Semester II Coordination Chemistry (Core IV) Subject Code: PG2021

No. of hours per week	Credit	Total no. of hours	Marks
6	6	90	100

Objectives:

- To understand the thermodynamic and stereochemical aspects of complexes
- To learn about the various mechanisms of substitution and electron transfer reactions.

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO	Cognitive
		Addressed	Level
CO-1	understand the various theories and reaction mechanisms	PSO-1	U
	related to coordination compounds		
CO-2	apply the theories and reaction mechanisms to determine the	PSO-2	А
	properties of complexes		
CO-3	analyze the reaction mechanism of coordination compounds	PSO-2,3	Y
CO-4	evaluate the magnetic and spectral properties of complexes	PSO-2,3	E
CO-5	create novel complexes and catalyst	PSO-4,5	С

Unit I Stability of Complexes

(18 Hours)

Stability of complexes - factors affecting stability of complexes - thermodynamicaspects of complex formation - stepwise and overall formation constants - stability correlations - statistical factors and chelate effect. Determination of stability constant and composition of the complexes - spectrophotometric method - ion exchange method - polarographic method and continuous variation method (Job's method).

Stereochemical aspects - stereoisomerism in inorganic complexes - isomerism arising out of ligand distribution and ligand conformation. Chirality - nomenclature of chiral complexes application of ORD and CD in the identification of complexes.

Unit II Metal Ligand Bonding

Crystal field theory - Splitting of d orbitals under various geometries - factors affecting splitting - CFSE - evidences for CFSE (structural and thermodynamic effects) - spectrochemical series - Jorgensen relation - site preferences - Jahn-Teller distortion - dynamic and static Jahn-Teller - Jahn-Teller effect and chelation. Application of CFT - magnetic properties - spectral properties and kinetic properties - limitations of CFT- evidences for M-L overlap.

Molecular Orbital Theory - energy level diagrams concept of weak and strong fields sigma and pi bonding - octahedral - square planar and tetrahedral complexes. Nephelauxetic effect. Magnetic properties of complexes. Comparison of CFT and MOT of bonding in octahedral complexes.

Unit III Electronic Spectra of Complexes

(18 Hours)

Spectroscopic term symbols for dⁿ ions - derivation of term symbols and ground state term symbol - Hund's rule - selection rules - breakdown of selection rules - spin orbit coupling - band intensities - weak and strong field limits - correlation diagram - energy level diagrams. Orgel diagram for weak field Oh and Td complexes - splitting of energy level due to Jahn-Teller distortion. Modified orgel diagram - limitations of orgel diagram. Tanabe- Sugano (T-S) diagrams - evaluation of Dq and B values for d²- d⁸ complexes charge transfer spectra. Complications in band classification between LF (d-d) and CT bands. Comparison between dd bands and CT bands - numerical problems. Lanthanides and Actinides- spectralproperties.

Unit IV Inorganic Reaction Mechanism

(18 Hours)

Electron transfer reactions - Inner sphere (ISET) and outer sphere (OSET) electron transfer processes. Reaction mechanism of coordination compounds - Types of ligand substitution reactions- mechanism- Dissociative mechanism (D) - Associative mechanism (A) interchange mechanism (I) - labile and inert complexes. Substitution reaction in octahedral complexes - general mechanism - general rate law for A - D and I - distinction between D – ID - IA pathways - replacement of coordinated water - mechanism of acid hydrolysis - base hydrolysis – DCB mechanism - direct and indirect evidences in favour of the mechanism. Ligand substitution reactions without cleavage of M-L Bond. Anation Reactions - substitution in square planar complexes - general mechanism - trans effect- influences of entering and leaving groups - application of trans effect – synthesis of isomers of Pt(II) complexes – theories of trans effect and cis-trans isomerisation reaction. Application of substitution reactions in the synthesis of platinum and cobalt complexes.

Unit V Catalysis

General principles of catalysis - basic reactions involved in the catalysis by organometallic compounds. Hydrogenation of olefins (Wilkinson's catalyst) - Hydro formylation of olefins using cobalt or rhodium catalysts (OXO process) - oxidation of olefins to aldehydes and ketones (wacker process) - Monsanto acetic acid synthesis from methanol. Cyclo oligomerisation of acetylene using Ni catalyst (Reppe's catalyst) - synthetic gasoline by using ZSM-5 catalyst (Fisher-Tropsch and mobil process) - polymerization of olefins (Zeigler-Natta Catalyst) - polymer bound catalyst.

Text Books:

- 1. Lee, J.D. (2008). Concise Inorganic Chemistry. (5th ed.). India: Wiley India.
- 2. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. (2011). Inorganic Chemistry: Principles of Structure and Reactivity. (4th ed.).India: Pearson Education.
- 3. Puri B.R., Sharma, L.R. & Kalia, K.C. (2012). Principles of Inorganic Chemistry. (4th ed.). India: Milestone publishers.
- 4. Malik, W.U., Tuli, G.D. & Madan, R.D. (2012). Selected topics Inorganic Chemistry. (5th ed.). New Delhi: S. Chand Company Ltd.

Reference Books:

- 1. Cotton, F.A. & Wilkinson, G. (1988). Advance Inorganic Chemistry. (2nd ed.). India: Wiley Eastern Private Ltd.
- 2. Miessler, G.L. (2004). Inorganic Chemistry. (3rd ed.), India: Pearson Education.
- 3. Purcell, K.F. &Kotz, J.C. (2012). Inorganic Chemistry. (2nd ed.). India: Cengage Learning India Pvt. Ltd.
- 4. Kettle, S.F.A, (1996).Coordination Chemistry-Ari Approach. USA: Spectrum Academic publishers Oxford.
- 5. Mehrotra, R. C. & Singh, A. (2014). Organometallic Chemistry. (2nd ed.) New Delhi: New Age International Ltd.
- 6. Parkins, A. W. &Poller, R. C. (1987). An Introduction to Organometallic Chemistry. Chennai: Oxford University Press.

Credit: 6

*Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/ Evaluation
T	Stability	of Complexes	110015	Outcome		
	1	Stability of complexes - factors affecting stability of complexes- thermodynamic aspects of complex formation	3	Understand the factors affecting the stability of complexes	Lecture and group discussion	Evaluation through class test, online quiz and group discussion
	2	Stepwise and overall formation constants - stability correlations - statistical factors and chelate effect	3	Apply the theories to determine stepwise and overall formation constants	Lecture	Formative assessment I
	3	Determination of stability constant and composition of the complexes - spectrophotometric method - ion exchange method - polarographic method and continuous variation method (Job's method)	5	Apply various methods to determine the stability constants of complexes	Lecture and Seminar	
	4	Stereochemical aspects - stereoisomerism in inorganic complexes - isomerism arising out of ligand distribution and ligand conformation	4	Understand the stereoisomerism in inorganic complexes	Lecture and group discussion	
	5	Chirality - nomenclature of chiral complexes - application of ORD and CD in the identification of complexes	3	Apply ORD and CD in the identification of complexes	Lecture and Seminar	
II	Metal Li	gand Bonding				
	1	Crystal field theory - Splitting of d orbitals under various geometries - factors affecting splitting - CFSE - evidences for CFSE (structural and thermodynamic effects)	4	Understand crystal field theory and splitting of d- orbitals under various geometries	Lecture with ppt	Evaluation through class test, online quiz and group discussion

	2	Spectrochemical series - Jorgensen relation - site preferences - Jahn-Teller distortion - dynamic and static Jahn-Teller- Jahn- Teller effect and chelation	4	Analyse dynamic and static Jahn- Teller distortion	Lecture and group discussion	Formative assessment I
	3	Application of CFT - magnetic properties - spectral properties and kinetic properties - limitations of CFT- evidences for M-L overlap.	3	Apply CFT to determine the magnetic, spectral and kinetic properties of coordination compounds	Lecture	
	4	Molecular Orbital Theory - energy level diagrams concept of weak and strong fields - sigma and pi bonding - octahedral - square planar and tetrahedral complexes	4	Apply Molecular Orbital Theory to octahedral,square planar and tetrahedral complexes	Lecture with ppt	
III	5	Nephelauxetic effect. Magnetic properties of complexes. Comparison of CFT and MOT of bonding in octahedral complexes	3	Analyse CFT and MOT of bonding in octahedral complexes	Lecture	
111	Liectron	Spectra of Complexes	2	Understand	Lastura	Evoluction
m	1	Spectroscopic term symbols for d ⁿ ions - derivation of term symbols and ground state term symbol	3	Understand spectroscopic term symbols	Lecture	Evaluation through class test and group discussion
m	2	Spectroscopic term symbols for d ⁿ ions - derivation of term symbols and ground state term symbol Hund's rule - selection rules - breakdown of selection rules - spin orbit coupling - band intensities - weak and strong field limits - correlation diagram - energy level diagrams	3	Understand spectroscopic term symbols Apply Hund's rule and selection rules to spin orbit coupling	Lecture And group discussion	Evaluation through class test and group discussion Formative assessment II
	2 3	Spectra of Complexes Spectroscopic term symbols for d ⁿ ions - derivation of term symbols and ground state term symbol Hund's rule - selection rules - breakdown of selection rules - spin orbit coupling - band intensities - weak and strong field limits - correlation diagram - energy level diagrams Orgel diagram for weak field Oh and Td complexes - splitting of energy level due to Jahn- Tellerdistortion. Modified orgel diagram - limitations of orgel diagram	3 4 4	Understand spectroscopic term symbols Apply Hund's rule and selection rules to spin orbit coupling Analyse splitting of energy level due to Jahn Teller distortion in weak O _h and T _d com-lexes using Orgel diagram	Lecture and group discussion Lecture with ppt	Evaluation through class test and group discussion Formative assessment II

IV	5	Charge transfer spectra. Complications in band classification between LF (d-d) and CT bands. Comparison between d-d bands and CT bands - numerical problems. Lanthanides and Actinides- spectral properties	3	Evaluate the spectral properties of lanthanides and actinides	Lecture	
1 V	11101 gain	Electron transfer reactions	1	Understand the	Locturo	Evaluation
	1	- Inner sphere (ISET) and outer sphere (OSET) electron transfer processes	4	reaction mechanisms of electron transfer processes	with ppt	through class test, online quiz and group
	2	Reaction mechanism of coordination compounds - Types of ligand substitution reactions- mechanism- Dissociative mechanism (D) - Associative mechanism (A) interchange mechanism (I) - labile and inert complexes	3	Analyse the types of substitution mechanisms in coordination compounds	Lecture and group discussion	Giscussion Formative assessment II
	3	Substitution reaction in octahedral complexes - general mechanism - general rate law for A - D and I - distinction between D – ID - IA pathways - replacement of coordinated water - mechanism of acid hydrolysis - base hydrolysis - DCB mechanism - direct and indirect evidences in favour of the mechanism	5	Understand the mechanism of substitution reaction in octahedral complexes	Lecture	
	4	Ligand substitution reactions without cleavage of M-L Bond. Anation Reactions - substituion in square planar complexes - general mechanism	3	Apply the mechanism of substitution reaction to square planar complexes	Lecture with ppt	

	5	Trans effect- influences of entering and leaving groups - application of trans effect – synthesis of isomers of Pt(II) complexes – theories of trans effect and cis-trans isomerisation reaction. Application of substitution reactions in the synthesis of platinum and cobalt complexes	3	Apply Trans effect and substitution reactions to synthesise Pt and Co complexes	Lecture	
V	Catalysi	S	4		.	
	1	General principles of catalysis - basic reactions involved in the catalysis by organometallic compounds	4	Understand the general principles and basic reactions involved in the catalysis by organometallic compounds	Lecture	Evaluation through class test, group discussion and quiz Formative assessment II
	2	Hydrogenation of olefins (Wilkinson's catalyst) - Hydro formylation of olefins using cobalt or rhodium catalysts (OXO process)	3	Understand the mechanism of hydrogenation and hydroformylation of olefins using Co or Rh catalysts	Lecture with ppt	
	3	Oxidation of olefins to aldehydes and ketones (wacker process) - Monsanto acetic acid synthesis from methanol	4	Apply Wackers process to the oxidation of olefins	Lecture and group discussion	
	4	Cyclooligomerisation of acetylene using Ni catalyst (Reppe's catalyst) - synthetic gasoline by using ZSM-5 catalyst (Fisher- Tropsch and mobil process)	4	Apply Reppe's catalyst ans ZSM-5 catalyst to the cyclooligomerisat ion of acetylene and synthetic gasoline	Lecture	
	5	Polymerization of olefins (Zeigler-Natta Catalyst) - polymer bound catalyst	3	Create new polymer catalyst	Lecture	

Semester II Reaction Mechanism and Molecular Rearrangements (Core V) Subject Code: PG2022

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Objectives:

- To understand the mechanism of organic reactions.
- To get an in-depth knowledge on the various types of oxidation and reduction reactions along with their synthetic utility.

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level			
CO-1	understand the mechanisms of organic reactions	PSO-1	U			
CO-2	apply the reaction mechanisms to synthesize organic compounds	PSO-2,3	А			
CO-3	analyze the type of reactions in organic compounds	PSO-2,3	Y			
CO-4	evaluate nucleophilic, electrophilic substitution and elimination reactions in aromatic and aliphatic compounds	PSO-2	E			
CO-5	create novel organic compounds	PSO-3,4	C			

Course Outcomes (COs)

Unit I Addition to Carbon-Carbon Multiple Bond

(18 Hours)

(18 Hours)

Electrophilic addition to carbon-carbon double and triple bonds. Nucleophilic addition to carbon-carbon multiple bonds. Mechanism and stereochemical factors in reactions - addition of hydrogen halides, hypohalous acids and hydroboration. Hydroxylation of olefinic double bonds - OsO₄ - KMnO₄ - Woodward and Prevost hydroxylation. Epoxidation using peracids - Sharpless epoxidation and ozonolysis.

Mechanism and applications of Michael addition - Robinson annulation sequence -Diels' Alder - Knoevenagal - Mannich - Stork-enamine - Grignard - Darzen's and Reformatsky reactions.

Unit II Addition to Carbon-Oxygen Multiple Bond

Nucleophilic addition to carbon-oxygen double bond - Mannich, benzoin - Darzen's glycidic ester - Stobbe and Knovenagel condensation reactions. Wittig - Wittig-Horner

olefination reactions. Reactions of sulphur and sulphoniumylides. Julia olefination and Peterson alkene synthesis. Asymmetric reduction of carbonyl functions (Corey's procedure).

Unit III Elimination Reactions

Elimination reactions - E_1 - E_2 - E_{1cb} and E_i elimination. Effect of solvent - substrate and leaving group in elimination reactions. Hofmann - Saytzeff and Bredt's rule. Saytzeff's Vs Hoffman elimination. Stereochemistry of E_2 elimination. Mechanism of pyrolytic elimination - Chugaev and Cope elimination reactions. Hoffmann exhaustive methylation and pyrolysis of esters.

Unit IV Molecular Rearrangments and Name Reactions (18 Hours)

Molecular rearrangements - classification - electrophilic - nucleophilic and free radical rearrangements. Mechanisms of Wagner Meerwin - Tiffenev-Demyanov - Dienone-Phenol -

Favorskii - Fries - Baeyer-Villager - Stevens - Neber - Sommelet-Hauser - Baker-Venkatraman - von-Richter - Ullmann - Pummerer and di- π methane rearrangements.

Name reactions - Dieckmann cyclization - Hofmann-Loffler Freytag reaction - Mitsunobu reaction - Shapiro reaction - Eschenmoser-Tanabe and Ramburg-Backlund reactions.

Unit V Oxidation and Reduction Reactions

Oxidation with Cr - PCC - PDC and Jones. Oxidation with Mn - MnO₂ and BaMnO₄ reagents. Oxidation with LTA - DDQ and SeO₂. Oxidation using DMSO - DCC - acetic anhydride and oxaloyl chloride. Oxidation using IBX and Dess-Martin Periodinane (DMP) reagent.

Reduction with NaBH4 - NaCNBH3 - Zn(BH4)2 - LiAlH4 - Li(BuO)3AlH - DIBAL-H -

Red-Al - Et₃SiH and Bu₃SnH. Reduction using selectrides - Birch reduction.

Text Books:

- 1. March, J. (2006). Advanced organic chemistry. (4th ed.).New York: John Wiley and Sons.
- 2. Ahluwalia, V.K. & Parshar, R.K. (2005). Organic Reaction Mechanism. (2nd ed.). India: Narosa, publishing House.
- 3. Norman, R.O.C. & Coxon, J.M. (1993). Principles of Organic Synthesis, (3rded.). New York: CRC press, Taylor and Francis Group.
- 4. Morrison, R.T. & Boyd, R.N. (1997). Organic Chemistry. (6th ed.). New Jersey: Prentice Hall.
- 5. Jain, M.K. & Sharma, S.C. (2014). Modern Principles of Organic Chemistry. India: Vishal publication.

(18 Hours)

6. Chatwal, G.R. (2016). Reaction Mechanism and Reagents in Organic Chemistry. (5th ed.). India: Himalaya Publishing House.

Reference books:

- 1. Carey, F. & Sundberg, R.J. (2007). Advanced Organic Chemistry-Part A and B. (5thed.). USA: Springer.
- 2. Smith, M.B. & March, J. (2001). Advanced Organic Chemistry. (5thed.). New York: John Wiley and Sons.
- 3. Bansal, R.K. (2005). Reaction Mechanism in Organic Chemistry. (3rd ed.). Tata McGraw Hill.
- **4.** Clayden, J. Greeves, N & Warren, S. (2012). Organic Chemistry. (2nd Ed.). Oxford University Press.
- 5. Tewari, K.S., Vishnol, N.K. & Mehrotra, S.N. (2002). A text book of organic chemistry. India: Vikas publishing House Ltd.
- 6. Kalsi, P.S. (1996). Organic Reactions and Mechanism. (1st ed.). India: New Age International Ltd.

Cr	Credit: 5 *Total Hours: 90 (Incl. Seminar & Test)					
Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
			Hours	Outcome		Evaluation
Ι	Unit I A	ddition to Carbon-Carbon	Multiple B	ond		
	1	Electrophilic addition to carbon-carbon doubleand triple bonds.Nucleophilic addition tocarbon-carbon multiplebonds	4	Understand electrophilic addition and nucleophilic addition to carbon- carbon multiple	Lecture	Evaluation through online quiz Formative assessment I
	2	Mechanism and stereochemical factors in reactions - addition of hydrogen halides, hypohalous acids and hydroboration	4	bonds Understand the mechanisms stereochemical factors in organic reactions	Lecture and Group discussion	
	3	Hydroxylation of olefinic double bonds - OsO ₄ - KMnO ₄ - Woodward and Prevost hydroxylation	3	Synthesize the organic compounds using hydroxylating agents	Lecture and Seminar	
	4	Epoxidation using peracids - Sharpless epoxidation and ozonolysis	3	Understand the Epoxidation reactions	Lecture	
	5	Mechanism and applications of Michael addition - Robinson annulation sequence - Diels' Alder - Knoevenagal - Mannich - Stork-enamine - Grignard - Darzen's and Reformatsky reactions	4	Apply the name reactions to synthesize organic compounds	Lecture	
Π	Addition	to Carbon-Oxygen Multi	nle Rond			
	1	Nucleophilic addition to carbon-oxygen double bond - Mannich, benzoin - Darzen'sglycidic ester - Stobbe and Knovenagel condensation reactions	5	Understand the nucleophilic addition to carbon- oxygen double bond	Lecture with models	Evaluation through class test, online quiz and group discussion

	2 3 4	Wittig - Wittig-Horner olefination reactions Reactions of sulphur and sulphoniumylides. Julia olefination and Peterson alkene synthesis Asymmetric reduction of carbonyl functions (Corey's procedure)	3 5 5	Infer the mechanism of Wittig - Wittig- Horner olefination reactions Know the reactions of sulphur and sulphoniumylides Illustrate asymmetric reduction of carbonyl functions	Lecture and group discussion Lecture	Formative assessment I
III	Aromati	c Electrophilic and Nucleo	philic Subs	titutions	<u> </u>	
	1	Elimination reactions - $E_1 - E_2 - E_{1cb}$ and E_i elimination. Effect of solvent - substrate and leaving group in elimination reactions	5	Understand the concept of elimination reaction	Lecture	Evaluation through class test, online quiz and group discussion Formative
	2	Hofmann - Saytzeff and Bredt's rule. Saytzeff's Vs Hoffman elimination	4	Compare saytzeff's Vs Hoffman elimination	Lecture	assessment II
	3	Stereochemistry of E ₂ elimination. Mechanism of pyrolytic elimination - Chugaev and Cope elimination reactions	4	Infer the mechanism of pyrolytic elimination reaction.	Lecture and group discussion	
	4	Hoffmann exhaustive methylation and pyrolysis of esters	5	Understand the concept of Hoffmann exhaustive methylation	Lecture	
IV	Molecula	ar Rearrangements and Na	me Reactio	ons		
	1	Molecular rearrangements - classification - electrophilic - nucleophilic and free radical rearrangements	4	Classify molecular rearrangements	Lecture	Evaluation through class test and group discussion
	2	Mechanisms of Wagner Meerwin - Tiffenev- Demyanov - Dienone- Phenol - Favorskii - Fries - Baeyer-Villager - Stevens and Neber rearrangements	5	Infer the mechanism of molecular rearrangements	Lecture and group discussion	Formative assessment II

	3	Sommelet-Hauser - Baker-Venkatraman - von-Richter - Ullmann - Pummerer and di- π methane rearrangements	5	Infer the mechanism of rearrangements	Lecture	
	4	Name reactions - Dieckmann cyclization - Hofmann-Loffler Freytag reaction - Mitsunobu reaction - Shapiroreaction - Eschenmoser- Tanabe and Ramburg- Backlund reactions	4	Understand the mechanism of name reactions	Lecture	
V	Oxidatio	on and Reduction Reaction	S	I	I	I
	1	Oxidation with Cr - PCC - PDC and Jones. Oxidation with Mn - MnO ₂ and BaMnO ₄ reagents	5	Understand and apply oxidising agents in organic synthesis	Lecture with videos	Evaluation through class test, group discussion and quiz
	2	Oxidation with LTA - DDQ and SeO ₂	4	Understand the application of LTA - DDQ and SeO ₂	Lecture	Formative assessment I
	3	Oxidation using DMSO - DCC - acetic anhydride and oxaloyl chloride	4	Understand the application of DMSO - DCC - acetic anhydride and oxaloyl chloride	Lecture	Evaluation through class test, group discussion and quiz
	4	Oxidation using IBX and Dess-Martin Periodinane (DMP) reagent	5	Apply oxidising agents in organic synthesis	Lecture and Group Discussion	Formative assessment II

Course Instructor: Dr. Y. Christabel Shaji

HOD: Dr. G. Leema Rose

Semester II Quantum Chemistry and Spectroscopy (Core VI) Subject Code: PG2023

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Objectives:

- To learn the principle of quantum mechanics of simple systems.
- To understand the principle, instrumentation, interpretation and applications of various spectroscopic and analytical techniques.

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the concepts of quantum chemistry, spectroscopy and surface chemistry	PSO-1	U
CO-2	apply the principles of quantum mechanics to simple systems, spectroscopy to characterize compounds and surface chemistry to determine the surface area of surface films and liquids	PSO-2	A
CO-3	analyse molecules using quantum mechanics and spectroscopic techniques	PSO-2,3	Y
CO-4	evaluate eigen values, bond angles, electron density and surface area of simple molecules	PSO-2,3	E

Unit I Quantum Chemistry-I

Black body radiation - Planck's quantum theory - wave particle duality - uncertainty principle. Operators - linear - commutation - Hermitian and Hamiltonian operators. Eigen functions and eigen values. Postulates of quantum mechanics. Derivation of Schrodinger's time-independent wave equation - application - one dimensional box - particle in a three dimensional box - harmonic oscillator and hydrogen atom.

Unit II Quantum Chemistry - II

Born-Oppenheimer approximation - Hydrogen molecule ion. LCAO-MO and VB treatments of the hydrogen molecule. Anti-symmetry and Pauli's exclusion principle. Slater detrimental wave function - term symbols and spectroscopic states - Russell Saunders coupling. The variation theorem and perturbation theory - applications of variation method and perturbation theory to the helium atom. Hybridization-determination of bond angles of sp

(18 Hours)

sp² and sp³ hybridizations. Huckel pi electron (HMO) theory and its applications to ethylene
butadiene and benzene.

Unit III Molecular Spectroscopy - I

Electronic Spectroscopy - principle - laws of light absorption - Born-Oppenheimer approximation. Franck-Condon principle - wave-mechanical formulation - dissociation energy - dissociation products and predissociation. Microwave spectroscopy - rotation of molecules - rotational spectra of diatomic molecules - intensity of spectral lines - effects of

isotopic substitution - non-rigid rotator. Rotational spectra of polyatomic molecules - chemical analysis by microwave spectroscopy.

Unit IV Molecular Spectroscopy - II

ESR - theory - hyperfine interactions in ESR - double resonance (ENDOR, ELDOR) - Mc Connell's relation - verification of the relation for cyclic polyene radical - calculation of electron density and experimental techniques.

Laser Raman Spectroscopy - Einstein treatment of absorption and emission phenomena-Einstein's coefficients - probability of induced emission - applications to lasers - conditions for laser action - properties - types of lasers - advantages of lasers in Raman spectroscopy and experimental techniques.

Unit V Surface chemistry

Electrical aspects of surface chemistry - electrical double layer - zeta potential. BET and Gibbs adsorption isotherms - derivation – applications - determination of surface area (BET equation) - surface films and liquids. Membrane equilibria and dialysis.

Surface active reagents - classification of surface agents - micellization - hydrophilic interactions - critical micellar concentration - factors affecting the CMC of surfaces. Transition state theory of surface reactions - rates of chemisorptions - Hertz-Knudson equation.

Text Books:

- 1. Chandra. A.K. (2001). Introductory Quantum Chemistry. (4thed.). India: Tata McGraw-Hill.
- 2. Prasad, R.K. (2014). Quantum Chemistry. (4th ed.). New Delhi: New Age International Publishers.
- 3. Atkins, P. & Atkins, J.P. (2002). Physical Chemistry. (7thed.).USA: Oxford university press.
- 4. BanWell, C.N. & Mccash, E.M. (1997). Fundamentals of Molecular Spectroscopy. New Delhi: Tata Mc Grow Hill.

(18 Hours)

(18 Hours)

(18 Hours)

Reference Books:

- 1. Mcquarrie, D.A. (2008). Quantum Chemistry. Sausalito: University Science Books.
- 2. Puri, B.R., Sharma, L.R. & Pathania, M.S. (2016). Principles of Physical Chemistry (47thed.). India: Vishal Publications.
- Aruldhas, G. (2011). Molecular Structure and Spectroscopy. (2nd ed.), India: PHI Learning Pvt. Ltd.

Credit: 5

*Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Quantur	n Chemistry-I				
	1	Black body radiation- Planck's quantum theory- wave particle duality- uncertainty principle	4	Explain the principle of black body radiation	Lecture	Evaluation through class test and quiz Formative
	2	Operators-linear - commutation - Hermitian and Hamiltonian operators	3	Gain knowledge about operators	Lecture	assessment I
	3	Eigen functions and eigen values. Postulates of quantum mechanics	3	Understand the postulates of quantum mechanics	Lecture and Seminar	
	4	Derivation of Schrodinger's time- independent wave equation	3	Derive Schrodinger's wave equation	Lecture	
	5	Application - one dimensional box -particle in a three dimensional box -harmonic oscillator and hydrogen atom	5	Apply Schrodinger's wave equation to hydrogen atom	Lecture	
II	Quantur	n Chemistry - II				
	1	Born-Oppenheimer approximation-Hydrogen molecule ion. LCAO- MO and VB treatments of the hydrogen molecule	4	Compare LCAO- MO and VB treatments of the hydrogen molecule	Lecture	Evaluation through class test, group discussion and online
	2	Anti-symmetry and Pauli's exclusion principle. Slater detrimental wave function	4	ApplySlaterdeterminanttoconstruct anti-symmetricwavefunction	Lecture and group discussion	quiz Formative assessment I
	3	Termsymbolsandspectroscopicstates-RussellSaunderscoupling	4	Gain knowledge about term symbols	Lecture	

	4	The variation theorem	3	Apply variation	Lecture	
		and perturbation theory -		method and		
		applications of variation		perturbation theory		
		method and perturbation		to the helium atom		
		theory to the helium				
		atom.				
	5	Hybridization-	3	Determine	Lecture	
		determination of bond		hybridization and		
		angles of sp - sp ² and		bond angles		
		sp ³ hybridizations.Huckel				
		pi electron (HMO) theory				
		and its applications to				
		ethylene - butadiene and				
		benzene				
III	Molecula	ar Spectroscopy – I				
	1	Electronic Spectroscopy	4	Understand the	Lecture	Evaluation
		- principle - laws of light		principle of		through class
		absorption - Born-		electronic		test and
		Oppenheimer		spectroscopy		group
		approximation				discussion
	2	Franck-Condon principle	4	Apply Franck-	Lecture	
		- wave-mechanical		Condon principle	and	Formative
		formulation -		to dissociation.	seminar	assessment II
		dissociation energy -				
		dissociation products and				
		predissociation				
	3	Microwave spectroscopy	3	Gain knowledge	Lecture	
		- rotation of molecules -		about microwave	and group	
		rotational spectra of		spectroscopy	discussion	
		diatomic molecules			.	
	4	Intensity of spectral lines	4	Know about the	Lecture	
		- effects of isotopic		effects of isotopic		
		substitution - non-rigid		substitution.		
	5		2		T (
	5	Rotational spectra of	3	Apply the principle	Lecture	
		polyatomic molecules -		of microwave	and	
		mienousus anastrosconu		spectroscopy in	semmar	
TX7	M - 1 1	Inclowave specific copy		chemical analysis		
11	NIOIECUIa	ar Spectroscopy – II	4	V	Lastures	Esselsetien
	1	ESR - theory -	4	Know about	Lecture	through along
		ESP double resonance		interactions in ESP		through class
		(ENDOR ELDOR)		Interactions in ESK		discussion
	2	Ma Connoll'a relation	2	Vorify Mo	Looture	and online
	L	vorification of therelation	3	Connell's relation	Lecture	
		for evolution of unerelation		for evolic polyana	discussion	Yuiz
		for cyclicporyene radical		radical	uiscussion	Formative
				Taulcal		

	3	Calculation of electron density and experimental techniques in solution Laser Raman Spectroscopy - Einstein treatment of absorption and emission phenomena- Einstein's coefficients - probability of induced emission -	3	Calculate electron density Derive Einstein coefficient	Lecture	assessment II
	5	applications to lasers Conditions for laser action - propertiestypes of lasers - advantages of lasers in Raman spectroscopy and experimental techniques	4	Understand different types of lasers	Lecture	
V	Surface	chemistry				
	1	Electrical aspects of surface chemistry - electrical double layer - zeta potential.	4	Understand the concepts of surface chemistry	Lecture	Evaluation through class test, group discussion
	2	BET and Gibbs adsorption isotherms - derivation	3	Compare BET and Gibbs adsorption isotherms		and quiz Formative assessment II
	3	Applications - determination of surface area (BET equation) - surface films and liquids. Membrane equilibria and dialysis	4	Apply BET equation in determination of surface area	Lecture	
	4	Surface active reagents - classification of surface agents - micellization - hydrophilic interactions - critical micellar concentration - factors affecting the CMC of surfaces	4	Gain knowledge about CMC	Lecture with videos	
	5	Transition state theory of surface reactions - ratesof chemisorptions - Hertz-Knudson equation	3	Derive Hertz- Knudson equation	Lecture	

Course Instructor: Dr. M. Shirley Treasa

Semester II Research Methodology (Elective II) Subject Code: PG2024

No. of hours per week	Credit	Total no. of hours	Marks
4	3	60	100

Objectives

- To understand the importance of research for future development.
- To get information about computation techniques in research

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the sources of literature survey and analytical techniques for documentation of research and cheminformatics for molecular representation	PSO-1	U
CO-2	apply the features of literature survey in research and analytical techniques to characterize compounds	PSO-2,3	A
CO-3	analyse the sources of research information and chemical compounds	PSO-2,3	Y
CO-4	evaluate the results using analytical techniques	PSO-2,3	Е
CO-5	create a journal article	PSO-3	С

Unit I Literature Survey

Source of chemical information - primary - secondary and tertiary sources. Literature survey - indexes and abstracts in science and technology. Applied science and technology index - chemical abstracts - chemical titles - current chemical reactions - current contents and science citation index. Classical and comprehensive reference works in chemistry- synthetic methods and techniques - treatises - reviews - patents and monographs.

Unit II Chemical Abstracts

Current awareness searching - CA weekly issues and CA issue indexes. Retrospective searching - CA volume indexes- general subject index - chemical substance index- formula index - index of ring systems - author index and patent index. CA collective indexes - collective index (CI) and decennial index (DI). Access points for searching CA indexes- index guide - general subject - terms - chemical substance names - molecular formulas - ring

(12 Hours)

(12 Hours)

systems - author names - patent numbers. Locating the reference - finding the abstract - finding the original document chemical abstract and service source index.

Unit III Research Problem and Scientific Writing

Identification of research problem - assessing the status of the problem - guidance from the supervisor - actual investigation and analysis of experimental results - conclusions. Scientific writing - research reports - thesis - journal articles and books. Steps to publishing a scientific article in a journal. Types of publications - communications - articles and reviews. Documenting - Abstracts indicative - descriptive abstracts - informative abstract - footnotes end notes - referencing styles - bibliography - journal abbreviations - abbreviation used in scientific writing.

Unit IV Instrumental Analysis

Principle - instrumentation and applications - AFM - SEM - STM - TEM and XRD. Determination of surface morphology and particle size. Sample preparations and applications of UV - IR - NMR and mass spectroscopy.

Unit V Cheminformatics

(12 Hours)

(12 Hours)

Cheminformatics - history and applications. Representing molecules - connection tables and line notation - Inchi - SMILES and WLN canonicalization. Line notation versus connection tables. Query languages - SMARTS. Molecular similarity. 2D topology and 3D configuration. Chemistry softwares - Chemdraw - writing chemical equations and schemes - editing - transporting picture to word and image document. Origin -importing and exporting data - scientific graphing and data analysis - curve fitting and peak analysis - transporting graph to tag image file format.

Text Books:

- Berg, B.L. (2009). Qualitative Research Methods for the Social Sciences. (7th ed.). India: Pearson Education.
- 2. Patton, M.Q. (2002). Qualitative research and evaluation methods. (3rd ed.). India: Sage Publications.
- 3. Alexis, L. & Mathews, L. (1999). Fundamentals of Information Technology. Chennai: Leon Vikas.
- 4. Mohan, J. (2001). Organic Spectroscopy Principles and Applications. India: Narosa publishing house.
- 5. Kemp, W. (1994). Organic Spectroscopy. (3rd ed.). New York: Macmillan.
- 6. Polanski, J. (2009). Cheminformatics. Poland: Elsevier Publications.

(12 Hours)

Reference Books:

- 1. Silverman, D. (2011). Qualitative Research: Issues of Theory, Method and Practice. (3rd ed.). India: Sage Publications.
- 2. Marczyk, G. Dematteo, D. & Festinger, D. (2005). Essential of Research Design and Methodology. New York: John Wiley and Sons.
- 3. Silverstein, S.M., Bassler, G.V. & Morril, T.C. (2004). Spectrometric identification of organic compounds. (6th ed.). New York: Wiley.
- 4. Dyer, J.R. (1987). Applications of Absorption spectroscopy of Organic Compounds. New York: Prientice Hall.
- 5. Dani, V.R. (1995). Organic spectroscopy. India: Tata McGraw Hill.
- 6. Gasteiger, J. & Engel, T. (2003). Chemoinformatics. New York: John Wiley and Sons.

Credit: 3

*Total Hours: 60 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning Outcome	Pedagogy	Assessment/
T	Literatu	re Survey	nours			Evaluation
-	1	Source of chemical	2	Understand and	Lecture	Evaluation
	-	information - primary -	_	identify the sources	and group	through
		secondary and tertiary		of information's	discussion	neriodic test
		sources				periodic test,
	2	Literature survey -	2	Apply the features of	Lecture	
		indexes and abstracts in		literature survey in	and	group
		science and technology		research	seminar	discussion
	3	Applied science and	3	Understand the	Lecture	Formative
		technology index -		terms chemical	with group	assessment I
		chemical abstracts -		abstracts and citation	discussion	
		chemical titles - current		index	and	
		chemical reactions -			seminar	
		current contents and				
	4	Science citation index	2		T a star us	
	4	Classical and	2	Understand classical	Lecture	
		reference works in		reference works in	and	
		chemistry-synthetic		chemistry	semmai	
		methods and techniques		chemistry		
	5	Treatises - reviews -	3	Understand patents	Lecture	
	_	patents and monographs	_	and monographs	with	
					videos	
II	Chemica	al Abstracts				
	1	Current awareness	2	Understand the	Lecture	Evaluation
		searching - CA weekly		importance of	and	through
		issues and CA issue		current awareness	seminar	periodic test,
		indexes. Retrospective		and retrospective		class test.
		searching - CA volume		searching in research		online quiz
		indexes and general				and class
	2	subject index	2	A	T a star us	and class
	2	index formula index	2	Analyzevarious	Lecture	assignment
		index - formula muex -		abstracts	and	
		author index and patent		abstracts	semmai	
		index				Formative
	3	CA collective indexes	2	Differentiate CI and	Lecture	assessment II
		collective index (CI)	_	DI	and	
		and decennial index			seminar	
		(DI)				

	4	Access points for searching CA indexes- index guide - general subject - terms - chemical substance names - molecular formulas - ring systems - author names and	3	Know how to search CA indexes	Lecture and seminar	
	5	- author names and patent numbers Locating the reference - finding the abstract - finding the original document chemical abstract and service	3	Pinpoint chemical abstract and service source index	Lecture and seminar	
тт	Research	Problem and Scientific	Writing			
	1	Identification of research problem - assessing the status of the problem, guidance from the supervisor, actual investigation and analysis of experimental results and conclusions	3	Identify and solve research problems	Lecture with videos and group discussion	Evaluation through periodic test, class test and group discussionFor mative assessment II
	2	Scientific writing - research reports, thesis, journal articles and books	2	Know the art of scientific writing in research	Lecture with ppt and seminar	
	3	Steps to publishing a scientific article in a journal. Types of publications - communications, articles and reviews	3	Create journal articles, communication and reviews	Lecture and group discussion	
	4	Documenting - Abstracts indicative - descriptive abstracts and informative abstracts	2	Analyze descriptive and informative abstracts	Lecture and seminar	
	5	Documenting - footnotes, end notes, referencing styles,bibliography, journal abbreviations, abbreviation used in scientific writing	2	Identifythe format for documentation of research	Lecture with ppt	

IV	Instrumental Analysis					
	1	Principle, instrumentation and applications of AFM - SEM and STM	4	Understandthe principle and applications of AFM, SEM andSTM	Lecture with videos	Evaluation through periodic test, class test.
	2	Principle, instrumentation and applications of TEM and XRD	2	Understandthe principle and applications of TEM and XRD	Lecture with videos	online quiz and group discussion Formative assessment I
	3	Determination of surface morphology and particle size	2	Determine the surface morphology and particle size of compounds	Seminar and group discussion	Evaluation through periodic test, class test,
	4	Sample preparations and applications of UV and IR spectroscopy	2	Apply UV and IR spectroscopy for structural elucidation of compounds	Lecture with ppt and videos	online quiz and class assignment Formative
	5	Sample preparations and applications of NMR and mass spectroscopy	5	Apply NMR and mass spectroscopy for structural elucidation of compounds	Seminar	assessment II
V	Cheminf	formatics				
	1	Cheminformatics - history and applications. Representing molecules - line notation - Inchi - SMILES and WLN canonicalization	2	Understand cheminformatics and line notations	Lecture with ppt	Evaluation through periodic test, class test and online quiz and problem
	2	Connection table and line notation versus connection table. SMARTS	2	Relate line notation and connection tables. Know about the query language SMARTS	Lecture with ppt	solving Formative assessment I
	3	Molecular similarity - 2D topology and 3D configuration	2	Understand the importance of molecular similarity, 2D topology and 3D configuration in cheminformatics	Lecture	

4	Chemistry softwares - Chemdraw - writing chemical equations and schemes - editing - transporting picture to word and image document	3	Apply Chemdraw software to draw chemical equations and schemes	Lecture with demo using Chemdraw software	
5	Origin -importing and exporting data - scientific graphing and data analysis - curve fitting and peak analysis - transporting graph to tag image file format	3	Apply Origin software to sketch graph and data analysis	Lecture with demo using Origin software	

Course Instructor: Dr. Sheeba Daniel

HOD: Dr. G. Leema Rose

Semester IV Inorganic Spectroscopy, Photochemistry and Organometallics (Core IX) Subject Code: PG2041

Hours per week	Credits	Total Hours	Marks

Objectives:

- To understand the principle, interpretation and applications of various spectroscopic techniques to inorganic compounds
- To know the applications of photochemistry, organometallics and bio-inorganic chemistry

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand the principles and concepts of inorganic spectroscopy, photochemistry and organometallics.	PSO-1	U
CO-2	apply the principles of spectroscopy, photochemistry and organometallic chemistry to inorganic compounds.	PSO-2	А
CO-3	analyse the structure, reactions and functions of inorganic compounds.	PSO-2	Y
CO-4	evaluate the spectral data and properties of inorganic compounds	PSO-3	E

Course Outcomes (COs)

Unit I

(18 Hours)

IR, Raman and NMR Spectroscopy

IR spectroscopy: introduction - selection rules - stretching frequency of some inorganic ions - effect of coordination on the stretching frequency of sulphato - carbonato - sulphito - aqua - nitro - thiocyanato - cyano - thiourea and DMSO complexes.

Raman spectroscopy: introduction - combined applications of IR and Raman spectroscopy in the structural elucidation of N_2O - ClF_3 - NO_3^- - ClO_4 and metal carbonyls.

NMR spectroscopy: introduction - structural assessment of simple inorganic compounds - applications of ${}^{1}\text{H}$ - ${}^{15}\text{N}$ - ${}^{19}\text{F}$ and ${}^{31}\text{P}$ NMR spectroscopy in structural problems. Fluxional molecules and effect of quadrupolar nuclei in NMR spectroscopy.

Unit II

(18 Hours)

Mössbauer and Photoelectron Spectroscopy

Mössbauer (MB) spectroscopy: introduction - principle - recoil energy - doppler effect - number of MB signals - isomer shift - quadrupole splitting and magnetic hyperfine splitting. Applications of MB spectroscopy to ⁵⁷Fe - ¹¹⁹Sn and ¹²⁹I compounds.

Photoelectron Spectroscopy (PES): theory - types - origin of fine structures - shapes of vibrational fine structures - adiabatic and vertical transitions. PES and evaluation of

vibrational constants of homonuclear diatomic molecules - N_2 and O_2 - heteronuclear diatomic molecules - CO and HCl - polyatomic molecules H_2O - CO_2 - CH_4 and NH_3 . Koopman's theorem- applications and limitations.

Unit III

Inorganic Photochemistry: Importance of photochemistry. Photochemistry of Co(III) complexes - photosubstitution - photooxidation - photoreduction and photoanation reactions. Photochemistry of Cr(III) complexes - Adamson's rule - photoaquation - photoisomerization - photoracemization - photoanation - photosubstitution in non-aqueous solvents and photoredox reactions. Photochemistry of ruthenium polypyridyls - preparation and characteristics of $[Ru(bpy)_3]^{2+}$ complex. Ground state and excited state properties of $[Ru(bpy)_3]^{2+}$ complex. Reactions of $[Ru(bpy)_3]^{2+}$ complex - photosubstitution - photosubstitution - photoredox and reductive quenching reactions.

Unit IV

Organometallic Chemistry: Organometallic compounds - types. EAN rule - 18e- and 16erules - determination of oxidation state - configuration - coordination number of the metal centre - types and application 18e- / 16e- rules. Carbonyls - isolated concept - structure of simple and polynuclear carbonlys. Nitrosyls - bridging and terminal nitrosyls - bent and linear nitorsyls. Synthesis, properties and structural features of metal complexes with carbene - alkene - alkyne and arene. Hapticity. Metallocenes - synthesis - properties and bonding in ferrocene. Covalent versus ionic bonding in beryllocene. Reactions of organometallic compounds substitution - oxidative addition and reductive elimination - insertion and deinsertion (elimination) reactions.

Unit V

Bio Inorganic Chemistry: Photosynthesis - photosystem I and II. Photosynthetic reaction center. Metallo enzymes - Zinc enzymes - structure and functions of carbonic anhydrase and carboxy peptidase. Iron enzymes - catalase and peroxidase. Super oxide dismutase (SOD) - superoxide toxicity - structure and function of Cu,Zn-SOD. Trace elements in biological system. Metal ion toxicity - classes of toxic metal compounds and detoxification. Metals in medicine - anti-arthritis drugs - Au and Cu in rheumatoid arthritis - Li in psychiatry - Pt, Au and metallocenes in anti-cancer drugs. Metals in radiodiagnosis and magnetic resonance imaging.

Text Books

- Roundhill, D.M. (1994). Photochemistry and Photophysics of Metal Complexes. (1st ed.). New York: Plenum Press.
- 6. Kaur, H. (2006). Spectroscopy. (3rded.).Meerut: Pragati Prakasan Publications.
- 7. BanWell, C.N. & Mccash, E.M. (1997). Fundamentals of Molecular Spectroscopy. New Delhi: Tata Mc Grow Hill.
- Malik, W.U., Tuli, G.D. & Madan, R.D. (2012). Selected topics Inorganic Chemistry. (5th ed.). New Delhi: S. Chand Company Ltd.

(18 Hours)

(18 Hours)

9. Chatwal, G.R. & Bhagi, A.K. (2005). Bio-inorganic Chemistry. (2nd ed.). India: Himalaya Publishing House.

Reference Books

- 1. Rohatgi, K.K. & Mukherjee, K.K. (2014). Fundamentals of Photochemistry. (3rd ed.). India: New Age International.
- 2. Iggo, J.A. (2000). NMR Spectroscopy in Inorganic Chemistry. USA: Oxford Scientific Publications.
- 3. Brisdon, A.K. (1998). Inorganic Spectroscopic Methods. USA: Oxford Scientific Publications.
- 4. Horwood, E. (2010). NMR, NQR, EPR and Mössbauer Spectroscopy in Inorganic Chemistry. (1st ed.). New York: Ellis Horwood Ltd.
- 5. Puri, B.R., Sharma L.R. & Kalia, K.C. (2012). Principles of Inorganic Chemistry. (4th ed.), India: Milestone publishers.
- 6. Miessler, G.L. (2004). Inorganic Chemistry. (3rd ed.), India: Pearson Education.
- 7. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. (2011). Inorganic Chemistry, Principles of Structure and Reactivity. (4th ed.). India: Pearson Education.

Credits: 6 Unit Section Topics Lecture Learning Pedagogy Assessment/ Outcome Evaluation Hours IR, Raman and NMR Spectroscopy Ι IR spectroscopy: introduction 5 Understand the 1 Lecture Evaluation - selection rules - stretching and PPT principle and through class frequency of some inorganic applications of IR test ions - effect of coordination on spectroscopy in the stretching frequency of Formative structural sulphato - carbonato determination assessment I sulphito - aqua - nitro thiocyanato - cyano - thiourea and DMSO complexes. 2 Raman spectroscopy: 5 Understand the Lecture introduction combined principles of and PPT applications of IR and Raman Raman spectroscopy in the structural Spectroscopy and elucidation of N₂O - ClF₃ compare IR and NO_3^- - ClO₄ and metal Raman carbonyls. Spectroscopy in structure elucidation 3 NMR 5 Understand the Lecture spectroscopy: introduction structural principles of NMR and PPT assessment of simpleinorganic spectroscopy and compounds - applications of apply NMR ${}^{1}H - {}^{15}N - {}^{19}F \text{ and } {}^{31}P \text{ NMR}$ spectroscopy to spectroscopy in solve structural structural problems problems 4 3 Fluxional molecules Analyse the effect Lecture and effect of quadrupolar nucleiin of quadrupolar and NMR spectroscopy. nuclei in NMR Seminar spectroscopy Π Mössbauer and Photoelectron Spectroscopy 1 Mössbauer (MB) 6 Understand the Lecture Evaluation spectroscopy: introduction and PPT through class principle of principle - recoil energy -Mössbauer (MB) test and doppler effect - number of spectroscopy and group discussion MB signals - isomer shift apply MB spectroscopy to quadrupole splitting and ⁵⁷Fe - ¹¹⁹Sn and ¹²⁹I magnetic hyperfine splitting. Formative Applications assessment II of MB compounds. spectroscopy to ⁵⁷Fe - ¹¹⁹Sn and ¹²⁹I compounds.

Total Hours: 90 (Incl. Seminar & Test)

	2	Photoelectron Spectroscopy (PES): theory - types - origin	5	Apply Photoelectron	Lecture and	
		of fine structures - shapes of		Spectroscopy to	demonstra	
		vibrational fine structures -		predict the origin	tion	
		adiabatic and vertical		and shapes of		
		transitions.		vibrational fine		
	2	DEC and another than a f	1	structures	T. a star wa	
	3	PES and evaluation of	4	Evaluate the	Lecture and group	
		homonuclear diatomic		constants of	discussion	
		molecules - N_2 and Ω_2 -		homonuclear and	discussion	
		heteronuclear diatomic		heteronuclear		
		molecules - CO and HCl -		diatomic molecules		
	4	Polyatomic molecules H ₂ O -	3	Apply Koopman's	Lecture	
		CO_2 - CH_4 and NH_3 .		theorem	and group	
		Koopman's theorem-			discussion	
		applications and limitations				
III	Inorgan	ic Photochemistry				
	1	Importance of	5	Understand the	Lecture	Evaluation
		photochemistry.		various	and PPT	through class
		Photochemistry of Co(III)		photochemical		test and
		complexes - photosubstitution		reactions of Co(III)		group
		- photooxidation -		complexes		discussion
		photoreduction and				Formativa
	2	Photochemistry of Cr(III)	5	Compare the types	Lecture	assessment II
	2	complexes - Adamson's rule -	5	of photochemical	and	ussessment n
		photoaquation -		reactions in non-	seminar	
		photoisomerization -		aqueous solvents		
		photoracemization -		and photoredox		
		photoanation -		reactions		
		photosubstitution in non-				
		aqueous solvents and				
		photoredox reactions	4	TT 1 . 1.1	.	
	3	Photochemistry of ruthenium	4	Understand the	Lecture	
		polypyridyls - preparation		preparation and	and group	
		and characteristics of $[\mathbf{B}_{u}(\mathbf{b}_{u})]^{2+}$ complex		$[\mathbf{R}_{u}(\mathbf{b}_{v})_{2}]^{2+}$	discussion	
		[Ku(opy)3] complex.		complex		
	4	Ground state and excited state	4	Compare the	Lecture	
		properties of [Ru(bpy) ₃] ²⁺		ground state and	and	
		complex. Reactions of		excited state	seminar	
		$[Ru(bpy)_3]^{2+}$ complex -		properties of		
		photosubstitution -		$[\operatorname{Ru}(\operatorname{bpy})_3]^{2+}$		
		quenching reactions		complex		
TX7	Organa	quenching reactions.				
1 V	Organol	πειαπις υπεππειγ				

	1	Organometallic compounds - types. EAN rule - 18e- and 16e- rules - determination of oxidation state - configuration - coordination number of the metal centre - types and application 18e- / 16e- rules	5	Understand the types of Organometallic compounds and apply EAN rule	Lecture and group discussion	Evaluation through class test and group discussion Formative assessment I
	2	Carbonyls - isolated concept - structure of simple and polynuclear carbonlys.	2	Compare the structure of simple and polynuclear carbonlys	Lecture and group discussion	
	3	Nitrosyls - bridging and terminal nitrosyls - bent and linear nitorsyls.	2	Classify bridging and terminal nitrosyls - bent and linear nitorsyls	Lecture and discussion	
	4	Synthesis, properties and structural features of metal complexes with carbene - alkene - alkyne and arene.	4	Correlate the structural features of metal complexes	Lecture and project	
	5	Hapticity . Metallocenes - synthesis - properties and bonding in ferrocene. Covalent versus ionic bonding in beryllocene.	3	Compare Covalent versus ionic bonding in beryllocene	Lecture	
¥7	6	Reactions of organometallic compounds - substitution - oxidative addition and reductive elimination - insertion and deinsertion (elimination) reactions	2	Analyse the various reactions of organometallic compounds	Lecture and Discussion	
V	BIO Inor	ganic Chemistry - II	2	0 1	T a star	
	1	Photosynthesis, photosystem I and II and photosynthetic reaction centre.	3	Generalize photosystem I, II and photosynthetic reaction	Lecture	Evaluation through class test, group discussion
	2	Metalloenzymes - enzymes in di-oxygen management.	3	Explain metalloenzymes	Lecture	and quiz Formative

3	Super oxide dismutase, superoxide toxicity, structure of Cu, Zn-SOD, enzymatic activity and mechanism.	3	Deduce the structure of Cu, Zn- SOD	Lecture and PPT	assessment I
4	Peroxidases, catalases, oxidases and mono oxygeneases.	3	Explain the functions of enzymes	Lecture	
5	Zinc enzymes - the structural role of zinc and zinc constellations of carbonic anhydrase, carboxy peptidase and alcohol dehydrogenase.	3	Understand the role of zinc in zinc enzymes	Lecture	
6	Metal complexes as probes of nucleic acids. Gold compounds and anti-arthritic agents.	3	Explain the role of metal complexes and its applications	Lecture and group discussion	

Course Instructor: Dr. S. Lizy Roselet

HOD: Dr. G. Leema Rose

Semester IV Photochemistry and Natural Products (Core X) Subject Code: PG2042

Hours per week	Credits	Total Hours	Marks
6	5	90	100

Objectives:

- To understand various organic reactions with their mechanism and synthetic utility.
- To elucidate the structure and synthesise natural products.

Course Outcomes (COs)

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand various organic reactions and their mechanism	PSO-1	U
CO-2	apply the reaction mechanism in organic synthesis	PSO-2	А
CO-3	analyze the structure and mechanism of reactions	PSO-2	Y
CO-4	evaluate the synthetic utility of reactions	PSO-2	E

Unit I

(18 Hours)

Organic Photochemistry: Introduction - Thermal versus photochemical reactions and Jablonski diagram. Photochemical reactions of ketones - photosensitization - Norrish type - I and Norrish type - II reactions and mechanisms - Paterno-Buchi reaction - photooxidation and photoreduction of ketones. Photochemistry of arenes - Photodimerisation - photoisomerisation. Reactions involving free radicals - Barton - Hundsdiecker - Pschorr and Gomberg-Bauchman reactions.

Unit II

Pericyclic Reactions: Characteristics and classifications of pericyclic reactions - electrocyclic - cycloaddition and sigmatropic reactions. Woodward Hofmann rule. Retro- Diels Alder reaction - Diels Alder reaction - 2+2 - 2+4 reactions. Cope rearrangements and Claisen rearrangements. Conservation of orbital symmetry. Prediction of reaction conditions using FMO - correlation diagrams and Zimmerman (Mobius-Huckel) approaches.

Unit III

Retrosynthetic Analysis: Retrosynthetic terminologies - linear and convergent approach - protecting groups - activating groups - synthons and synthetic equivalents. Target molecule - one functional group disconnection - two functional groups disconnection - 1,3- 1,5- and 1,4- dicarbonyl compounds. Functional group addition and interconversions. Umploung synthesis. Latent polarity. Retrosynthetic analysis - bisabolene - cis-jasmone - longifolene and cubane. Synthetic uses of nitrocompounds and alkenes.

(18 Hours)

Unit IV

Alkaloids: Extraction - general properties - classification and general methods for determining structure. Structural elucidation - atropine - cocaine - dictamnine - reserpine - aeronycine and morphine.

Unit V

(18 Hours)

Heterocyclic Compounds: Synthesis - reactions - structure - carbazole - oxazole - imidazole - thiazole - pyrones - pyrazole - pyrimidine - pyrazine - coumarins and chromone. Structural elucidation - flavones - isoflavone - anthocyanins - caffeine - theobromine and theopylline.

Text Books

- Singh, J & Singh, J. (2012). Photochemistry and Pericyclic Reactions. (3rd ed.). India: New Age International Pvt. Ltd.
- 2. Tewari, K. S., Vishnol, N. K. & Mehrotra, S.N. (2002). A Text Book of Organic Chemistry. India: Vikas Publishing House Ltd.
- 3. Warren, S. (2014). Organic Synthesis: The Disconnection Approach. India: Wiley Pvt. Ltd.
- 4. Finar, I.L. (2002). Organic Chemistry Volume II. (5th ed.). India: Pearson Education
- 5. Bansal, R.K. (2014). Heterocyclic Chemistry. (5th ed.). India: New Age International Pvt. Ltd.
- **6.** Clayden, J. Greeves, N& Warren, S. (2012). Organic Chemistry. (2nd ed.). Oxford University Press.

Reference Books

- 1. Depuy, C.H., & Chapman, O.S. (1988). Molecular Reactions and Photochemistry. India: Prentice Hall Pvt. Ltd.
- 2. Gill, G.B. & Wills, M.R. (1974). Pericyclic Reactions. London: Chapman and Hall
- 3. Agarwal, O.P. (1947). Chemistry of Organic Natural Product Vol. I & II India: Goel Publishing House.
- 4. Joule, J.A. & Mills, K. (2010). Heterocyclic Chemistry. (5th ed.). India: Wiley Pvt. Ltd.
- 5. Ireland, R.E. (1969). Organic Synthesis. Prentice Hall, Englewood Cliffs, New Jersey, U.S.A.
- 6. Carruthers, W. (2015). Modern Methods of Organic Synthesis. (4th ed), Cambridge University Press.

Credit: 5

Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
T	Orgonia	Photochomistry	Hours	Outcome		Evaluation
1		Introduction Thormal	1	Understand the	Looturo	Evolution
	1	versus photochemical	4	basic concepts of	Lecture with ppt	through
		reactions and Jablonski		photochemistry	with ppt	online quiz
		diagram		photoeneniistry		omme quiz
	2	Photochemical reactions	4	Analyze the	Lecture	Formative
		of ketones -	-	photochemical	and Group	assessment I
		photosensitization -		reaction	discussion	
		Norrish type - I and		mechanisms of		
		Norrish type - II		carbonyl		
		reactions and		compounds		
		mechanisms				
	3	Paterno-Buchi reaction -	4	Interpret	Lecture	
		photooxidation and		photoxidation and	and	
		photoreduction of		photoreduction	Seminar	
		ketones.		mechanisms in		
	4		2	ketones	T	
	4	Photochemistry of	2	Understand the	Lecture	
		arenes Photodimerisation		mechanisms of		
		- photoisomerisation.		Photodimensation		
				nhotoisomerisation		
	5	Reactions involving free	4	Understand various	Lecture	
	U	radicals - Barton -	•	name reactions	with ppt	
		Hundsdiecker - Pschorr		involving free	With PP.	
		and Gomberg-		radicals		
		Bauchman reactions.				
II	Pericycli	c Reactions				
	1	Characteristics and	4	Classify the types	Lecture	Evaluation
		classifications of		of pericyclic	and	through class
		pericyclic reactions -		reactions	Seminar	test, online
		electrocyclic -				quiz and
		cycloaddition and				group
		sigmatropic reactions.		2 1 00	-	discussion
	2	Woodward Hofmann	5	Differentiate	Lecture	F (*
		rule. Retro-Diels Alder		Retro-Diels Alder		Formative
		reaction - Diels Alder		and Diels Alder		assessment I
		reactions		reaction		
	2	Cono roorrongamenta and	Λ	Compare Cone and	Looturo	
	5	Claisen rearrangements	4	Claisen	and group	
		Conservation of orbital		rearrangements	discussion	
		symmetry		rearrangements	01500551011	
		Symmou y.				

	4	Prediction of reaction	5	Predict FMO -	Lecture	
		conditions using FMO -		correlation		
		correlation diagrams and		diagrams and		
		Zimmerman (Mobius-		Zimmerman		
		Huckel) approaches.		(Mobius-Huckel)		
				approaches		
III	Retrosyr	nthetic Analysis				
	1	Retrosynthetic	4	Understand the	Lecture	Evaluation
		terminologies - linear and		basic terminologies	with	through class
		convergent approach -		of retero synthesis	models	test, online
		protecting groups -				quiz and
		activating groups -				group
		synthons and synthetic				discussion
		equivalents.			_	
	2	Target molecule - one	6	Interpret one and	Lecture	Formative
		functional group		two functional		assessment II
		disconnection - two		groups		
		disconnection 1.2.1.5		disconnections		
		and 1.4 disarbonyl				
		compounds				
	3	Functional group	5	Illustrate functional	Lecture	
	5	addition and	5	interconversions in	and group	
		interconversions.		retro synthesis	discussion	
		Umploung synthesis.				
		Latent polarity.				
	4	Retrosynthetic analysis -	3	Interpret the	Lecture	
		bisabolene - cis-jasmone		retrosynthetic		
		- longifolene and		analysis of		
		cubane.		bisabolene - cis-		
				jasmone -		
				longifolene and		
				cubane.		
	5	Synthetic uses of		Describe the		
		nitrocompounds and		synthetic uses of		
		aikenes.		muocompounds		
IV	Alkaloid	S	2	TT 1 . 1.1	T	
	1	Extraction and general	3	Understand the	Lecture	Evaluation
		properties of alkaloids		general properties		through class
	2	Classification of	3	Classify the types		group
	2	Alkaloids	5	of alkaloids		discussion
		rikalolus				41504551011
	3	General methods for	4	Understand the	Lecture	Formative
		determining structure of		methods for		assessment II
		alkaloids		determining		
				structure of		
				alkaloids		

	4	Structural elucidation - atropine and cocaine dictamnine - reserpine - aeronycine and morphine.	4	Elucidate the structure of atropine and cocaine Elucidate the structure of various alkaloids	Lecture	
V	Heterocy	velic Compounds			I	
	1	Synthesis - reactions - structure - carbazole - oxazole - imidazole	5	Understand the synthesis and reactions of heterocyclic compounds	Lecture with videos	Evaluation through class test, group discussion and quiz
	2	Synthesis of thiazole - pyrones - pyrazole - pyrimidine	5	Understand the synthesis and reactions of heterocyclic compounds	Lecture	Formative assessment I
	3	Pyrazine - coumarins and chromone	2	Understand the synthesis and reactions of heterocyclic compounds	Lecture	Evaluation through class test, group discussion and quiz
	4	Structural elucidation - flavones - isoflavone - anthocyanins	3	Elucidate the structure of flavones, isoflavone and anthocyanins	Lecture and Group Discussion	Formative assessment II
	5	Caffeine - theobromine and theopylline.	3	Elucidate the structure of caffeine, theobromine and theopylline		

Course Instructor: Dr. Y. Christabel Shaji

HOD: Dr. G. Leema Rose

Semester IV Polymer chemistry (Core XI) Subject Code: PG2043

Hours per week	Credits	Total Hours	Marks
6	5	90	100

Objectives:

- To gain knowledge about applications of polymers.
- To know the importance of various polymerization techniques.
- To study about synthetic polymers.

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO -1	Understand the concept of polymer chemistry	PSO - 1	U
CO -2	Apply the processing techniques in the manufacture of synthetic polymer	PSO - 5	А
CO -3	Analyze glass transition temperature, crystallinity and degradation in polymers.	PSO - 3	Y
CO -4	Evaluate molecular weight and size of the polymer	PSO - 3	E

Course Outcome (COs)

Unit I

(18 hours)

Chemistry of Polymerization: Basic concepts of polymer chemistry - repeat unit - degree of polymerization - classification - chain polymerization - free radical polymerization - ionic polymerisation - coordination polymerisation: Zeigler- Natta catalyst - stereo regulating polymerization - step polymerization - ring opening polymerization - copolymerisation - types - free radical copolymerisation - ionic copolymerization - copolycondensation - block and graft copolymers.

Unit II

(18 hours)

Polymerisation Techniques Molecular Weight and Size: Polymerisation techniques - bulk - solution - suspension - emulsion - polymerizations -melt polycondensation - solution polycondensation interfacial condensation - solid and gas phase polymerization - molecular weight and size -number average and weight average molecular weights - sedimentation and viscosity average molecular weights -polydispersity and molecular weight distribution in polymers - practical significance of polymer molecular weight.

Unit III

Polymer Processing: Processing techniques - calendering - die casting - rotational casting - film casting - compression moulding - injection moulding - blow moulding - extrusion moulding - thermoforming, foaming and reinforcing techniques - hand lay-up technique - filament winding technique - spray-up technique. Fibre spinning - dry spinning - wetspinning - uniaxial orientation - post treatment for fibres.

(18 hours)

Unit IV

Synthetic Polymers: Synthetic resins - plastics - manufacture - applications - polyethylene - PVC - teflon -polystyrene - polymethylmethacrylate -polyurethane - phenolformaldehyde resins - urea- formaldehyde and melamine- epoxy polymers. Synthetic fibers - rayon -nylons -polyesters -acrylics – modacrylics. Natural rubber -production -constitution - vulcanization (hot and cold) - fillers and accelerators - antioxidants - synthetic rubber - SBR - butyl rubber - nitrile rubber -neoprene - silicone rubberand polysulphides.

Unit V

(18 hours)

Polymer Degradation and Additives: Polymer degradation - types - thermal degradation - mechanical degradation - photo degradation – degradation by ultrasonic waves - degradation by high energy radiation - hydrolytic and oxidative degradations - additives for polymers - fillers - plasticisers - thermal stabilizers - photo stabilizers - antioxidants and colourants.

Text Books

- 1. Billmeyer, F. (1971). Textbook of Polymer Science. (2nd ed), New York : John Wiley and Sons.
- 2. Gowariker, V.R (2009). Polymer Science. (2nd ed), New Age international .). India: New Age International Pvt. Ltd.
- 3. Braun, D. (1982). Simple Methods for Identification of Plastics. New York : Macmillan Publishing Co.
- 4. Robert Weast, C. (1985). Handbook of Chemistry and Physics. (65th ed), Boca Raton, FL : CRC Press.
- 5. Hightstown, N.J. (1990). Modern Plastics, Encyclopedia, Volume 67: McGraw Hill.

Reference Books

- 1. Odian, G. (2004). Principles of Polymerization. (4th ed): John Wiley and Sons
- 2. Manas Chanda. (2000). Advanced Polymer Chemistry: Marcel Dekker Inc.
- 3. Malcolm. P. Stevens. (1999). Polymer Chemistry: An Introduction. (3rd edition) : USA : Oxford University Press
- 4. Misra .G.S. (1993). Introductory Polymer Chemistry : New York : J. Wiley and Sons.
- 5. Charles E. Carraher Jr. (2017). Introduction to Polymer Chemistry. (4th ed):CRC Press.
- Rodriguez, F., Cohen, C., Ober, C.K. & Archer, L. (2015). Principles of Polymer Systems. (6th ed), CRC Press.

(18 hours)

Credit: 5

Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
T	Chomist	my of Polymorization	Hours	Outcome		Evaluation
1	1	Basic concepts of polymer chemistry - repeat unit - degree of polymerization - classification	4	Understand the basic concepts of polymer chemistry	Lecture and group discussion	Evaluation through class test Formative
	2	stereochemistry of polymers -nomenclature of stereo regular polymers	3	Discuss the nomenclature of stereo regular polymers	Lecture and group discussion	assessment I
	3	chain polymerization - free radical polymerization - ionic polymerisation coordination polymerisation: Zeigler- Natta catalyst - step polymerization - ring openingpolymerization	8	Explain the different types of polymerization	Lecture and ppt	
	4	copolymerisation - block and graft copolymers - preparation.	3	Describe copolymers preparation	Lecture	
II	Polymer	isation Techniques Molecu	lar Weight	and Size		
	2	Polymerisation techniques -bulk - solution -suspension - emulsion – polymerizations melt polycondensation -	4	Explain various polymerization techniques Compare different	Lecture	Evaluation through class test and group discussion
		polycondensation interfacialcondensation		condensation processes	discussion	assessment II

	3	solid and gas phase polymerization.	4	Analyse solid and gas phase polymerization processes	Lecture		
	4	polydispersity and molecular weight distribution in polymers	3	Evaluate the poly dispersity index and molecular weight of polymers	Lecture		
	5	the practical significance of polymer molecular weight.	3	Explain the practical significance of polymer molecular weight.			
III	Polymer	Processing					
	1	Processing -Calendering - die casting - rotational casting - film casting	5	Explain the various polymer casting processes	Lecture	Evaluation through class test and	
	2	compression moulding - injection moulding - blow moulding - extrusion moulding	5	Compare the moulding processes in polymers.	Lecture and field visit	group discussion Formative assessment	
	3	thermoforming, foaming and reinforcing techniques	2	Explain the techniques of polymer processes.	Lecture	III	
	4	synthetic resins – plastics- manufacture and applications of polyethylene -PVC - Teflon -polystyrene - polymethylmethacrylat e -polyurethane - phenol- formaldehyde resins - urea- formaldehyde and melamine- epoxy polymers.	6	Describe the manufacture and application of synthetic resins	Videos and industrial visit		
IV	Synthetic Polymers						

	1	Synthetic fibres -rayon - nylons -polyesters - acrylics -modacrylics	5	Describethemanufactureandapplicationofsynthetic fibres	Lecture and video	Evaluation through class test and group discussion	
	2	spinning techniques	2	Explain the spinning techniques of polymer process	Lecture and video	Formative assessment II	
	3	natural rubber - production -constitution - vulcanization (hot and cold)	3	Discusstheproductionandvulcanizationofrubber	Lecture and field visit		
	4	fillers and accelerators – antioxidants	3	Compare the functions of fillers accelerators and antioxidants	Lecture and group discussion		
	5	Synthetic rubber -SBR - butyl rubber - nitrile rubber -neoprene - silicone rubber and polysulphides.	5	Describe the manufacture and application of synthetic rubber	Lecture		
V	Polymer	Degradation and Additive	s				
	1	Polymer degradation	1	Describe polymer degradation	Lecture	Evaluation through class	
	2	types of degradation - thermal -mechanical photo - hydrolytic and oxidative degradations	7	Classify the types of polymer degradation	Lecture	test, group discussion and quiz	
	3	additives for polymers - fillers -plasticizers	5	Discuss the role of additives in polymers	ole of Lecture and group discussion		
	4	thermal stabilizers - photo stabilizers - antioxidants and colorants.	5	Differentiate thermal and photo stabilizers	Lecture and group discussion		

Course Instructor: M.Shirly Treasa

HOD: G. Leema Rose

Credits: 3

Teaching Module Total Hours: 60 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Introduc	tion to Energy Sources	nours	Outcome		Evaluation
	1	Introduction, conventional energy sources like coal, oil, gas, agricultural and organic wastes, water power, thermal power and nuclear power.	3	Recall the sources of conventional energy	Lecture with videos	Evaluation through class test and seminar Formative assessment I
	2	Non-conventional energy sources like solar energy and wind energy.	3	Explain non- conventional energy sources	Lecture and group discussion	
	3	Energy from bio-mass and bio-gas, ocean thermal energy, tidal energy.	3	Understand various sources of energy	Lecture	
	4	Geothermal energy and hydrogen energy. Advantages of renewable energy.	3	Discuss the advantages of renewable energy	Lecture and PPT	
II	Solar En	ergy	Γ	Γ	•	Γ
	1	Solar radiation and its measurement - Introduction, solar constant, solar radiation at the earth's surface, solar radiation geometry and solar radiation data.	3	Explain solar radiations and its measurement	Lecture and videos	Evaluation through class test and seminar Formative assessment II
	2	Solar energy collectors - Introduction, physical principles of the conversion of solar radiation into heat, flat plate and concentration collectors.	3	Understand the principle of solar energy conversion and collectors	Lecture and PPT	
	3	Advantages and disadvantages of concentration collectors over flat collectors.	2	Compare the concentration collectors and flat collectors	Lecture	
	4	Energy balance equation and collector efficiency.	4	Determine energy balance and collector efficiency	Lecture	
III	Wind Er	nergy				

	1	Introduction, basic principles of wind energy conversion, power of the wing, forces on the blades. Wind energy conversion.	2	Understand the basis of wind energy Illustrate wind	Lecture with videos	Evaluation through class test and seminar Formative
		wind data and estimation, site selection.		energy conversion	with ppt and videos	assessment II
	3	Types of wind machines - Horizontal axis and vertical axis machines.	2	Classify the types of wind machine	Lecture and seminar	
	4	Analysis of aerodynamic forces acting on the blade, performance of wind machines.	2	Analyse the forces acting on the blade	Lecture and group discussion	
	5	Generating systems - Introduction, schemes of electric generation, generator control, load control, energy storage. Application of wind energy.	4	Explain generating system and applications of wind energy	Lecture with videos	
IV	Bio-ener	gy	1	1		
	1	Introduction, biomass conversion techniques - wet processes and dry processes.	2	Explain biomass and its conversion	Lecture and PPT	Evaluation through class test and quiz Formative
	2	Biogas generation. Classification of biogas plants - floating drum plant and fixed dome type plant. Biogas from plant waste.	3	List out the classification of biogas plants	Lecture and seminar	assessment I
	3	Materials used for biogas generation, selection of site for a biogas plant, digester design. Problems related with biogas plants.	3	Describe the biogas generation and identify the problems related to biogas plant	Lecture and seminar	
	4	Fuel properties of biogas and utilization of biogas.	4	Understand the properties of biogas	Lecture and seminar	
V	Chemica	al energy sources				
	1	Fuel cells - Introduction, conversion efficiency of fuel cells, types of electrodes, work output.	2	Understand the basis of fuel cells	Lecture and seminar	Evaluation through class test and quiz

	2	EMF of fuel cells. Applications of fuel cells.	2	Determine the EMF of fuel cells and explain the applications of it	Lecture and seminar	Forma assess
	3	Hydrogen energy: Hydrogen production – electrolysis, thermo- chemical, fossil fuel and solar energy methods.	3	Explain hydrogen production by various methods	Lecture and Seminar	
	4	Hydrogen storage and hydrogen transportation.	2	Explain the hydrogen storage and hydrogen transportation	Lecture and seminar	
	5	Utilization of hygrogen gas. Hydrogen as an alternative fuel for motor vehicles. Safety and management.	3	Describe the utilization and safety measures of hydrogen gas	Lecture and PPT	

Course Instructor: B.T Delma Leema Rose HOD: Dr. G.