopathology,<br>labelling and transportation of<br>tissue specimens.                                                | 3     | K1 (R),<br>K3<br>(Ap)         | Flipped<br>classroom                                   | Open Book<br>test, Slido -<br>MCQ                   |
| 2           | Tissue processing - fixation,<br>sectioning, staining, and<br>mounting, manual and automated<br>method.                                | 3     | K3<br>(Ap),<br>K4<br>(An)     | Demonstrative<br>learning                              | MCQ, mind<br>mapping                                |
| 3           | Cryostat, frozen sections of fresh, fixed and unfixed tissue.                                                                          | 3     | K3 (Ap),<br>K4 (An)           | Cooperative<br>learning,<br>Lecture<br>using<br>videos | Oral test,<br>Summarization                         |
| 4           | Freeze drying, rapid frozen sections<br>and staining for emergency<br>diagnosis.                                                       | 3     | K3 (Ap),<br>K4 (An)<br>K5 (E) | Blended<br>learning                                    |                                                     |
| Unit '      | V: Clinical sample analysis and biom                                                                                                   | edica | l waste mai                   | nagement (12 H                                         | irs.)                                               |
| 1           | Physical, chemical and<br>microscopical examination of<br>sputum, urine and stool.                                                     | 3     | K3 (Ap),<br>K4 (An)<br>K5 (E) | Mind<br>mapping,<br>Inquiry<br>based                   | Short test with<br>open ended<br>question           |
| 2           | Routine examination of urine and their clinical significance. Pregnancy test.                                                          | 3     | K3 (Ap),<br>K4 (An)<br>K5 (E) | PPT &<br>lecture                                       | Quiz using<br>Mentee meter                          |
| 3           | Semen: Sample collection and<br>microscopic examination for count<br>and morphology.                                                   | 3     | K3 (Ap),<br>K4 (An)<br>K5 (E) | Brain<br>storming,<br>Flipped<br>classroom             | Socrative,<br>Collaborative                         |
| 4           | Bio-medical waste generation,<br>segregation, disposal, incineration.<br>Legal Aspects and Environment<br>Concern.                     | 3     | K3 (Ap),<br>K4 (An)           | Lecture<br>using<br>videos                             | Oral test,<br>Summarization<br>Online<br>Assignment |

**Course Focusing on Employability/ Entrepreneurship/ Skill Development:** Employability and Skill Development

Activities (Em/ En/SD): Handling laboratory instruments and perform clinical analysis. Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Professional Ethics Activities related to Cross Cutting Issues: Debate on "Professional ethics of a lab technician"

### Assignment:

- 1. Legal Aspects and Environment Concern related to Biomedical wastes. (Online Assignment).
- 2. Mind map on Tissue processing in Histopathology

# **Seminar Topic:**

- 1. Centrifuges
- 2. Water bath and Refrigerator
- 3. Autoclave and Hot air oven
- 4. Mixer and Laminar air flow
- 5. Microscope
- 6. Analyser and Spectrometer
- 7. Cell counter Blood bank
- 8. Haemoglobin estimation
- 9. Erythrocyte Sedimentation Rate
- 10. Blood typing
- 11. Diagnosis of Covid-19.
- 12. tissue processing- fixation, sectioning.
- 13. tissue processing- staining and mounting.
- 14. Physical, chemical and microscopical examination of sputum.
- 15. Physical, chemical and microscopical examination of Urine.
- 16. Physical, chemical and microscopical examination of stool.
- 17. Routine examination of urine and their clinical significance.
- 18. Semen: Sample collection and microscopic examination for count and morphology.
- 19. Technologies for Treatment for Biomedical Waste.

# Sample questions

# Part A

- 1. Formaldehyde is an example for sterilizing agent in clinical laboratory technology. (State **True or False**)
- 2. Assertion (A): Stool examination is a basic method for getting clues of illness.
  - **Reason** (**R**): It used to get the health issues like inflammation, bleeding, obstruction, tumor and parasitic infections in GIT.
    - a) Both A and R are correct
    - b) Both A and R are wrong
    - c) A is correct and R is wrong
    - d) A is wrong and R is correct

# 3. Match and choose the correct answer:

- A. Cerebrospinal fluid 1) Arthritis
- B. Synovial fluid 2) Transudate and exudate
- C. Pleural fluid 3) Pericardial and peritoneal fluids
- D. Serous fluid 4) Meningitis

|            | Α | В | С | D |
|------------|---|---|---|---|
| a)         | 2 | 3 | 4 | 1 |
| b)         | 1 | 4 | 3 | 2 |
| <b>c</b> ) | 3 | 2 | 1 | 4 |
| <b>d</b> ) | 4 | 1 | 2 | 3 |

4. Xylene is used as the clearing agent in tissue processing. (State True or False)

5. Which of the following is not a biomedical waste?

a) Animal waste b) Microbiological waste

c) Chemical waste d) Domestic waste

### Part B

1. Describe the scope and importance of medical laboratory technology.

- 2. Enumerate the factors affecting the clinical test results.
- 3. How will you estimate the haemoglobin content of blood?
- 4. What is the role of histology laboratory in clinical diagnosis?
- 5. Examine urine and their clinical significance

### Part C

- 1. Enumerate the hospital and clinical borne infection.
- 2. Explain the specimen collection and processing of blood
- 3. Describe the physical, chemical and microscopic examination of synovial fluid.
- 4. Discuss the major steps in the processing of tissues in histopathology.
- 5. Explain the different technologies for the treatment of biomedical waste management.

| Course In-charge      | Head of the Department |  |  |
|-----------------------|------------------------|--|--|
| Dr. P.T. Arokya Glory | Dr. A. Shyla Suganthi  |  |  |
| Dr. A. Punitha        |                        |  |  |

# Class: II M.Sc. ZoologySkill Enhancement Course IIITitle of the Course: Animal Food Processing and Quality ControlSemester: IVCourse Code: ZP234SE1

| Course   | т | т | D | G | Credits | Inst. | Total | Marks |          |       |
|----------|---|---|---|---|---------|-------|-------|-------|----------|-------|
| Code     | L | T | Г | 3 |         | Hours | Hours | CIA   | External | Total |
| ZP234SE1 | 2 | • | 1 | 1 | 2       | 4     | 60    | 25    | 75       | 100   |

### Prerequisite

Students should have a foundational understanding of basic nutrition principles and the nutritional composition of animal-derived food.

### Learning Objectives:

1. To develop a skill on recognize different types of animal food and their nutritional importance.

2. To apply the principles of Good Manufacturing Practices (GMPs) and sanitation protocols to prevent contamination and ensure food safety.

### **Course Outcomes:**

| On th | On the successful completion of the course, students will be able to:         |    |  |  |  |
|-------|-------------------------------------------------------------------------------|----|--|--|--|
| 1.    | recall different processing techniques used in the animal food industry.      | K1 |  |  |  |
| 2.    | explain the principles behind various processing methods used in animal       | K2 |  |  |  |
|       | food production.                                                              |    |  |  |  |
| 3.    | demonstrate the use of quality control tools and techniques in monitoring and | K3 |  |  |  |
|       | maintaining product quality.                                                  |    |  |  |  |
| 4.    | analyze the impact of processing methods on the nutritional value of          | K4 |  |  |  |
|       | animal food products.                                                         |    |  |  |  |
| 5.    | evaluate the effectiveness of quality control of processed foods.             | K5 |  |  |  |

3. K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate

# **Teaching plan with modules** Total Contact hours: 60 (Including lectures, assignments and tests)

| Mod    | Торіс                                                   | Hou | Cognitiv | Pedagogy              | Assessment/    |  |
|--------|---------------------------------------------------------|-----|----------|-----------------------|----------------|--|
| ule    |                                                         | rs  | e level  |                       | Evaluation     |  |
| Unit l | Unit I: Introduction to Animal Food Processing (12 Hrs) |     |          |                       |                |  |
| 1.     | Overview of animal food                                 | 3   | K1 (R)   | Collaborative         | Quiz,          |  |
|        | processing industry.                                    |     |          | Learning, Interactive | Assignment     |  |
|        |                                                         |     |          | Lecture               |                |  |
| 2.     | Importance of processing                                | 3   | K2 (U)   | Inquiry-Based         | Think-Pair-    |  |
|        | in animal food                                          |     |          | Learning,             | Share, Seminar |  |
|        | production.                                             |     |          | Brainstorming,        |                |  |
|        |                                                         |     |          | Debate.               |                |  |
| 3.     | Basic principles of food                                | 3   | K4 (An)  | Reflective thinking,  | Class Test     |  |
|        | preservation and                                        |     |          | Hands-on Activity,    |                |  |
|        | processing.                                             |     |          | Seminar               |                |  |

| 4.       | Regulations and                                                                          | 3      | K2 (U)             | Seminar,                                                  | Role Play                              |
|----------|------------------------------------------------------------------------------------------|--------|--------------------|-----------------------------------------------------------|----------------------------------------|
|          | standards in animal food                                                                 |        |                    | Role Play                                                 |                                        |
| T T *4 1 | processing.                                                                              | and D  |                    | (12 IImg)                                                 |                                        |
|          | <b>Coloction and councing</b>                                                            | and P  | reparation         | (12 Hrs)                                                  | Crown                                  |
| 1.       | of raw materials for<br>animal food production.                                          | 5      | K2 (U)             | Demonstration,<br>Seminar.                                | Discussion                             |
| 2.       | Cleaning, sorting, and<br>grading of raw<br>materials.                                   | 3      | K3 (Ap)<br>K4 An)  | Demonstration with visuals, Practical                     | Assignment                             |
| 3.       | Pre-processing<br>techniques for different<br>animal food products -<br>meats.           | 3      | K3 (Ap)<br>K4 An)  | Group Discussion,<br>Seminar                              | Class test                             |
| 4.       | Pre-processing<br>techniques for different<br>animal food products -<br>dairy, eggs.     | 3      | K3 (Ap)<br>K4 An)  | Inquiry based<br>Learning,<br>Brainstorming               | Short Test                             |
| Unit     | <b>III: Processing Techniques</b>                                                        | for An | imal Food          | Products (12 Hrs)                                         |                                        |
| 1        | Thermal processing<br>methods -<br>pasteurization,<br>sterilization.                     | 3      | K3 (Ap)<br>K5 (E)  | Video<br>Demonstration,<br>Collaborative<br>Learning      | Group<br>Discussion,<br>Open Book Test |
| 2        | Mechanical processing<br>techniques - grinding,<br>extrusion.                            | 3      | K3 (Ap)<br>K4 (An) | Cooperative<br>Learning, Seminar                          | Oral Test                              |
| 3        | Chemical processing<br>methods - curing,<br>fermentation.                                | 3      | K3 (Ap)<br>K4 (An) | Hands-On Activity,<br>Cooperative<br>Learning.            | Summarization                          |
| 4        | Novel processing<br>technologies in animal<br>food industry.                             | 3      | K3 (Ap)            | Inquiry-Based<br>Learning,<br>Brainstorming               | Assignment                             |
| Unit     | IV: Quality Control and As                                                               | suranc | e (12 Hrs)         |                                                           |                                        |
| 1        | Principles of quality<br>control in animal food<br>processing.                           | 3      | K2 (U)<br>K4 (An)  | Collaborative<br>Learning                                 | Short Test                             |
| 2        | Testing methods for<br>assessing quality<br>attributes - texture,<br>flavor, shelf-life. | 3      | K4 (An)            | Practical<br>Demonstration,<br>Inquiry-Based<br>Activity. | Quiz                                   |
| 3        | Monitoring and<br>controlling factors<br>affecting product<br>quality.                   | 3      | K3 (Ap)            | Collaborative<br>Learning – group<br>work                 | Mind<br>mapping                        |

| 4      | Implementation of<br>HACCP (Hazard<br>Analysis and Critical<br>Control Points) in<br>animal food processing. | 3        | K3 (Ap)           | Inquiry-Based<br>Learning:                                    | Role play                                 |
|--------|--------------------------------------------------------------------------------------------------------------|----------|-------------------|---------------------------------------------------------------|-------------------------------------------|
| Unit ' | V: Packaging, Storage, and                                                                                   | l Distri | bution (12        | Hrs)                                                          |                                           |
| 1      | Packaging materials and<br>techniques for animal<br>food products.                                           | 3        | K2 (U)            | Collaborative<br>learning,<br>Peer group teaching,<br>Seminar | Class Test                                |
| 2      | Storage conditions and<br>facilities for maintaining<br>product quality.                                     | 3        | K2 (U)<br>K4 (An) | Problem-Based<br>Learning,<br>Seminar,<br>Jigsaw              | Quizzes,<br>Summarisation                 |
| 3      | Transportation and<br>distribution<br>considerations.                                                        | 3        | K2 (U)            | Seminar, Index card<br>Interactive PPT,<br>Group Discussion   | Short test with<br>open ended<br>question |
| 4      | Consumer awareness and labeling requirements.                                                                | 3        | K4 (An)           | Interactive PPT,<br>Jigsaw                                    | Oral test                                 |

# Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Types of Pasteurization (PPT Presentation)

# Course Focussing on Cross Cutting Issues (Professional Ethics/ Human

# Values/Environment Sustainability/ Gender Equity):

# Activities related to Cross Cutting Issues: -

Assignment: 1. Overview of animal food processing industry.

**Assignment:** 2. Transportation of food products (Group Discussion) **Seminar Topics:** 

- 1. Importance of processing in animal food production.
- 2. Basic principles of food preservation and processing.
- 3. Regulations and standards in animal food processing.
- 4. Selection and sourcing of raw materials for animal food production.
- 5. Cleaning, sorting, and grading of raw materials.
- 6. Pre-processing techniques for different animal food products meats.
- 7. Pre-processing techniques for different animal food products dairy and eggs
- 8. Thermal processing methods pasteurization, sterilization.
- 9. Mechanical processing techniques grinding, extrusion.
- 10. Chemical processing methods curing, fermentation.
- 11. Novel processing technologies in animal food industry.
- 12. Principles of quality control in animal food processing.
- 13. Testing methods for assessing quality attributes texture, flavor, shelf-life.

- 14. Factors affecting product quality
- 15. Hazard analysis in food processing
- 16. Packaging techniques for food processing
- 17. Storage conditions and facilities for maintaining product quality.
- 18. How labels help in identifying good products.
- 19. Challenges and Innovations in food product distribution

### Sample questions

# Part A

- 1. What is the main purpose of the animal food processing industry?
  - a) To increase waste
  - b) To improve the safety, quality, and shelf-life of animal foods
  - c) To create plant-based foods
  - d) To remove nutrition from food
- 2. Assertion (A): Processing of animal food products increases their safety for consumption. Reason (R): Heat treatment kills harmful pathogens in animal-based foods.
  - a) Both A and R are true, and R is the correct explanation of A.
  - b) Both A and R are true, but R is not the correct explanation of A.
  - c) A is true, but R is false.
  - d) A is false, but R is true.
- 3. Pasteurization is used to kill pathogens in animal food products. State True or False
- 4. Which of the following is a primary consideration in the transportation of perishable goods?
  - a) Packaging aesthetics b) Environmental impact reports
  - c) Maintaining a cold chain system d) Increasing product price
- 5. The \_\_\_\_\_\_ system is essential for transporting temperature-sensitive products like dairy and meat to maintain their quality.

### Part B

- 11. What are the major sectors within the animal food processing industry?
- 12. What could happen if animal food is not properly processed?
- 13. Compare thermal processing with freezing for preserving animal food.
- 14. Discuss the factors affecting the transportation and distribution of perishable animal food products. How can these factors influence product quality and shelf life?
- 15. Explain the importance of consumer awareness in product labeling. How do accurate labels contribute to ensuring food safety and consumer trust?

### Part C

- 11. Assess the impact of technological advancements on the growth of the animal food processing industry.
- 12. Explain how pasteurization helps in extending the shelf life of animal food products.

- 13. Compare thermal processing methods used in meat versus dairy products.
- 14. Explain the key principles of HACCP (Hazard Analysis and Critical Control Points) in animal food processing. Discuss how HACCP ensures product safety and quality at various stages of production.
- 15. Describe the packaging materials and techniques used for animal food products. Explain how proper packaging, storage conditions, and distribution strategies contribute to maintaining product quality and extending shelf life.

| Course In-charge     | Head of the Department |  |  |
|----------------------|------------------------|--|--|
| Dr. C. Anitha        | Dr. A. Shyla Suganthi  |  |  |
| Dr. X. Venci Candida |                        |  |  |