Semester – II Major Core – II: GENERAL CHEMISTRY - II Course Code: CC2021

Hours Per week	Credits	Total Hours	Marks
4	4	60	100

Objectives

- 1. To learn the preparation, properties and importance of aliphatic hydrocarbons and alicyclic compounds.
- 2. To understand the principles and theories of chemical bonding metallurgical processes.
- 3. To study the gas laws , physical properties of liquids and the classification of liquid crystals

Course Outcome

COs	Upon completion of this course, students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the preparation, properties of organic compounds	PSO-1	U
CO - 2	apply the theories in the preparation of compounds	PSO-6	А
CO - 3	prepare and evaluate compounds based on their application and structure	PSO-4	Е
CO - 4	predict the properties of elements and the principles of volumetric analysis	PSO-6	Y
CO - 5	analyse the properties of matter	PSO-2	Y
CO - 6	learn the basics of metallurgy and the theories about gases	PSO-1	U

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Aliphati	c Compounds				
	1	Alkanes - preparation, physical properties, reactions, reactions with radical mechanism for substitution reaction	3	Understand the preparation and properties of alkanes	Lecture and discussion	Evaluation through Multiple choice questions,
	2	Alkenes: Preparation from alcohol, haloalkane, dihaloalkanes and alkynes - reactions of alkenes	3	Know about alkenes and the reactions	Lecture and discussion	short test, quiz and class test

	3	Hydroboration, hydroxylation, ozonolysis and epoxidation - peroxide effect - allylic substitution, oxidation by KMnO4 and polymerization	2	Gain knowledge about the reactions of alkenes	Lecture	Formative assessment I
	4	Synthesis of - Dibenzyl, cis and trans 2-butene, propanal and 1-methyl cyclohexanol	2	Prepare various compounds from alkenes	Lecture	
	5	Akynes: preparation, reactions - addition of hydrogen, halogen, hydrogen halide, water, HCN, CH ₃ COOH - dimerisation and cyclisation - acidity of terminal alkynes	2	Understand the preparation and properties of alkynes	Question answer session and lecture	
II	Alicyclic	Compounds		1	I	
	1	Cycloalkanes: Preparation - reactions -cycloaddition, dehalogenation, pyrolysis of calcium salt of dicarboxylic acid	3	Know about preparation and reactions of cycloalkanes	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,
	2	Wurtz reaction -stability of cycloalkanes - Baeyer's strain theory. Cycloalkenes: Preparation and reactions	3	Know the stability of cycloalkanes	Lecture with illustration	quiz Formative assessment I
	3	Preparation of conjugate dienes - reactions - 1,2 and 1,4 addition and Diels- Alder reaction, Synthesis of trans 2-chloro cyclopentanol	3	Understand clearly about the reactions and synthesis of compounds	Lecture, Discussion	
	4	Synthesis trans-2 methylcyclopentanol, cis and trans 1,2cyclohexanediol, cyclohexene, 2,3- butanedione and adipic acid	2	Study the synthesis of compounds	Lecture, Discussion	

III	Chemica	l bonding				
	1	Ionic bond - Properties of ionic compounds, factors favoring the ionic bond formation - ionization potential - electron affinity - electronegativity - Lattice energy - Born-Haber Cycle - Polarizing power and Polarizability	3	Understand clearly about ionic bond and lattice energy	Lecture with illustration	Evaluation through Multiple choice questions, short test, quiz
	2	Transition from ionic to covalent character and vice versa - Fajan's rules - Covalent bond - Properties of covalent compounds - structure and bonding of homo and heteronuclear molecules	3	Learn covalent bonding	Lecture with illustration	Formative assessment II
	3	Hydrogen bonding - types, effect on properties - Hybridisation - sp ³ ,sp ² , sp,dsp ² ,d ² sp ³ ,d ³ sp ³ - Examples - BeCl ₂ , BF ₃ , SiCl ₄ , PCl ₅ , SF ₆ , IF ₇ ,H ₂ O, NH ₃ , XeF ₆	3	Analyze the effects of hydrogen bonding and types of hybridization	Lecture	
	4	VSEPR Theory – Postulates – MO Theory – Bonding and anti-bonding orbitals – Applications of MO theory H ₂ , He, N ₂ , O ₂ , HF and CO molecules – Comparison of VB and MO theories	3	Know about VSEPR and MO theories	Lecture with power point presentation and illustration	
IV	Metallur					
	1	Occurrence of metals – basic metallurgical operations and metallurgy process – General methods involved in extraction of metals	2	Know about various metallurgical processes	Lecture	Evaluation through Multiple choice questions, short test,
	2	Concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process	1	Understand about different concentration methods	Lecture and discussion	quiz Formative assessment II
	3	Extraction processes– Chemical reduction – electrolytic reduction – metal displacement	2	Acquire knowledge about extraction processes	Lecture	

	4	Refining methods - distillation - fractional crystallization - electrolysis. Zone refining van Arkel de Boer methods	1	Know about various refining methods	Lecture and discussion	
	5	Electrolytic refining - ion exchange method - extraction - chemical properties and uses of Ti, W, Mo, V, and Ni	4	Study the extraction and properties of different metals	Lecture with power point presentation	
V	Gas and	Liquid state				
	1	Ideal gas: Kinetic theory of gases - Postulates and derivation of kinetic gas equation, derivation of gas laws-Maxwell's distribution of molecular velocities	3	Know about the theory of gases and derivation of gas equation	Lecture and discussion	Evaluation through Multiple choice questions, short test, quiz
	2	Types of molecular velocities - collision diameter - collision frequency - mean free path	2	Know about molecular velocities	Lecture	Formative assessment I
	3	Degrees of freedom - translational, rotational and vibrational - Principle of equipartition of energy - Behaviour of real gas - Vander Waals equation of state - derivation	3	Understand the different degrees of freedom and behaviour of real gases	Lecture with Illustration	
	4	Liquid state: Physical properties - Trouton's rule - surface tension - Effect of temperature on surface tension - viscocity - effect of pressure and temperature - refraction - refractive index - specific and molar refraction	2	Learn about liquid state	Lecture and discussion	
	5	Liquid crystals: Vapour pressure temperature diagram – thermography – classification of thermotropic liquid crystals – nematic, smetic and cholesteric liquid crystals with examples.	2	Know about different types of liquid crystals.	Lecture and discussion	

Course Instructor: Ms. L. Deva Vijila

Allied Chemistry - Botany and Zoology Major Chemistry of Biomolecules Course Code: CA2021

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
4	3	60	100

Objectives:

- 1. To acquire knowledge about the chemistry of biomolecules
- 2. To understand the structure and functions of biomolecules

Course Outcome							
COs	Upon completion of this course, students will be able to	PSO Addressed	Cognitive Level				
CO-1	remember the classification of biomolecules	PSO-1	R				
CO-2	understand the structure, function and metabolism of biomolecules	PSO-1	U				
CO-3	apply the chemistry of biomolecules in industry and medicine	PSO-6	А				
CO-4	analyse and identify biomolecules	PSO-2	Y				

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Carbohy	drates				
	1	Introduction - sources of carbohydrates in the diet - classification and functions	2	Understand the sources, classification and functions of carbohydrates in the diet	Lecture with illustration	Evaluation through Multiple choice questions,
	2	Glucose and fructose - reactions - interconversions and mutarotation	1	Gather knowledge on the reaction interconversions and mutarotation of glucose and fructose	Lecture and discussion	short test, quiz Formative assessment I
	3	Tests for carbohydrates - Molisch's, Benedict and Fehlings tests	1	Know the tests for carbohydrates	Lecture with power point presentation	
	4	Digestion - absorption - metabolism of carbohydrates	3	Understand the metabolism of carbohydrates.	Lecture and discussion	
	5	Regulation of blood sugar - diabetes mellitus	1	Study the regulation of blood sugar	Lecture and discussion	

	6	Properties and uses of	2	Know the properties	Lecture with	
	-	sucrose, starch and	_	and uses of sucrose,	power point	
		cellulose		starch and cellulose.	discussion	
	7	Differences	2	Differentiate	Lecture with	
		between starch and		between starch and	power point	
		cellulose		cellulose	discussion	
II	Amino A	cids and Proteins		-	•	
	1	Amino acids -	2	Understand the	Lecture and	Evaluation
		classification -		classification of amino	discussion	through
		isolation from proteins		acids		Multiple
		- Zwitter ion formation				choice
		and isoelectric				questions,
		point				short test,
	2	Synthesis of glycine,	2	Study the synthesis of	Lecture and	quiz
		alanine and phenyl		amino acids	discussion	D
	2	alanine		TZ (1 (1))	T	Formative
	3	Peptides - peptide	2	Know the synthesis of	Lecture with	assessment I
		bond - synthesis of		peptides	power point discussion	
	4	dipeptides Proteins -	2	Study the eleverification	Lecture with	
	4	classification based on	Z	Study the classification of proteins		
		structure and functions		of proteins	power point discussion	
	5	Primary, secondary,	2	Acquire knowledge on	Lecture and	
	5	tertiary and	2	structure of proteins.	discussion	
		quaternary structure of		structure of proteins.	discussion	
		proteins				
	6	Denaturation of	2	Understand	Lecture with	
		proteins - Tests for		denaturation of proteins	power point	
		proteins - Ninhydrin		1	discussion	
		and biuret tests				
III	Nucleic /	Acids and Enzymes				
	1	Nucleic acids -	3	Know the structure of	Lecture and	Evaluation
		nucleosides and	-	DNA	discussion	through
		nucleotides. Structure				Multiple
		of DNA - denaturation				choice
		and renaturation of				questions,
		DNA - replication of				short test,
		DNA				quiz
	2	Hydrogen bonding in	2	Study the bonding in	Lecture with	
		DNA. Stabilizing		DNA molecules	power point	Formative
		forces in protein and			discussion	assessment
		DNA -Vander waal's				II
		forces, dipole-dipole				
		and dipole-induced				
		dipole interactions				
	3	Structure of RNA -	2	Acquire knowledge on	Lecture with	
		Types of RNA.		structure of RNA	power point	
		Difference between			discussion	
1		DNA and RNA				

	4	Enzymes -	2	Understand the	Lecture and	
		classification and	4	classification of	discussion	
		characteristics -		enzymes	41504551011	
		Mechanism of enzyme				
		action -factors				
		influencing				
		enzyme activity				
	5	Cofactors and	2	Know the importance	Lecture with	
	Ũ	coenzymes. Enzyme	-	of cofactors and	power point	
		inhibitors - reversible		coenzymes	discussion	
		and non-reversible				
		inhibitors				
	6	Industrial and medical	1	Study the application	Lecture and	
		application of enzymes		of enzymes	discussion	
IV	Lipids.	Oils and Fats		, , , , , , , , , , , , , , , , , , ,		
· ·	1	Lipids - classification -	1	Classify lipids and its	Lecture with	Evaluation
		properties - biological		properties	power point	through
		functions			discussion	Multiple
	2	Biological functions of	2	Understand the	Lecture and	choice
		phospholipids		functions of	power point	questions,
		and glycolipids		phospholipids	discussion	short test,
				and glycolipids		quiz
	3	Oils and fats -	1	Describe the	Lecture and	
		definition -		characteristics and uses	discussion	Formative
		characteristics and		of oils and fats		assessment
		uses				II
	4	Common fatty acids in	2	Understand the process	Lecture with	
		oils and fats -		of extraction and	power point	
		extraction and refining		refining of oils	discussion	
		of oils			-	
	5	Estimation of fats and	3	Determine the	Lecture and	
		oils - acid value,		saponification and	discussion	
		saponification		iodine value of fats and		
	6	value and Iodine value	3	oils Differentiate enimel	Leater 11	
	6	Distinction between	5	Differentiate animal	Lecture with	
		animal and vegetable		and vegetable fats	power point	
		fats. Hydrogenation			presentation	
V	Vitamin	and Rancidity and Hormones				
•	1	Vitamins -introduction	3	Understand the	Lecture with	Evaluation
		- classification -	-	classification and	power point	through
		Sources - biological		biological functions of	presentation	Multiple
		function		vitamins	Presentation	choice
	2	Deficiency diseases	2	Recognize the diseases	Lecture with	questions,
		of Vitamin A, B, C, D,		caused by vitamin	power point	short test,
		E and K		deficiency	presentation	quiz
	3	Hormones introduction	2	Classify hormones	Lecture with	.1
		and classification	-		power point	Formative
					presentation	assessment I
	1				1	1

4	Structure and functions of thyroxin, adrenaline, bile acids, progesterone, testosterone and oestrone	3	Explain the structure and functions of hormones	Lecture	
5	Effect of hormone activity on biological functions.	2	Understand the effect of hormone on biological functions	Lecture	

Course Instructor: Dr. M. Anitha Malbi

Semester - II

Part IV: NME

Applied Chemistry - II

Course Code: CNM202

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
2	2	30	100

Objectives:

1. To acquire knowledge on petroleum and petroleum products

2. To know about the preparation of cosmetics and perfumes

3. To understand the manufacture of matches and characteristics of paints and pigments

COs	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	remember the refining of petroleum and manufacture of petroleum products	PSO-4	R
CO-2	analyse the therapeutic uses of pharmaceuticals	PSO-7	Y
CO-3	understand the process of manufacture of cosmetics and perfumes	PSO-8	U
CO-4	analyse the characteristics of matches, explosives, paints and pigments	PSO-2	Y

Course Outcome

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning outcome	Pedagogy	Assessment / Evaluation
Ι	Petroleun	1				
	1	Petroleum - refining of petroleum - fractional distillation - cracking - thermal and catalytic cracking - advantages of catalytic cracking - octane rating - anti knock agents - cetane rating	3	Know the process of refining of petroleum and the importance of cracking	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Petrochemicals - direct and indirect petrochemicals - methods involved in manufacture of petrochemicals - alkylation - pyrolysis	3	Understand the methods involved in the manufacture of petrochemicals	Lecture and discussion	Formative assessment I

II	Pharmace	euticals				
	1	Preparation and therapeutic uses of the following: Antiseptics - alum - zinc oxide - boric acid. Mouth wash - hydrogen peroxide. Antacid - aluminium hydroxide. Analgesics - aspirin - paracetamol. Haematinics - ferrous fumerate - ferrous gluconate. Laxatives - epsom salt - milk of magnesia	6	Acquire knowledge about the therapeutic uses of pharmaceuticals	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
III	Cosmetics	s and Perfumes				
	1	Preparation and uses - shampoo - hair dye - face cream - sun screen lotion - nail polish - nail polish removers - lipsticks	3	Acquire knowledge about cosmetics	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,
	2	Perfumes - ingredients - isolation of essential oils - preparation of odorous substances - vanillin - diphenyl oxide	3	Remember the preparation of perfumes	Lecture and discussion	quiz Formative assessment II
IV	Matches a	nd Explosives		I		
	1	Safety matches - classification - composition - manufacture of safety matches. Pyrotechny - composition of fireworks	3	Understand the process of manufacture and uses of safety matches and fire works	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Explosives - characteristics - classification - low explosives - gun powder - smokeless powder - primary explosives - preparation and uses of lead azide - mercury fulminate - high explosives - picric acid -dynamite	3	Gain knowledge about the classification of explosives	Lecture and discussion	Formative assessment II

V	Paints and	d Pigments				
	1	Paints - general characteristics - constituents - pigment - vehicle - thinners - driers - plasticizers - fillers - anti- skinning agents - mechanism of film formation - paint removers - constituents.	3	Gain knowledge about the characteristics and constituents of paints.	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative
	2	Pigments - manufacture of white lead - lithopone - titanium dioxide - ultra marine blue - red lead - chrome yellow- Prussian blue.	3	Know the methods of manufacturing pigments.	Peer group teaching	assessment I

Course Instructor: Dr. S. Ajith Sinthuja

Core IV: General Chemistry IV Course Code: CC2041

Hours / week	Credits	Total hours	Marks
4	4	60	100

Objectives

- To study the preparation and chemical reactions of alkyl and aryl halides, alcohols, phenols, ethers and epoxides with mechanism
- To know the chemistry of halogens and noble gases.
- To understand the basics of first and second law of thermodynamics and related relationship.

Course outcome

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	know the mechanism of important name reactions	PSO - 1	U
CO - 2	apply the reaction mechanisms in the synthesis of components used in industrial and medicinal fields	PSO - 2	An
CO - 3	evaluate the characteristics of halogens and noble gases	PSO - 3	Е
CO - 4	classify the non-aqueous solvents and know the theories of acids and bases	PSO - 3	Е
CO - 5	list out the applications of first and second law of thermodynamics	PSO - 3	R

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Haloalka	anes and Haloarenes				
	1	Classification of alkyl halides, methods of formation from alcohols, alkanes, alkenes. Allylic/ benzylic bromination and chlorination	2	Understand the preparation and properties of alkyl halides	Lecture and discussion	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Hundiecker reaction, Finkelstein reaction and Swart's reaction	2	Know about the mechanisms of the reactions	Lecture and discussion	

	3	Nucleophilic substitution reactions and its mechanisms. S_N2 and S_N1 reactions with energy profile diagrams and its difference	2	Gain knowledge about the nucleophilic substitution reactions	Lecture	
	4	Dehydrohalogenation with mechanism, Hoffmann and Saytzeff's rules, Reaction with metals, Wurtz reaction and formation of Grignard reagent	2	Understand the mechanisms of named reactions and formation of Grignard reagent	Lecture	
	5	Methods of formation of aryl halides - nucleophilc substitution reactions of aryl halides - addition-elimination and the elimination- addition mechanisms	2	Understand the preparation and properties of alkynes	Question answer session and lecture	
	6	Electrophilic substitution - Ullmann reaction and Wurtz-Fittig reaction. Relative reactivities of alkyl, allyl, vinyl and aryl halides	1	Study the synthesis of compounds	Lecture and discussion	
	7	Synthesis and uses of DDT and BHC	1	Know the synthesis and uses of some compounds	Lecture and discussion	
Π		, Phenols and Ethers		· · ·	· ·	
	1	Preparation of alcohols through reduction, hydroboration, hydration, oxymercuration and Grignard reaction	2	Know about preparation and reactions of alcohols	Lecture with illustration	Evaluation through Multiple choice questions, short test, quiz Formative assessment I

	2	Reactions of alcohol with metals, esterification with mechanism, oxidation, dehydration, conversion to alkyl halides	2	Understand the reactions of alcohol with metals	Lecture with illustration	
	3	Preparation of Phenols its acidity and relative acid strength of substituted phenols	2	Understand clearly about the reactions and synthesis of compounds	Lecture and discussion	
	4	Reactions of phenols - esterification, oxidation, Kolbe's, Reimer-Tiemann, Gattermann, electrophilic substitution reactions	2	Study the reactions of phenols	Lecture and discussion	
	5	Dihydric and trihydric phenols- preparation and properties	2	Know about the preparation and properties of dihydric and trihydric phenols	Lecture and illustration	
	6	Preparation of ethers, reactions with epoxide. Synthesis of aspirin, 3 and 4-nitro phenol nd t- butylmethyl ether	2	Learn the preparation of ethers and its reactions with epoxide	Lecture and discussion	
III	Halogen	family and Noble gase	S		I	<u> </u>
	1.	General characteristics of halogen with reference of electro negativity, electron affinity, oxidation states, and oxidizing power	2	Understand clearly about the general characteristics of halogen	Lecture with illustration	Evaluation through Multiple choice questions, short test, quiz Formative assessment II
	2.	Peculiarities of fluorine its hydrides and oxides oxo acids of halogens	2	Learn about peculiarities of fluorine compounds	Lecture with illustration	

	3.	Interhalogen compounds, polyhalide ions, pseudohalogens, preparation, properties and structure of interhalogen compounds	2	Analyse the properties and structure of interhalogen compounds	Lecture	
	4.	Inert gases , position in the periodic table , isolation from atmosphere , General characteristics, Structure and shape of xenon compounds XeF ₂ ,XeF ₄ , XeF ₆ , XeOF ₂ , XeOF ₄ its uses of noble gases	2	Know the characteristics, structure and shape of Inert gases	Lecture with power point presentation	
	5.	Protic & Aprotic solvents, non- aqueous solvents, Classification of solvents, General properties of ionizing solvents-chemical reactions. Liquid ammonia and liquid SO ₂ as solvents	2	Learn about protic & aprotic solvents its classification and general properties	Lecture and discussion	
	6.	Acid Base Chemistry, Theories of acids and bases, Arrhenius, Bronsted, Lowry theory proton donor - acceptor system. HSAB principle and Usanovich concept	2	Know the various theories of acids and bases	Lecture and discussion	
IV	First La	w of Thermodynamics	and Hess'	s law		
	1.	Chemical thermodynamics, importance of thermodynamics, basic terms- system, boundary and surroundings. Types of systems - open, closed and isolated	2	Know the importance of thermodynamics	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment II

2.	Types of processes - isothermal, adiabatic, isobaric and isochoric, reversible and irreversible process. Difference between reversible and irreversible process. First law of thermodynamics- mathematical form	2	Understand the different types of processes	Lecture and discussion
3.	Heat capacity of a system, heat capacity at constant volume (Cv) and heat capacity at constant pressure (Cp), relationship between Cp and Cv. Calculations of w, q, dE and dH for the reversible expansion of ideal gases under isothermal and adiabatic conditions	2	Acquire knowledge heat capacity of a system	Lecture
4.	Joule- Thomson effect, derivation of Joule- Thomson coefficient for ideal gases and real gases, inversion temperatures	2	Derive Joule- Thomson coefficient	Lecture and discussion
5.	Hess's law and its applications. Variation of enthalpy change of reaction with temperature (Kirchoff's equation)	2	Understand the variation of enthalpy	Lecture
6.	Second law of thermodynamics, Need for second law, statements of Second law, Carnot theorem, Carnot cycle, Efficiency of heat engine	2	Study the need for second law of thermodynamics	Lecture and power point presentation

V	Thermodynamics – II									
	1.	Third law of thermodynamics, concept of entropy, State function, entropy change in isothermal expansion of ideal gas, entropy change in reversible and irreversible process	2	Know about the Third law of thermodynamics and the concept of entropy	Lecture, Discussion	Evaluation through Multiple choice questions, short test, quiz Formative assessment I				
	2.	Entropy change accompanying by change of phase, calculation of entropy change of an ideal gas with changes in pressure, volume and temperature, Entropy of mixing	2	Gather knowledge on entropy change accompanying change of phase	Lecture					
	3.	Physical significance of entropy. Gibbs free energy , Work function, Variation of free energy change with temperature and pressure , Criteria for spontaneity , Gibbs Helmholtz equation	2	Understand the physical significance of entropy	Lecture, Illustration					
	4	Partial molar properties, Clapeyron Clausius equation and its applications. Van't Hoff reaction isotherm and its significance	2	Learn Clapeyron Clausius equation, Van't Hoff reaction and its applications.	Lecture, Discussion					
	5	Van't Hoff isochore and significance. Fugacity, concept, determination of fugacity of real gases	2	Gain knowledge on Van't Hoff isochore and fugacity	Lecture					

6	Variation of fugacity with temperature and pressure. Physical significance of fugacity. Activity, activity coefficient Nernst Heat theorem and its applications. Zeroth law of thermodynamics	2	Understand the variation of fugacity with temperature and pressure	Lecture, Discussion	
---	--	---	--	------------------------	--

Course Instructor: Sr. K. Francy

Semester – IV Elective II a - Green Chemistry Course Code: CC2042

Hours / week	Credits	Total hours	Marks
4	3	60	100

Objectives

- 1. To know the principles of green chemistry.
- 2. To study the important techniques and green synthesis of compounds.
- 3. To study the concept of atom economy in chemical synthesis.

Course outcome

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	know the principles of green chemistry	PSO - 1	R
CO - 2	design green synthesis	PSO - 5	С
CO - 3	interpret green method for organic synthesis	PSO - 3	E
CO - 4	synthesize various compounds by microwave and ultrasound assisted methods	PSO - 4	С
CO - 5	analyze the important techniques and directions in practicing green chemistry	PSO - 2	An
CO - 6	identify the importance of Green chemistry in day to day life	PSO - 8	Ар

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Introduc	tion to green chemistry				
	1	Definition, need for green chemistry and scope of green chemistry	2	Know the need for green chemistry	Lecture with power point presentation and group discussion	Evaluation through Multiple choice questions, short test, quiz
	2	Concept of atom economy, yield, mass intensity and atom economy. Calculation of atom economy, mass intensity, mass productivity and carbon efficiency	4	Calculate the atom economy, mass intensity, mass productivity and carbon efficiency	Seminar	Formative assessment I
	3	Different types of reactions and atom economy, addition, substitution, elimination and rearrangements	2	Differentiate the types of reactions	Illustration and seminar	

		~	2			,
	4	Concept of selectivity,	2	Understand the	Lecture with	
		enantioselectivity and		concept of	power point	
		chemoselectivity		selectivity	presentation	
	5	Regioselectivity and	2	Know the	Lecture and	
		diastereoselectivity		different types	group discussion	
				of selectivity		
II	Green so	blvent				
	1	Super critical fluids, Introduction, extraction of super critical fluids, solvents of super critical fluid, advantages and applications Carbon dioxide as a super critical fluid	4	Learn the extraction and advantages of super critical fluids	Question answer session	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Features of technique for using super critical carbon dioxide, advantages and application. Chemical reaction in supercritical water and Near, Critical Water (NCW), Region	4	Understand the features of technique for using super critical carbon dioxide	Lecture	
	3	Extraction natural products, dry cleaning, supercritical polymerization, hydrogenation and hydroformylation. Ionic liquid as green solvent: Introduction, synthesis of ionic liquids, acidic ionic liquid and neutral ionic liquids, applications in organic synthesis	4	Know the process of extraction of natural products and applications	Lecture with power point presentation and group discussion	
III	Green ca	-	[1	
	1	Catalysis over view, acid catalyst, basic catalyst, oxidation catalyst, polymer supported catalyst, photosensitized super acid catalyst and Tetra Amido Macrocylic Ligand (TAML) catalyst	3	Understand the different types of catalyst	Seminar	Evaluation through Multiple choice questions, short test, quiz Formative assessment II

	2	Biocatalyst, microbial oxidation, microbial reduction, enzyme catalyzed hydrolytic process, per fluorinated catalyst and modified	4	Know the action of Biocatalyst	Assignment	
	3	biocatalyst Development of mesoporous supports by liquid crystal templating, neutral templating methods, heterogeneous catalyst, solid supported catalyst	5	Compare the Development of mesoporous supports by various methods	Lecture with power point presentation and group discussion	
IV	Green sy	vnthesis				
	1	Green synthesis of the following compounds, Adipic acid, Catechol, Benzoyl bromide, Acetaldehyde, Citral, Ibruprofen and Paracetamol	3	Synthesize different compounds by Green synthesis method	Illustration and seminar	Evaluation through Multiple choice questions, short test, quiz Formative assessment II
	2	Microwave assisted reactions in water, Hoffmann Elimination, Hydrolysis of benzyl chloride and methyl benzoate, oxidation of toluene and alcohols	3	Learn the different microwave assisted reactions in water	Lecture and group discussion	
	3	Microwave assisted reactions in organic solvents, Esterification, Fries rearrangement, Clasien Rearrangement, Diels - Alder Reaction and Decarboxylation	3	Understand the different microwave assisted reactions in organic solvents	Lecture with power point presentation	
	4	Ultra sound assisted reactions, Esterification, Saponification, alkylation, oxidation, reduction, coupling reactions and Cannizaro reactions	3	Learn the different ultra sound assisted reactions	Lecture and illustration	
V	Green re	eactions involving basic pr	inciple of g	•		
	1	Twelve principles of green chemistry - choice of starting materials - biomimitic, multifunctional reagents materials reagents.	4	Know the twelve principles of green chemistry	Lecture, Quiz	Evaluation through Multiple choice questions, short test, quiz Formative

2	Combinatorial green chemistry, Green Chemistry in sustainable developments	4	Understand the importance of Green Chemistry in sustainable developments	Lecture with power point presentation	assessment I
3	Importance of Green chemistry in day to day life, versatile bleaching agents and analgesic drugs	4	Learn the Importance of Green chemistry in day to day life	Lecture and group discussion	

Course Instructor: Dr. S. Ajith Sinthuja

Allied Chemistry for Physics Major Semester IV Physical Chemistry Course Code: CA2032

Hours / week	Credits	Total hours	Marks					
4	4	60	100					
•	•	00	100					
	Hours / week 4	Hours / weekCredits44	Hours / weekCreditsTotal hours4460					

Objectives

- 1. To understand the basic concepts of thermodynamics and nano chemistry
- 2. To enable them to apply concepts related to chemistry in their careers
- 3. To know the basic principles of kinetics and photochemistry

Course Outcome

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO-1	remember the theories and the factors influencing rate of reaction	PSO-1	R
CO-2	understand the laws and theories that govern photochemistry	PSO-1	U
CO-3	apply the principles of physical properties for structural determination	PSO-6	А
CO-4	understand the different laws of thermodynamics	PSO-1	U
CO-5	analyse the importance of nano chemistry in various fields	PSO-2	Y

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Thermo	dynamics				
	1	Thermodynamics - importance - basic terms - system, boundary and surroundings - types of systems - open - closed - isolated - homogeneous and heterogeneous	2	Know about the basics in thermodynamics	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Types of processes - isothermal, adiabatic, isobaric, isochoric, reversible and irreversible process- difference between reversible and irreversible process - state and path functions	2	Differentiate the different processes	Lecture with power point presentation	Formative assessment I

	3	Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods	3	Learn about different methods of determining order of reaction	Lecture with power point presentation and group discussion	
	2	Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period	3	Differentiate order and molecularity	Lecture	quiz Formative assessment I
	1	Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples	3	Know about reaction rate and factors influencing rate of reaction	Question answer session	Evaluation through Multiple choice questions, short test,
II	Chemica	al kinetics				
	6	temperature - significance Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle	2	vanderwaal's gas Learn Carnot's cycle	Lecture with power point presentation	
	5	Expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - derivation - inversion temperature significance	2	Know to derive expression for Joule Thomson coefficient for an ideal gas and	Lecture with power point presentation	
	4	Variation of enthalpy of a reaction with temperature - Kirchoff's equation, Joule Thomson effect	2	Learn about Joule Thomson effect	Lecture and seminar	
	3	First law of thermodynamics - different statements - mathematical derivation - heat capacity of a system - heat capacity at constant volume (C_v) - heat capacity at constant pressure (C_p) - thermodynamic relationship between C_p and C_v	2	Derive the expressions for heat capacities	Lecture and power point presentation	

	4	Arrhenius theory -concept of activation energy - effect of catalyst - calculation of energy of activation. Theories of reaction rates - collision theory of bimolecular gaseous reactions - activated complex theory	3	Know about activation energy	Lecture with power point presentation	
III	Physical	properties and structure de	eterminati	on		J
	1	Dipole moment - definition and expression for dipole moment - applications - molecular geometry - cis-trans isomerism and disubstituted benzene derivatives	2	Know about dipole moment and isomerism	Seminar and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Dia, para and ferro magnetism - magnetic susceptibility and magnetic moment - measurement using Guoy balance - application of magnetic properties	2	Learn about dia , para and ferro magnetism	Lecture and power point presentation	Formative assessment II
	3	Thermogravimetric analysis - principles - applications. Chromatography - classification	2	Know about thermogravimetric analysis	Lecture and power point presentation	
	4	Column chromatography - principle - experimental techniques - factors affecting column efficiency and applications	2	Gather knowledge regarding column chromatography	Power point presentation with videos	
	5	TLC principle - experimental techniques - advantages - limitations - applications. GC - principle - experimental techniques - applications	2	Distinguish between TLC and GC	Illustration, seminar and power point presentation	
	6	HPLC - principle and experimental techniques	2	Know about the principles of HPLC	Lecture and power point presentation	

IV	Photoch	emistry				
	1	Importance of photochemistry - difference between thermal and photochemical reactions - laws of photo chemistry - Beer-Lambert's Law - Grother's - Drapers law - Stark-Einstein's law	3	Understand about photo chemical laws.	Power point presentation with videos	Evaluation through Multiple choice questions, short test, quiz Formative
	2	Quantum efficiency - electronic excitations - singlet and triplet states - Jablonski diagram - internal conversion - intersystem crossing	3	Know about electronic excitations	Lecture	assessment II
	3	Fluorescence - phosphorescence - difference between fluorescence and phosphorescence	2	Differentiate between fluorescence and phosphorescence	Lecture	
	4	Types of photo chemical reactions based on quantum efficiency ($\phi =$ 1, $\phi < 1$ and $\phi > 1$) - primary and secondary process of photo chemical reaction - photo chemical rate law	2	Learn the types of photo chemical reactions	Lecture and power point presentation	
	5	Kinetics of photo chemical reactions - combination of H ₂ and Cl ₂ - decomposition of HI- photosensitization - photosensitizers - Chemiluminescence – bioluminescence. Lazers - principle - uses	2	Understand the kinetics of photo chemical reactions	Lecture and power point presentation	
V	Chemist	try of Nanomaterials				
	1	Nanotechnology - introduction, fundamental principles - nano particles - size - nano particles of metals - semiconductors and oxides	3	Understand the fundamental principles of nanochemistry	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz

2	Synthesis of nano sized	3	Gather knowledge	Lecture with	F
	compounds - reduction		regarding	videos	or
	methods by sodium citrate		synthesis of nano		m
	and borohydride - Sol-gel		particles		at
	method and chemical				iv
	vapour deposition method				e
	- properties - optical and				as
	electrical				se
3	Sol-gel method and	2	Learn about	Seminar	SS
	chemical vapour		synthesis of nano		m
	deposition method -		particles		e
	properties - optical and				nt
	electrical				Ι
4	Nano clusters - carbon	2	Know about nano	Power point	
	nano tubes - single walled		clusters and	presentation	
	nano tubes and multi-		carbon nano tubes	and seminar	
	walled nanotubes				
5	Properties of carbon	2	Understand the	Lecture with	
	nanotubes - applications -		applications of	videos	
	Application of nano		nano chemistry		
	chemistry in various fields				

Course Instructor: Dr. S. Ajith Sinthuja

Major Core VIII: ORGANIC CHEMISTRY - II Course Code: CC2061

Hours per week	Credits	Total hours	Marks
6	5	90	100

Objectives:

- To know the synthesis and structure of carbohydrates, alkaloids, terpenoids and dyes
- To understand the rearrangements, synthetic strategies and terminologies involved in organic synthesis and the role of reagents in organic synthesis.
- To study the basic principles of UV, IR and NMR spectroscopy and instrumentation.

Course Outcome

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the synthetic methodology, reagents and rearrangements in organic chemistry	PSO-1	U
CO - 2	elucidate the structure of carbohydrates, alkaloids and terpenoids	PSO-6	С
CO - 3	synthesize dyes and compounds of synthetic importance	PSO-4	А
CO - 4	analyse the strategies and terminologies involved in organic synthesis leading to new products	PSO-5	An
CO - 5	apply the spectral techniques in structural determination	PSO-6	А

Total Hours: 90 (Including lectures, assignments and tests)

Unit	Module	Topic	Hours	Learning	Pedagogy	Assessment/
				Outcome		Evaluation
Ι	Carbohy	drates				
	1	Carbohydrates: Definition - classification with suitable examples - classification of sugars as reducing and non- reducing sugars - stereochemistry of carbohydrates: D- and L- configurations - erythro and threodiastereomers - anomers and epimers with suitable examples	3	Classify carbohydrates and its stereochemistry	Lecture with videos	Evaluation through quiz, slip test, group discussion Formative assessment I

	2		2	A 1 (1	Lastruna	
	2	Monosaccharides:	3	Analyze the	Lecture	
		Classification of		classification		
		monosaccharides with		and properties of		
		suitable examples –		monosaccharide		
		glucose - properties of		S		
		glucose - epimerisation				
		of glucose - anomers of				
		glucose and mutarotation				
		- fructose and its				
		properties				
	3	Conversion of aldose to	3	Understand the	Lecture	
	5		5		Lecture	
		ketose and ketose to		conversion and		
		aldose - formation of		structure of		
		osazone and glycosides -		glucose and		
		Fischer open structure		fructose		
		and evidences for open				
		structure - Haworth				
		projection cyclic				
		structures - pyranose and				
		furanose and evidences				
		for cyclic structures of				
		glucose and fructose				
	4	Stepping up - Kiliani-	3	Recognize the	Lecture	
	-	Fischer synthesis and		degradation of		
		stepping down - Ruff		monosaccharide		
		degradation of		s		
		monosaccharides		3		
	5	Disaccharides: α - and β	3	Identify the	Lecture	
	5		5	Identify the	Lecture	
		- glucosidic linkages		linkages in		
		with suitable examples -		disaccharides		
		1,4' and 1,5' linkages		and explain the		
		with suitable examples -		structure and		
		Structure and properties		properties of		
		of sucrose		sucrose		
	6	Polysaccharides:	3	Compare	Lecture	
		Cellulose and starch -		cellulose and	with power	
		reactions and structure		starch	point	
					presentation	
II	Synthetic	methodology and reagents	;			
	1	Synthetic terminology -	3	Understand the	Lecture	Evaluation
		Disconnection, synthon,		synthetic		through quiz,
		synthetic equivalent		terminologies of		slip test and
		(SE), functional group		retrosynthesis		group
		interconversion (FGI),		1001005511010010		discussion
		target molecule (TM)				discussion
	2	Retro synthetic analysis -	3	Compare linear,	Lecture	Formative
	2		5	-	Lecture	assessment I
		Linear, convergent and		convergent and		assessificiit 1
		combinatorial syntheses		combinatorial		
				syntheses		

	3	Retrosynthesisof 4- methyl acetophenone, methylcyclohex-3- enecarboxylate, phenylethylbromide, 2- methylcyclopentene and 2-allyl phenol Role of following	4	Illustrate the retrosynthesis of the given organic compounds Analyze the role	Lecture	
		reagents in organic synthesis: DIBAL, NBS, DCC, trimethylsillyl chloride and methyl lithium - List of nucleophilic reagents and electrophilic reagents		of the given reagents in organic synthesis	and group discussion	
III	5 Natural P	Malonic ester and acetoacetic ester in the synthesis of monocarboxylic acids - dicarboxylic acids - α,β- unsaturated carboxylic acids and heterocyclic compounds roducts and Dyes	4	Explain the role of malonic ester and acetoacetic ester in organic synthesis	Lecture	
	1	Alkaloids: Definition - classification with suitable examples for each class - properties - structural determination - Hoffman exhaustive methylation	3	Understand the classification, properties and structure of alkaloids	Lecture	Evaluation through class test, quiz and group discussion
	2	Sources, isolation, physiological activities and structural elucidation of conine, piperine and nicotine.	4	Elucidate the structure of conine, piperine and nicotine	Lecture	Formative assessment II
	3	Terpenoids: Definition, classification, isoprene and special isoprene rule	2	Explain terpenoids, isoprene and special isoprene rule	Lecture	
	4	Sources, isolation, structural elucidation and uses of citral, geraniol and limonene	3	Elucidate the structure of citral, geraniol and limonene	Lecture	

fluorescein, indigotin and alizarin.	
electron-deficient carbon - 1,2 shift - Wagner- Meerwein rearrangement, pinacol- 	Evaluation through class test, quiz and group discussion Formative assessment II

V	Spectrose	сору				
	1	UV Spectroscopy: Electromagnetic spectrum - Types of electronic transitions - λmax, chromophores and auxochromes. Bathochromic and hypsochromic shifts. Intensity of absorption - hyper chromic and hypo chromic shifts	3	Understand the concepts of UV spectroscopy	Lecture with videos	Evaluation through class test, quiz, group discussion and problem solving
	2	Application of Woodward-Fieser rules for calculation of λ max for α , β unsaturated aldehydes, ketones, carboxylic acids and esters. Conjugated dienes - acyclic, homoannular and heteroannular, extended conjugated systems-aldehydes, ketones and dienes	4	Predict the λ_{max} value of the given compounds using Woodward- Fieser rule	Lecture and problem solving	assessment I
	3	IR Spectroscopy: Molecular vibrations and origin of IR spectra, IR absorptions- fingerprint region and its significance. H-bonding- inter and intramolecular hydrogen bonding	3	Explain the concept of IR spectroscopy	Lecture with videos	Evaluation through class test, quiz and group discussion
	4	Application in functional group analysis. IR spectrum of alkane, alkene, alkyne, alkyl halide, alcohols and carbonyl compounds	2	Interpret the IR spectrum of the given compounds	Lecture with power point presentation	Formative assessment II
	5	NMR Spectroscopy: Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it. Significance of number of peaks and peak area. Spin-spin coupling and coupling constant	3	Describe the principle and concept of NMR Spectroscopy	Lecture with videos	

6	Interpretation of NMR	3	Interpret the	Lecture	
	spectra of simple		NMR spectrum	with power	
	compounds- ethyl		of simple	point	
	alcohol, benzene, methyl		organic	presentation	
	chloride, benzaldehyde		compounds		
	and mesitylene				

Course Instructor: Dr. Sr. Francy

HOD: Dr. M. Anitha Malbi

Semester - VI Major Core IX: INORGANIC CHEMISTRY II Course Code: CC2062

Hours per week	Number of Credit	Total Hours	Marks
5	5	75	100

Objectives

- To understand the concepts and applications of nuclear reactions.
- To know the characteristics of solids and its applications.
- To gain knowledge about the development and uses of bioinorganic compounds.

	Course Outc	come	
COs	Upon completion of course students will	PSO Addressed	Cognitive
	be able to		Level
CO - 1	understand the types of nuclear reactions	PSO - 1	U
	and their applications		
CO - 2	know about natural and artificial	PSO - 2	R
	radioactivity		
CO - 3	classify crystal systems and their structures	PSO - 1	An
CO - 4	predict the role of bioinorganic compounds	PSO - 2	Е
	in biological systems		
CO - 5	use the solid materials for specific purposes	PSO - 6	А

Course Outcome

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation				
Ι	Nuclear	Nuclear Chemistry I								
	1	Introduction - composition of nucleus and nuclear forces - nuclear stability - mass defect - binding energy - packing fraction	3	Know about the basics in nuclear chemistry	Lecture and power point presentation	Evaluation through class test, quiz and group discussion				
	2	N/P ratio - magic numbers - nuclear models - liquid drop - Shell and collective model	3	Learn about magic numbers	Lecture and power point presentation					
	3	Isotopes - detection and separation - deviation of atomic weights from whole numbers - isobars, isotones and isomers	3	Differentiate between isotopes, isobars and isotones	Illustration and lecture	Formative assessment I				
	4	Radioactive decay and equilibrium - nuclear isomerism - internal conversion	3	Learn about Joule Thomson effect	Lecture and seminar					

II	5 Nuc	Nuclear Q-value - threshold energy - cross sections, types of reactions - fission and fusion - modes of radioactive decay lear Chemistry II	3	Know to derive Calculate Q value and threshold energy	Lecture and power point presentation	
	1	Natural and induced radioactivity - radioactive decay - half-life period - radioactive displacement law - radioactive series - Radioactive techniques - Geiger Muller and ionization counters	4	Know about radioactivity	Question answer session	Evaluation through class test, quiz and group discussion
	2	Natural radioactivity - Detection and measurement of radioactivity - radioactive series including neptunium series - group displacement law - Rate of disintegration and half- life period - Average life period	4	Differentiate between various radioactive series	Lecture	Formative assessment I
	3	Artificial radioactivity - induced radioactivity - transmutation of elements- hazards of radiations - nuclear energy - nuclear reactors - fission products and fission yields - spallation - photonuclear and thermo nuclear reactions - energy source of the sun and stars - carbon dating - rock dating	4	Learn about different nuclear reactions	Lecture with power point presentation and group discussion	
	4	Radioactive waste disposal - applications of nuclear science in agriculture, biology and medicine - Atomic power projects in India	3	Know about the disposal of radioactive wastes	Lecture and power point presentation	

III	Solid Sta	te Chemistry				
	1	Amorphous and crystalline solids - Laws of crystallography Elements of symmetry Weiss and Miller indices Crystal systems and Bravais lattices - derivation of Bragg's equation	3	Know about the laws of crystallography	Seminar and power point presentation	Evaluation through class test, quiz and group discussion
	2	Ionic bonding lattice energy Born equation and its derivation, radius ratio rules structures of some ionic crystals Structure of solids comparison of X-ray and Neutron diffraction	3	Learn about ionic bonding	Lecture and power point presentation	Formative assessment II
	3	Crystal structure of NaCl powder method - Electrical, Magnetic and optical properties of solids band theory semiconductors superconductors. Solid state electrolytes	3	Know about the structure of crystals	Lecture and problem solving	
	4	Types of magnetic behavior, dia, para, ferro, antiferro and ferrimagnetism Hysterisis Solid state lasers inorganic phosphors ferrites	3	Gather knowledge regarding types of magnetic behavior	Problem solving	
	5	Crystaldefects- Schotkydefect Frenkel defect - metal excess defect - metal deficiency defect f centres	3	Distinguish between various defects	Illustration, Seminar and power point presentation	
IV	Bioinorg	anic Chemistry	I	<u> </u>	1	1
	1	Metal ions in biology- role of sodium - potassium- calcium - magnesium - copper - molybdenum and their vital role in the active site	4	Understand about the role of different metal ions.	Power point presentation with videos	Evaluation through class test, quiz and group discussion

	2	Metallo proteins - types and functions - metalloenzymes - structure and characteristic features of Vitamin B ₁₂	4	Know about proteins and vitamins	Lecture	Formative assessment II
	3	Biological functions of haemoglobin and myoglobin, - sodium / potassium pump- cytochromes and ferredoxins	3	Differentiate between haemoglobin and myoglobin	Lecture	
	4	Metal complexes of copper and platinum as therapeutic agents - Biological nitrogen fixation, Photosynthesis: Photosystem-I	4	Learn the types different therapeutic agents	Lecture and power point presentation	
V	Materia	Chemistry			I	
	1	Ionic conductors - sodium, β- alumina, sodium-sulphur battery. Intercalation - layered compounds - graphitic compounds	3	Understand about ionic conductors	Lecture and power point presentation	Evaluation through class test, quiz and group
	2	Special applications of solid state materials. High energy battery, lithium cells	3	Explain the applications of solid state materials	Lecture with videos	discussion
	3	Introduction - techniques for synthesis of nanophase materials - sol- gel synthesis- electro deposition - inert gas condensation	3	Learn about nano materials	Seminar	Formative assessment I
	4	mechanical alloying - properties of nanophase materials - applications of nanophase materials, composite materials	3	Know about applications of nanophase materials	Power point presentation and seminar	
	5	Superconductivity - introduction - examples of superconducting oxides - applications of superconducting materials	3	Understand the applications of nano chemistry	Demonstration	

Course Instructor: Dr. R. Gladis Latha

HOD: Dr. M. Anitha Malbi

Semester - VI

Major Core XI: PHYSICAL CHEMISTRY

Course Code: CC2063

Hours per week	Credits	Total hours	Marks
5	5	75	100

Objectives:

- To understand the theories of reaction rate, adsorption and catalysis
 To learn phase rule and phase equilibria
 To know the concepts of symmetry elements, symmetry operations and point groups **Course Outcome**

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the theories of reaction rate, adsorption and catalysis	PSO - 1	U
CO - 2	construct phase diagrams for one and two component systems	PSO - 3	С
CO - 3	recall colligative properties and their applications	PSO - 2	R
CO - 4	predict the point groups of molecules	PSO - 3	E
CO - 5	construct group multiplication table for simple molecules	PSO - 7	С

*****Total Hours: 75 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation				
Ι	Chemical	Chemical kinetics								
	1	Rate of reaction, expression of rate, factors influencing rate of reaction, order and molecularity	3	Know the factors influencing rate of reaction	Lecture with videos	Evaluation through class test, quiz, group discussion				
	2	Differences between order and molecularity, zero, first and second order reaction, definition- examples, derivation of rate constant and half-life period	3	Analyze the differences between order and molecularity	Lecture	and problem solving. Formative assessment I				

	3	Methods of determining order of reaction, differential, integral, half-life and Ostwald's isolation methods. Temperature dependence of reaction rates , Arrhenius equation, significance	3	Understand the methods of determining order of reaction	Lecture	
	4	Temperature coefficient, energy of activation, effect of catalyst, calculation of energy of activation	2	Recognize the energy of activation and effect of catalyst	Lecture	
	5	Theories of reaction rates, collision theory of bimolecular gaseous reactions, activated complex theory, comparison of collision theory	2	Understand the theories of reaction rates	Lecture	
	6	Activated complex theory. Lindeman's theory of unimolecular reactions	2	Compare activated complex theory and Lindeman's theory	Lecture with power point presentation	
II	Phase Eq				1	
	1	Concept of phase, components , degrees of freedom , definitions and examples, derivation of Gibb's phase rule	2	Understand the concept of phase and components	Lecture	Evaluation through class test, quiz and group discussion
	2	Phase diagram for one component system, water and sulphur systems. Two component system, reduced phase rule	2	Compare phase diagrams for one and two component system	Lecture with power point presentation	Formative
	3	Simple eutectic system, lead-silver system, Pattinson's process of de- silverisation of lead, freezing mixtures, KI- H ₂ O system	4	Illustrate the phase diagrams of simple eutectic systems	Lecture	assessment I
	4	Formation of compounds with congruent melting point, zinc-magnesium system and FeCl ₃ -H ₂ O system	4	Analyze the formation of compounds with congruent melting point	Lecture and group discussion	

	5	Formation of compounds with incongruent melting	3	Explain the formation of	Lecture	
		points, Na ₂ SO ₄ -H ₂ O		compounds with		
		system.		incongruent		
		Solid-gas equilibria,		melting points		
		CuSO ₄ -H ₂ O system.				
		Efflorescence,				
		deliquescence and				
		hygroscopy				
III	Catalysis	and Adsorption		Γ	I	
	1	Catalysis,	2	Understand the	Lecture	Evaluation
		characteristics, different		different types		through class
		types, homogeneous,		of catalysis		test, quiz,
		heterogeneous, acid-base				group
		catalysis and auto				discussion
		catalysis				and problem
	2	Theories of catalysis,	3	Know the	Lecture	solving
		intermediate compound		theories of		
		formation theory and		catalysis		
		adsorption theory				
	3	Kinetics of enzyme	2	Acquire	Lecture	Formative
		catalysis, Michaelis-		knowledge on		assessment II
		Menten equation,		applications of		ussessment n
		derivation and		catalysis		
		applications of catalysis			_	
	4	Adsorption, definition-	3	Elucidate the	Lecture	
		physisorption and		factors		
		chemisorption,		influencing		
		differences, factors		adsorption of		
		influencing adsorption of gases on solids		gases on solids		
	5	Adsorption isotherms,	2	Categorize the	Lecture with	
	5	types, Freundlich and	2	types of	videos	
		Langmuir monolayer		adsorption	videos	
		adsorption isotherms		isotherms		
	6	-	3	Describe the	Lecture with	-
	0	Gibbs adsorption isotherm, BET theory of	5	applications of	power point	
		multilayer adsorption,		adsorption	presentation	
		applications of		ausorption	presentation	
		adsorption. Adsorption				
		indicators				
IV	Solutions	and Colligative Properties	l	1	1	<u> </u>
	1	Solutions of non-	3	Illustrate the	Lecture	Evaluation
		electrolytes, solutions of		vapour pressure		through class
		liquids in liquids, vapour		of non-ideal		test, quiz,
		pressure of non-ideal		solutions		group
		solutions, type I, type II				discussion
		and type III				and

	2	Vapour pressure, composition and boiling point, composition curves of completely miscible binary solutions, type I, type II and type III. Theory of fractional, azeotropic and steam distillations	3	Understand the composition curves of completely miscible binary solutions	Lecture	problem solving Formative assessment II
	3	Solubility of partially miscible liquids - phenol- water system, triethylamine – water system and nicotine water system. Colligative properties, definition and examples	2	Explain the solubility of partially miscible liquids	Lecture	
	4	Osmotic pressure, Laws of osmotic pressure, van'tHoff theory of dilute solutions, isotonic solution. Elevation of boiling point, molal boiling point elevation constant or ebullioscopic constant	2	Describe osmotic pressure and elevation of boiling point	Lecture	
	5	Determination of molar mass from elevation of boiling point. Depression of freezing point,molal freezing point depression constant or cryoscopic constant	3	Understand depression of freezing point	Lecture with power point presentation	
	6	Determination of molar mass by depression of freezing point. Abnormal results and van't Hoff factor	2	Know to determine molar mass by depression of freezing point	Lecture with power point Presentation	
V	Group the	eory				
	1	Symmetry elements and symmetry operations, definition of identity (E), proper rotational axis (n), mirror plane (σ), inversion centre (i) and rotation reflection axis (Sn)	3	Understand symmetry elements and symmetry operations	Lecture with videos	Evaluation through class test, quiz and group discussion

	1				
2	Symmetry operations	4	Know the	Lecture and	
	generated by symmetry		symmetry	problem	Fo
	elements- H ₂ O, NH ₃ ,		operations	solving	rm
	BF_3 , $[PtCl_4]^{2-}$, H_2O_2 (cis		generated by		ati
	and trans) and CH ₄ as		symmetry		ve
	examples		elements		as
3	Matrix representation of	3	Explain the	Lecture with	se
	symmetry operations.		symmetry	videos	SS
	Comparison of molecular		operations		m
	and crystallographic				en
	symmetry				t I
4	Group postulates, abelian	2	Interpret cyclic	Lecture with	
	and cyclic groups, group		groups and point	power point	
	multiplication table,		groups	presentation	
	molecular point groups				
5	Point group assignment	3	Determine the	Lecture with	
	to simple molecules like		point groups for	videos	
	H_2 , HCl , CO , H_2O , NH_3		simple		
	and CO ₂ . Determination		molecules		
	of point groups				

Course Instructor: Dr. M. Anitha Malbi