Semester	II
Name of the Course	: QUANTUM MECHANICS -II (Core - V)
Subject code	: PP2022

No. of hours per week	No. of credits	Total No. of hours	Marks	
6	5	90	100	

Objective

To develop several approximation methods, for bounds states and scattering states and apply them to illustrative problems.

СО	Upon completion of this course, students will be able to:	PSO addres	CL
		scu	
CO - 1	enumerate time independent perturbation theory and use approximation methods. (variation principle and WKB method) to solve simple problems (ground state helium, barrier penetration, etc)	PSO-1	К
CO - 2	analyze time dependent perturbation theory to discuss absorption and emission of radiation for harmonic perturbation.	PSO-6	An
CO - 3	interpret quantum theory of atomic and molecular structure.	PSO-4	U
CO -4	formulate Klein-Gordan and Dirac equations and discuss the applications. (particle in a Coulomb field, Spin of electron)	PSO-1	С

Widdules						
Cred	lit: 5	Tota	l Hours: 9	0 (Incl. Seminar	& Test)	
Unit	Modul e	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Approxi	mation Methods for Time Indepe	endent Pro	blems		
	1	Time independent perturbation theory: Basic concepts – Non- degenerate energy levels – first and second order	4	To understand the basic concepts of time independent perturbation theory.	PPT, Illustration and theoretical derivation	Evaluation through: Online quiz, Problem solving
	2	Anharmonic oscillator – First- order correction – Ground state of Helium	3	To understand the ground state of Helium.	Illustration, Theoretical formulation Problem Solving	short questions Descriptive

Modules				
Total Hours: 90 (Incl.	Seminar	&	Test

	3	Effect of electric field on the ground state and n=2 of hydrogen	4	To analyze the effect of electric field on hydrogen.	Illustration, Theoretical formulation Problem Solving	answers Formative
	4	Degenerate Energy Levels- Stark effect in hydrogen molecule-Spin-Orbit interaction.	4	To analyze the splitting of energy levels in hydrogen molecule and spin-orbit interaction.	PPT, Theoretical formulation and Problem solving	assessment
II	Approxi	mation Methods for Time Depen	dent Pert	urbation Theory		
	1	Time dependent perturbation theory: First order perturbation – Harmonic perturbation – Transition to continuum states- Fermi Golden Rule	4	To understand the basic concepts and features related to time dependent perturbation.	PPT Illustration, lecture, and Problem solving	Evaluation through: Online quiz, short questions
	2	Absorption and Emission of radiation – The Electromagnetic field	4	To understand the absorption and emission of electromagneti c radiation.	Descriptive lecture, comparative study	Descriptive answers Problem solving
	3	Hamiltonian operator- Electric dipole approximation- transition probability	4	To formulate the electric dipole approximation.	PPT, Theoretical formulation and Problem solving	Formative assessment
	4	Einstein's A and B coefficients – Selection rules- forbidden transitions.	3	To understand selection rules and forbidden transitions.	Illustration, Theoretical formulation and Problem solving	
III	Variatio	n and WKB Method				
	1	Variation method :Variational principle – Ground state of Helium and Deuteron	4	To solve the ground state of Helium and Deuteron.	Illustration, Theoretical formulation and Problem solving	Evaluation through: Online quiz,
	2	WKB Approximation : WKB method – Connection formula – Solution near a turning point – Validity of the WKB method	4	To analyze the WKB approximation.	PPT, Illustration,The oretical formulationand Problem solving	short questions Descriptive answers

3	Barrier penetration – Alpha emission	4	To understand applications of WKB method.	Illustration, Theoretical formulation and Problem solving	Assignment Formative assessment
4	Bound states in a potential well	3	To analyze the bound states in a potential well.	Illustration, Theoretical formulation comparative	

					study	
					and Problem	
					solving	
Q	Juantum	Theory of Atomic and Molecular S	tructure			
1		Spin functions – Helium atom- Ground state- First excited state	3	To understand the concept of spin functions of two and three electrons.	Theoretical formulation and Problem solving	Evaluation through: Online quiz short
2		Central field approximation: - Determination of central field: Thomas Fermi method-Hartree- Fock approximations	5	To compare the central field approximations.	Theoretical formulation and Problem solving	questions Descriptive answers Problem
3		Molecular Orbital method- Born-Oppenheimer approximation – MO treatment of hydrogen molecule Ion (H ₂ +)	5	To understand the basic concepts and features of molecular orbital method.	PPT Illustration, lecture, and Problem solving	Formative assessment
4		Molecular orbital theory of Hydrogen molecule.	2	To analyze the molecular orbital theory of hydrogen molecule.	Descriptive lecture comparative study	

V	Relativistic Quantum Mechanics & Quantization of the Field						
	1	Klein – Gordon Equation –	4	To understand	PPT	Evaluation	
		Interpretation of the Klein-		the basic	mustration,	through:	
		Gordon equation – Particle in a		concepts and	And	Online quiz,	
		Coulomb field		features of a	Descriptive		
				particle in a	lecture		
				Coulomb field.		short	

2	Dirac's equation for a free particle – Dirac matrices – Plane wave solution –Negative energy states – Spin of the Dirac particle	4	To understand the concept of Dirac particle.	Descriptive lecture and Theoretical formulation	questions Descriptive answers
3	Magnetic moment of the electron – Spin-orbit interaction.	2	To apply the concept of magnetic	Descriptive lecture and Theoretical	Problem
			moment of	formenlation	Calving
			electron.	Tormulation	Solving
4	Quantization of the Field - Lagrangian equation- Hamiltonian equation- Schrodinger equation- Quantization of Electromagnetic fields	5	To understand the quantization of the field.	Descriptive lecture and Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level : K- Knowledge; Analyze- An; U – Understand; Create – C.

Course Instructor: Dr. M.Priya Dharshini & Dr.S.Sonia

Semester II Major Core –VI Name of the Course : Condensed Matter Physics-I Subject code : PP2023

No of hours per week	No of credits	Total no of hours	Marks
6	4	90	100

Objective

Credits: 4

To give strong foundation in the conceptual understanding of the development of solid state physics with appropriate theoreticalbackground.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	differentiate between different lattice types and explain the concepts of reciprocal lattice and crystal diffraction	PSO-4	Ар
CO- 2	analyze various crystal imperfections and ordered phases of crystal	PSO-2	An
CO- 3	explain the theory of lattice vibrations and analyze the thermal properties of solids	PSO-2	An
CO -4	formulate the problem of electrons in a periodic potential	PSO-1	U

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
	Crystal Phy	vsics:CrystalStructure				
		Lattice representation, Simple symmetry operations, Bravais Lattices, Unit cell, Wigner - Seitz cell		To acquire knowledge on space lattice and symmetry operations	Lecture Discussion with PPT illustration	Evaluation through Online quiz Class test Formative
		Miller planes and spacing, Characteristics of cubic cells, Structural features of NaCl, CsCl, Diamond, ZnS, Closepacking.		To be able to identify the crystal structure of materials	Lecture discussion with illustration, SLO	assessment I
		Crystal Binding: Interactions in inert gas crystals and cohesive energy, Lennard - Jones potential, Interactions in ionic crystals and Madelung energy		To understand the different kinds of bonding	Lecture discussion	
		valent bonding , Heitler - London Theory Hydrog en bonding , metallic bonding		To acquire knowledge on hydrogen, metallic and mixed bonding	Lecture discussion, PPT	
	Diffraction	of Waves and Particles	by Crystals		Teste	
		X-rays and their generation,		To know the principles	Lecture Discussion	Short test

Semester IV Course Name: Nuclear and Elementary Particle Physics Course Code: PP2041

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To know about the fundamental principles and concepts governing nuclear and particle physics and their social, economic and environmental implications.
- 2. To understand the concept of elementary particles.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	Understand the properties of Nuclear forces and outline their behavioral formulation.	PSO - 1	U
CO-2	Analyze the different nuclear models of the nucleus and examine the application of the shell model of nucleus.	PSO - 4	Е
CO-3	Explain the characteristics and effect of radioactive decay phenomena. (alpha,beta,gamma)	PSO - 1	U
CO-4	Discuss the outcome of various types of nuclear reactions.	PSO - 4	С
CO-5	Examine the Particle Physics phenomena and their basic theoretical description.	PSO - 3	An

Module Total contact hours: 90 (Including lectures, assignment and tests)

			Lectur	Learning	Pedagogy	Assessment/Evaluat
Uni	Sectio		e	outcomes		ion
t	n	Topics	Hours			
Ι	Nuclear	r Forces				
	1	Characteristics	4	Define the	PPT,	
		of Nuclear		basis of	Illustration	Evaluation through:
		Forces –		Nuclear	and	Online quiz,
		Exchange		Forces	theoretical	Problem solving
		forces and			derivation	short questions
		tensor forces -				Descriptive answers
		charge				Open book
		independence				assignment
	2	Spin	4	Apply	Derivation	
		dependence of		Meson	and group	Formative
		Nuclear Forces		theory of	discussion	assessment I
		- Meson theory		nuclear		

		of nuclear		forces		
		forces- Ground				
		state of				
		deuteron				
	3	Nucleon-	4	Derivation	PPT,	
		nucleon		of Nucleon-	Illustration,	
		scattering		Nucleon	Theoretical	
		singlet and		scattering	formulation	
		triplet				
		parameters –				
		Nucleon-				
		Nucleon				
		scattering:				
		Cross-section,				
		Differential				
		Cross-section.				
		Scattering				
		Cross-sections				
	4	Magnetic	3	Apply	Derivation	
	-	moment-	·	Quadrupole	and group	
		Quadrupole		moment –S	discussion	
		moment -S and		and D state	discussion	
		D state		admixtures		
		admixtures		admixtures		
		Effective range				
		theory of n n				
		scattering at				
		low energies				
II	Nu	iclear Models				
	1	Binding energy	1	Solve	DDT	
	I	& mass defect	-	Weizacker'	Derivation	Evaluation
		Waizaakar'a			discussion	through: Online
		formula maga		formula	uiscussion	unough. Onnie
		Torritura – mass		Tormula		Problem colving
	2		1	A	Devicestien	short quastions
	2	Liquid drop	4	Analyse the	Derivation,	Descriptive
		model - Bonr -		liquid drop	group	Descriptive
		wheeler theory		model of	discussion	
		OF HISSION-		nucleus,	problem	Formative
		Activation		Define and	solving	assessment I
		energy for		derive		
		fission		equations		
	2	Shall	2	Statement -	Tiluraturation	4
	3	Snell model-	5	Statement	mustration,	
		Spin –Orbit		and proof	Ineoretical	
		coupling-Spins		or Shell	Tormulation	
		of nuclei-		model of		
		Magnetic		nucleus and		
		moments –		Electric		
		Schmidt lines-		quadrupole		

		Flectric		moments		
		guadrupole		moments		
		moments				
	4	Callesting	4	F	Devicestien	
	4	Collective	4	Examine	Derivation	
		model of Bohr		the	and group	
		and Mottelson:		Collective	discussion	
		Nuclear		model of	problem	
		vibration –		Bohr and	solving	
		Nuclear rotation		Mottelsona		
		-Nelson model		nd its		
				applications		
III	Nuclear	r Reactions	4			
	1	Nuclear reaction	4	Explore	Derivation,	Evaluation
		- Q- value –		Nuclear	group	through: Online
		Nuclear reaction		reaction cross	discussion	quiz,
		cross section –		section		Problem solving
		Direct Nuclear				Short Questions
		Reactions				Descriptive
	2	Knock out	3	Obtain the	Illustration,	answers
		reaction, Pick-		Compound	Theoretical	Formative
		up reaction,		nucleus	formulation	assessment I/II
		Stripping		theory		
		reaction –				
		Compound				
		nucleus theory –				
		Formation –				
		Disintegration				
		energy levels -				
		Partial wave				
		analysis of				
		Nuclear reaction				
		cross section				
	3	Pasananaa	4	Dorivo Proit	Dorivation	
	5	Souttoring and	-	Wigner	Derivation	
		Departien anona		wighter disconsister	and group	
		Reaction cross-		dispersion	DDT	
		Section (Brent-		Tormula	PPI	
		wigner				
		dispersion				
		formula) –				
		Scattering				
		matrix				
	4	Reciprocity	4	Define,	PPT,	
		theorem – Breit		deriveand	Illustration,	
		-Wigner one		apply Breit-	Theoretical	
		level formula –		Wigner one	formulation	
		Resonance		level formula		
		scattering –				

			r			
		Absorption cross				
		section at high				
		energy.				
IV	Radioa	ctive Decays				
	1	Alpha decay -	4	Discuss	Derivation	Evaluation
		Beta decay –		different	discussion	through: Online
		Energy release		typesof		quiz,
		in beta decay –		radioactive		Problem solving
		Fermi theory of		decays		short questions
		beta decay				Descriptive
	2	Shape of the	3	Define and	Derivation	answers
		beta spectrum –		derive	and group	Formative
		decay rate		principle and	discussion.	assessment II
		Fermi-Curie plot		logic of Curie	PPT	
		– Fermi & G.T		plot		
		Selection rules		F		
	3	Comparatives	4	Discuss about	Derivation	
	-	half - lives and	_	different types	and group	
		forbidden		of Gama	discussion	
		decays- Gamma		decay	uiseussion	
		decay -		uccuy		
		Multipole				
		radiation				
	4	Angular	4	Analyze	Derivation	
	•	momentum and	-	charge parity	and group	
		narity selection		selection and	discussion	
		rules – Internal		scrutinize the	discussion	
		conversion –		Charge		
		Nuclear		Nuclear		
		isomerism		isomerism		
V	Elemen	tary Particle Phys	ics	Isomerism		
•	1	Classification of	3	AnalyzeFund	Discussion	Evaluation
	1	alementary	5	amontal	DISCUSSION	through: Online
		narticles - Types		Classification	111	auiz
		of interaction		of elementary		Problem solving
		between		or cicilicitary		short questions
		elementary		particles		Descriptive
		narticles				answers
		Hadrons and				Assignments
		leptons				Assignments,
	2	Symmetry and	1	Analysa tha	Derivation	Schinars
	4	Symmetry and	4	Analyse the	and group	Formative
		lowe		laws and	discussion	assessment II
		Strongonogg and		nrove CDT		assessment II
		Suangeness and		theorem		
		associate		meorem		
		CDT the arrow				
		cri meorem –				
		classification of				
		nadrons		1		

3	Quark model -	4	Explain and	Derivation
	Isospin		derive mass	and group
	multiples -		formula for	discussion
	SU(2)- SU(3)		octet and	
	multiplets- Gell-		decouplet	
	Mann - Okubo			
	mass formula			
	for octet and			
	decouplet			
	hadrons			
4	Phenomenology	4	Define,	Derivation
	of weak		deriveand	and group
	interaction		apply	discussion,
	hadrons and		Universal	PPT
	leptons-		Fermi	
	Universal Fermi		interaction –	
	interaction –		Elementary	
	Elementary		concepts of	
	concepts of		weak	
	weak		interactions	
	interactions.			

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An-Analyze; E-Evaluate; C- Create

Staff-in charges: Ms.C.Nirmala Louis &Ms. R. Krishna Priya

Semester IV Course Name: Spectroscopy Course Code: PP2042

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To gain knowledge about the basic principles of spectroscopy.
- 2. To gain insight about the spectroscopic instruments and its applications.

Course Outcome

Cos	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	apply basic spectroscopic techniques. (Microwave, IR, Raman and NMR)	PSO - 4	U
CO - 2	infer basic spectroscopic techniques. (Microwave, IR, Raman, ESR, NQR and NMR)	PSO - 6	Ар

CO - 3	understand the molecular interactions in different spectroscopic methods.	PSO - 1	An
CO - 4	analyze the characteristics of rotational spectra and vibrational energy of molecules.	PSO - 3	An
CO - 5	utilize various spectroscopic methods suitable for characterizing molecules.	PSO - 6	С

Modules Total contact hours: 90 (Including lectures, assignment and tests)

Unit Section Topics Hours outcomes	
1 Microwave Spectroscopy	
1. Rotation of Molecules – 4 Define the basis of PPT ,	
Rigid Rotor (Diatomic Semiconductor Illustration Ev	valuation
Molecules) and thr	rough:
theoretical On	nline quiz,
derivation Pro	roblem
2Expression for the4Derive the expressionDerivationsol	olving short
Rotational Constant -for the Rotationaland groupqu-	uestions
Intensity of Spectral Lines Constant discussion, De	escriptive
3 Effect of Isotopic 4 Explain the effect of PPT, and	nswers
Substitution - Molecular Isotopic substitution Illustration,	
Parameters (Bond Length, of molecules and derivation	Formative
Bond Angle, Dipole derive the and group a	assessment I
Moment from Rotation Molecular Parameters discussion	
Spectra) (Bond Length, Bond	
Angle from Rotation	
Spectra)	
4 Techniques and 3 Explain the Derivation	
Instrumentation instrumentation and group	
techniques of discussion	
microwave	
spectrometer	
II Infrared Spectroscopy	
1 Vibrational energy of a 4 Derive the vibrational PPT,	
diatomic molecule- energy of a diatomic Derivation	Evaluation
Infrared selection rules- molecule discussion	through:
Vibrating diatomic C	Online quiz,
molecule- IR	Problem
spectrophotometer	solving short
2 Diatomic vibrating rotator- 4 Derive equation for Derivation	questions
Vibrations of polyatomic diatomic vibrating and group I	Descriptive
molecules-Fermi rotator and vibrations discussion	answers
resonance of polyatomic problem	Formative
molecules solving a	assessment I
3 Rotation vibration spectra 3 Explain the normal Illustration	
of polyatomic molecules-	

		Normal modes of vibration		crystal		and group	
		in crystal Interpretation of		Interpret the		discussion	
		vibrational spectra-Group		vibration spectra and		nrohlem	
		fraquancias		Group frequencies		problem	
		nequencies -		Oroup rrequencies		solving	
	1	Instrumentation Sample	1	Explain the		Derivation	
	-	handling techniques	-	Instrumentation of I	D	and group	
		Equipien Transform Infranced		instrumentation of in	ĸ	diaguasian	
		Fourier Transform Infrared		Discussion			
		spectroscopy-Applications		Discuss its		problem	
				applications		solving	
III	Ra	man Spectroscopy					
	1	Introduction-Theory Of	4	Devive the theories of	of	Derivation	Evaluation
		Raman Scattering-		Raman spectromete	r	discussion	Evaluation
		Rotational Raman Spectra-		Ĩ			through:
		Vibrational Raman					Online quiz,
		Spectra-Mutual Exclusion					Problem
		Principle					solving short
	2	Raman Spectrometer-	3	Explain the Raman		Illustration.	questions
		Sample Handling		Spectrometer and		Theoretical	Descriptive
		Techniques-Polarization		discuss its sample		formulation	answers
		Of Raman Scattered Light-		Handling Technique	es		Formative
		Structure Determination			~	Derivation	assessment I/II
		Using IR And Raman		Discuss the Structur	e	and group	
		Spectroscopy-Raman		determination Using	σ	discussion PP	
		Investigation Of Phase		IR And Raman	>	T	
		Transitions		Spectroscopy			
	3	Resonance Raman	4	Define Nonlinear		Derivation	
	•	Scattering-Nonlinear		Raman Phenomena		and group	
		Raman Phenomena-		Preliminaries and	,	discussion	
		Droliminarias Hyper		Uvpor Domon Effor	+	DDT	
		Raman Effect		Hyper Raman Ence	ι,	111	
	4	Stimulated Raman	4	Discuss the anti-		РРТ	
	-	Scattering-Inverse Raman	-	Stokes lines of Rama	an	Illustration	
		Effect-Coherent Anti-		Scottering		Theoretical	
		Stokes Raman Scattering		Seattering		formulation	
		Stokes Raman Seattering.				Tormulation	
IV	Nu	clear Magnetic and Electron	ı S	pin Resonance Spect	ros	сору	
	1	Basic principles –	4	Explain the basic		Derivation	Evaluation
		Quantum theory of NMR -		principles of NMR	d	iscussion ,PPT	through:
		magnetic resonance –		.relaxation			Online quiz,
		relaxation processes		processes			Problem
	2	chemical shifts – spin-spin	3	Define and derive	Ι	Derivation and	solving short
		coupling - Spectra and		chemical shifts		group	questions
		molecular structure –		Explain the	d	iscussion, PPT	Descriptive
		Fourier Transform NMR		Instrumentation			answers
		Instrumentation –		and Applications of			Formative
		Applications		NMR			assessment II

	3	Basic principles – Quantum theory – g-factor – Nuclear Interaction and Hyperfine structure – Relaxation effects Hyperfine interaction –	4	Explain the Nuclear Interaction and Hyperfine structure Discuss the ESR	Derivation and group discussion Derivation and	
		line widths – ESR spectrometer – Instrumentation – applications		spectrometer, Instrumentation and its applications	group discussion	
V		Nuclear Quadrupole Reson	nar	ice and Mossbauer S	pectroscopy	
	1 2	Basic theory - Nuclear Electric quadrupole interaction – Energy levels – Transition frequency – Excitation and Detection Effect of magnetic field - Instrumentation – Applications. Mossbauer effect - recoilless emission and	3	Discuss the nuclear electric quadrupole interaction Discuss the effect of magnetic Field and its instrumentation	Discussion PPT Derivation and group discussion, PPT	Evaluation through: Online quiz, Problem solving short questions Descriptive answers Formative assessment II
		absorption				
	3	hyperfine interaction - chemical isomer shift - magnetic hyperfine and electric quadruple interactions	4	Explain the magnetic hyperfine and electric quadruple interactions	Derivation and group discussion PPT	
	4	Instrumentation applications.	4	Explain the instrumentation and its application	Derivation and group discussion, PPT	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An-Analyze; E-Evaluate; C- Create

Staff-in charge: Ms.V.Shally & Ms.Jenepha Mary

Semester IV

Course Name: Thermodynamics and Statistical Mechanics

Course code: PP2043

No.of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Learning Objectives

- 1. To provide a phenomenological introduction to thermodynamics through thermodynamics postulates, quantities and relations.
- 2. To understand the micro and macroscopic properties of the matter through the statistical probability laws and distribution of particles and study the transport properties, different phases of maters, equilibrium and nonequilibrium process.

Course Outcomes

Cos	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	understand the basic concepts related to thermodynamics, microstates and macrostates	PSO - 4	U
CO - 2	apply principles to find relation between grand canonical and canonical partition functions	PSO - 1	Ар
CO - 3	solve the Bose-Einstein, Fermi-Dirac and Maxwell- Boltzmann distributions	PSO - 4	С
CO - 4	analyze the origin of transport and non-equilibrium processes	PSO - 3	An
CO - 5	understand the concept of heat capacities and phase transitions	PSO -4	U

Teaching Plan

Credits: 5

Total Hours: 90 (Incl. Seminar & Test)

U	nit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation	
	I Thermodynamics, Microstates and Macrostates							

	1	Basic postulates of	4	Understand the	PPT,	Evaluation
		thermodynamics – Phase space and		concepts of	Descriptive	through:
		ensembles – Fundamental relations		thermodynamics	lecture	quiz,
		anddefinition of intensive variables				
		– Intensive variables in the entropic				
		formulation				Problem
	2	Equations ofstate – Euler relation,	4	To study the different	Illustration,	solving
		densities - Gibbs-Duhem relation		relations and equations	Descriptive	
		for entropy - Thermodynamic		of thermodynamics	lecture	
		potentials-Maxwell relations -				
		Thermodynamic relations				Descriptive
	3	Microstates and macrostates – Ideal	4	Understand the basic	Illustration,	answers
		gas –Microstate and macrostate in		concept of	Descriptive	
		alaggical systems Microstate and		thermodynamical states	lecture	
		classical systems – Microstate and				
		macrostate in quantum systems-				
						short
	4	Density of states and volume	3	To study DOS of	Illustration,	questions
		occupied by a quantum state		systems	Descriptive	
					rr	
					lecture	
						Formativa
						assessment
						assessment
			~			(I CIA)
11	Microca	nonical, Canonical and Grand	Canoni	calEnsembles		
	1	Microcanonical distribution function	4	Understand the concept	PPT	Evaluation
		– Two level system in microcanonical		of ensembles	Illustration,	through:
		ensemble – Gibbsparadox and correct			Descriptive	qu1z,
		formula for ortroact				
1	1	II OFITIULA FOR ENTROPY				

					lecture	
	2	The canonical distribution function – Contact with thermodynamics Partition function and free energy of an ideal gas - the grand partition function	3	To acquire knowledge on distribution function of thermodynamics To understand the concepts of partition function	Lecture, Seminar Descriptive lecture	short questions Descriptive answers Problem
	4	Relation between grand canonical and canonical partition functions – One- orbitalpartition function	4	Understand the relation between partition functions	Descriptive lecture, seminar	solving Formative assessment (I&II CIA)
III	Bose-H Boltzn	Linstein, Fermi-Dirac and Maxw	ell-			
	1	Bose-Einstein and Fermi-Dirac distributions –Chemical potential of bosons –Number density of photons and Bose condensation	4	To learn about Bose- Einstein distribution and bosons	Illustration, Descriptive lecture	Evaluation through: quiz,
	2	Thermodynamic quantities – Non- interactingBose gas and thermodynamic relations - The principle of detailed balance	3	To understand the basic thermodynamic quantities	Lecture, Seminar	short questions
	3	Thermodynamic relationsfor non-interacting Fermi gas – Fermi gas at zero and low temperature – Fermi energy and Fermimomentum	4	To know the relations concerned with fermi gas	Descriptive lecture	Descriptive answers
	4	Maxwell-Boltzmann distribution law for microstates in a classical gas – Physical interpretation of the classical limit – Fluctuations in different ensembles	4	To gain knowledge on Maxwell-Boltzmann distribution and classical interpretation	Group Discussion, Lecture, seminar	Formative assessment (I CIA)
IV	[Trans]	port and Non-Equilibrium Proce	esses			
	1	Derivation of Boltzmann transport equation for change of states without and with collisions –Boltzmann equation for quantum statistics – Equilibrium distribution in Boltzmann equation	5	To have a clear idea on Boltzmann equations	PPT Illustration, Descriptive lecture.	Evaluation through quiz,Descript ive answers

	2	Transport processes; One speed and one dimension - All speeds and all directions – Conservedproperties - Distribution of molecular velocities – Equipartition and Virial theorems	5	To understand transport, speed, velocity and properties	Lecture, Group discussion	short questions
	3	Randomwalk - Brownian motion - Non-equilibrium process; Joule-Thompson process - Free expansionand mixing - Thermal conduction - The heat equation.	5	To study the concept of expansion and conduction	Lecture, seminar	Assignment, Formative assessment (II CIA)
V	Heat C	Capacities, Ising Model and Phas	se Trans	sitions		
	1	Heat capacities of heteronuclear diatomic gas – Heat capacities of homonuclear diatomic gas –Heat capacity of Bose gas	4	To acquire knowledge on heat capacity of gases	PPT Illustration, Descriptive lecture	Evaluation through: quiz, short questions
	2	One-dimensional Ising model and its solution by variational method– Exact solution for one-dimensional Ising model	4	To get a brief idea on Ising model	Descriptive lecture	Descriptive answers
	3	Phase transitions and criterion for phasetransitions – Classification of phase transitions by order and by symmetry	4	To learn about phase transitions and its classifications	Descriptive lecture, Seminar, Assignment	Problem solving
	4	Phase diagrams forpuresystems – Clausius-Clapeyron equation – Gibbs phase rule	3	To study the phase diagrams and phase rules	Illustration, Descriptive lecture	Formative assessment (II CIA)

PO- Program outcome; LO - Learning outcome; Cognitive Level U - Understand; Ap- Apply, An- Analyze; K- Knowledge

Course Instructor :Dr. M. Priyadharshini and Ms. P. AjiUdhaya

Semester IV Course name: Advanced Nano Physics Course code: PP2045

Hours/Week	Credits	Total Hours	Marks	
6	5	90	100	

Learning Objectives

- 1. To understand the theoretical aspects of low dimensional semiconductor systems.
- 2. To learn the structures, properties, characterization and applications of nanomaterials.

Course Outcome

COs	Upon completion of this course the students will be able to:	PSO addressed	CL
CO-1	Identify how basic physics can be used to describe the behaviour of electrons in nano-scale materials.	PSO-1	R
CO- 2	Explain the variation in the electron distribution in nanostructures for different dimensions (Quantum well, Quantum wires & quantum dots)	PSO-3	U
CO- 3	Analyze magneto electronics and applications of Nanotechnology in various fields.	PSO-6	An
CO -4	Explain Laser effect in Quantum well, Quantum wires and quantum dots.	PSO-2	U
CO- 5	Compare the structure and properties of Carbon nanostructures and their applications in the emerging nanotechnology	PSO-6	E
CO -6	Discuss the fabrication and characterization techniques of nanomaterials	PSO-2	U
CO -7	Develop key concepts in Single electron transistor, Spintronics and Giant magnetoresistance	PSO-4	C

Modules	
Total contact hours: 90 (Including lectures, assignment and tests	5)

Uni t	Sectio n	Topics	Lectur Hours	re Learning s outcomes	Pedagog	y Assessment/Eval uation
Ι	Introdu	ction to Nano and Ty	ypes of N	anomaterials:		
	1	Need and origin of 4 7 nano, Nano and energetic-Top- down and bottom- up approaches		To understa nd the importa nce of nano	Lecture Discussio n with PPT Illustratio n	
	2	Introductory ideas of 1D, 2D and 3D nanostructured materials	4	be able to distinguish between 1D, 2D and	Lecture discussi on	Evaluation through: Online quiz,

				3D		
				nanomateri		Formative
				als		assessment I
	3	Quantum well:	4	understand	PPT	
		Quantum well		the concept	Illustrati	
		infrared detector-		quantum	on	
		quantum well		well and its		
		laser- quantum		applications		
		cascade laser-				
		Quantum wire:				
		Production- VLS				
		growth				
		mechanism-				
		structure and uses-				
	4	Quantum dots:	3	To learn	Lecture	
		Description-		about the	discussi	
		Exciton		synthesis and	on	
		confinement in		applications		
		quantum dots –		of quantum		
		Epitaxially self-		dots		
		assembled				
		quantum-dot-				
		Application:				
TT	Carl	Quantum dot laser				
11		Nanostructures	4	т		
	1	Carbon molecules	4	10	PPT and	F 1
		and carbon bond -		understand	group	Evaluation through Onling
		Cou: Discovery		the significance	Discussi	unrough. Omme
		C60 and its arrestal		of C60 in	OII	Yuiz, Short quastions
		COU and its civitai				
		-Superconductivity		nanotechnolo		Descriptive
		-Superconductivity		nanotechnolo		Descriptive
	2	-Superconductivity in C60 -Fullerene	4	nanotechnolo gy	Lecture	Descriptive answers Formative
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT):	4	nanotechnolo gy To be able to	Lecture	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types-Eabrication:	4	nanotechnolo gy To be able to synthesize carbon	Lecture Discussio	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc-	4	nanotechnolo gy To be able to synthesize carbon nanotubes	Lecture Discussio n with PPT	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method-	4	nanotechnolo gy To be able to synthesize carbon nanotubes	Lecture Discussio n with PPT Illustratio	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method	4	nanotechnolo gy To be able to synthesize carbon nanotubes	Lecture Discussio n with PPT Illustratio n	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method	4	nanotechnolo gy To be able to synthesize carbon nanotubes	Lecture Discussio n with PPT Illustratio n	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method	4	nanotechnolo gy To be able to synthesize carbon nanotubes	Lecture Discussio n with PPT Illustratio n PPT	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes -	4	nanotechnolo gy To be able to synthesize carbon nanotubes To understand	Lecture Discussio n with PPT Illustratio n PPT Illustrati	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types-Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour	4	nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different	Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition-	4	nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis	Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure	4	nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in	Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types-Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure – Electrical	4	nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in CNT	Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Descriptive answers Formative assessment I
	2	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure – Electrical properties	4	nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in CNT production	Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Descriptive answers Formative assessment I
	2 3	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types-Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure – Electrical properties Vibrational	4 3 4	nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in CNT production To learn the	Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Descriptive answers Formative assessment I
	2 3 4	-Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure – Electrical properties Vibrational properties –	4 3 4	nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in CNT production To learn the different	Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Descriptive answers Formative assessment I

		properties – Applications (fuel cells, chemical sensors, catalysts) – Filling of carbon nanotubes - CNT emitters		of carbon nanotubes	PPT Illustratio n	
III	Fabrica	ation of Nanomateria	ls			
	1	Synthesis of oxide nanoparticles by sol-gel method - Synthesis of metallic nanoparticles Electrochemical deposition method	4	To be able to differenti ate the synthesis methods in nanomate rial preparatio n	Lecture discussi on	Evaluation Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I/II
	2	Sonochemical reduction method – Lithography Atomic layer deposition - Synthesis of semiconductor nanoparticles	3	To be able to synthesiz e semocond uctor nanoparti cles	Lecture Discussio n with PPT Illustratio n	
	3	Arrested precipitation method- Core shell structures – Bio synthesis of nanoparticles using plants	4	To understan d the technique s in bio synthesis of nanoparti cles	Lecture discussi on	
	4	Preparation of magnetic nanomaterials - Super paramagnetism - Coulomb blockade – Single electron transistor	4	To understan d the preparatio n and applicatio ns of magnetic nanomate rials	PPT and group Discussi on	
IV	Charac	terization of Nanoma	aterials			1

	1	Principles.	4	То	Lecture	Evaluation through:
	_	experimental set-		understan	Discuss	Online quiz.
		up procedure		d the	ion	Problem solving
		and utility of X-		principles	with	short questions
		ray diffraction		principies	PPT	Descriptive
		(XRD)		, experime	Illustrat	answers
		Scanning		ntal set-	ion	Formative
		electron			1011	assessment II
		microscopy		nrocedure		assessment II
		(SFM)		and utility		
		(SEM)		XRD and		
				SEM		
	2	Atomic force	3	To be able	Lecture	
	-	microscopy	5	to	discus	
		(AFM)		interpret	sion	
		Scanning		the	51011	
		tunneling		structural		
		microscope		properties		
		(STM) and		using		
		scanning probe		AFM		
		microscopy		STM		
		(SPM) Fourier		SPM and		
		transform		FTIR		
		infrared		1 111		
		spectroscopy				
	3	Quantum	4	То	PPT	
	-	cellular		understan	Illustr	
		Automata-		d the	ation	
		Spintronics -		concept		
		Giant		giant		
		magnetoresistanc		magnetor		
		e		esistance		
	4	Quantum Hall	4	То	Lecture	
		effect - Quantum		understan	Discuss	
		spin Hall effect -		d the	ion	
		Fractional		concept	with	
		quantum Hall		Quantum	PPT	
		effect		Hall	Illustrat	
				effect	ion	
V	Applica	ations			·	
	1	Molecular	3	То	PPT	Evaluation through:
		electronics and		understan	Illustr	Online quiz,
		nanoelectronics -		d the	ation	Problem solving
		Nanorobots -		importanc		short questions
		Biological		e of		Descriptive
		applications of		nanoelect		answers
		nanoparticles		ronics		Formative
	2	Catalysis by gold	4	To be able	Lecture	assessment II

	nanoparticles –		to	Discuss
	Band-gap		mention	ion
	engineered		the	with
	quantum devices		importanc	PPT
	-Nanomechanics		e of	Illustrat
			nanomech	ion
			anics	
3	Photo electro	4	To learn	Lecture
	chemical cells –		the	discus
	Photonic crystals		applicatio	sion
	– Plasmon		ns of	
	waveguides.		nanoparti	
	Sensors –		cles in	
	MEMS/NEMS -		NEMS	
	Solar cells –			
	Displays			
4	Optical switches	4	To learn the	PPT
	– Graphene		applications	Illustratio
	electronics –		of	n
	Biosensors –		nanoparticles	
	Biomarkers and		in medical	
	Bio imaging –		field	
	Targeted drug			
	delivery			

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An-Analyze; E-Evaluate; C- Create

Staff-in charge: Ms. A. Lesly Fathima & Sr. S. Sebastiammal Head of the Department: Dr. C. Nirmala Louis

	Moseley's law,	involved in X-	with PPT	Quiz
	Absorption of X-	ray diffraction	Illustration	
	rays (Classical			
	theory), Absorption			Assignment
	Edge, X-ray			
	diffraction			Formative
	The Laue	To understand	Lecture	assessment I
	equations,	the	discussion	
	Equivalence of	equivalence of		
	Bragg and Laue	Bragg and		
	equations,	Laue		
	Interpretation of	equations		
	Bragg equation,			
	Ewald construction			

	Reciprocal lattice,		To be able to	Lecture	
	Reciprocal lattice		draw the		
	to SC, BCC and		reciprocal	Illustration	
	FCC crystals,		lattice to SC,		
	Importance		BCC and FCC		
	properties of the		crystals		
	Reciprocal lattice –				
	Diffraction		To acquire		
	Intensity, The		knowledge on		
	Powder method,		Neutron		
	Powder		Diffraction		
	Diffractometer,		and		
	The Laue method,		Electrondiffra		
	The Rotating		ction		
	Crystal method,				
	Neutron				
	Diffraction,				
	Electrondiffraction				
Crystal Imper	rfections and Ordered	l PhasesofMa	atter		
	Point		To evaluate	Lecture	
	imperfections,		the different	with PPT	Evaluation
	Concentrations of		imperfections	Illustration	through
	Vacancy, Frenkel		involved in		Online quiz
	and Schottky		crystal		Assignment
	imperfections				rissignment
	Line Imperfections		To understand	Question-	Formative
	Burgers Vector,		the concept	answer	assessment II
	Presence of		dislocation	session	
	dislocation, surface				
	imperfections,			Lecture	
	Polorans, Excitons.				
	Ordered phases of		To acquire	Lecture	

	matter:	knowledge on	discussion	
	Translational and	Ordered	with	
	orientation order -	phases of	illustration,	
	Kinds of liquid	matter	SLO	
	crystalline order -			
	Ouasi crystals -			
	Superfluidity.			
LatticeDvnam	nics			
2400002 9 11411	Theory of electic	Tounderstand	Lecture	Evaluation
		the concept	Lecture	through
	vibrations in mono	lattice	Discussion	Online guiz
	and diatomic	lattice	Discussion	Onnie quiz
	lattices, Phonons,			
	Dispersion relations,	derive the		
	Phonon momentum	dispersion		Formative
		 relation		assessment II
	Heat Capacity:	To acquire		
	Specific heat	knowledge on	Lecture	
	capacity of solids,	phonon heat		
	Dulong and Petit's	capacity	Discussion	
	law, Vibrational			
	modes			
	Einstein model,	To be able to	Brain	
	Density of modes in	determine the	storming	
	one and three	density of	session.	
	dimensions, Debye	states		
	Model of heat		Lecture	
	capacity, Anharmonic			
	Effects: Explanation		Illustration	
	for Thermal			
	expansion,			
	Conductivity and			
	resistivity, Umklapp			
 TheoryofFloor	process.			
 TheoryofElec		T - 1 1	T a stanus	Chort toot
	Energy levels and	i o nave clear		Short lest
	distribution for a free	idea about	with PP1	
	electron gas Periodic	Fermi-Darac		Formative
	boundary condition	distribution for		assessment III
	and free electron gas	a free electron		
	in three dimensions	gas		
	Heat capacity of the	To acquire	Brain	
	electron gas. Ohm's	knowledge on	storming	
	law, Matthiessen's	Heat canacity	session	
	rule, Hall effect and	of the electron	50551011.	
	magnetoresistance.W	of the electron	Lastura	
	iedemann - Franz	gas and Bloch	Lecture	
	law, Nearly free	runction	TII	
	electron model and		Illustration	

the origin and		
magnitude of energy		
gap, Bloch functions,		
Bloch theorem		
Motion of an	To acquire	Lecture
electron in a periodic	knowledge on	with PPT
potential, Kronig -	Motion of an	
Penney model,	electron in a	Illustration
Approximate	periodic	
solution near a zone	potential	
boundary, Metals,		
semiconductors and		
insulators		

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze; Course instructors: Dr.A.Lesly Fathima and Sr.S.Sebastiammal

Semester II Introductory Astronomy, Astrophysics & Cosmology (Elective – II (b)) Subject code: PP2025

No. of hours per week	No. of credits	Total no. of hours	Marks
6	5	90	100

Objectives:

The course enables the students to understand and realize the historical evolution of Universe and principles involved in Astrophysics.

CO	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	perceive the historical evolution of solar system and universe.	PSO - 3	E
CO - 2	describe the principles of physics in the formation of astronomical objects like planets-satellites – asteroids and comets.	PSO - 1	U
CO - 3	gain experience with measurement techniques and equipment and develop the ability to assess uncertainties and assumptions.	PSO - 2	An
CO - 4	develop analytical skills and the ability to understand the astronomical situation.	PSO - 7	U
CO - 5	analyse the formation of binary stars, multiple stars, neutron stars and black holes.	PSO - 4	An
CO - 6	interpret the observations of galaxies, dark matter, quasars and pulsars.	PSO - 5	Е
CO - 7	achieve a good understanding of physical laws and principles.	PSO - 6	C

<u>Cree</u>	dit:5	it:5 Total Hours:90 (Incl. Seminar & Test)				
Unit	Module	Topics	Lecture	Learning	Pedagogy	Assesment/E
Ι	History o	f Astronomy	nours	outcome		valuation
	1	Introductory History of Astronomy- Ptolemy"s Geocentric Universe- Copernicus" Heliocentric Universe	4	To understand basic concepts of Astronomy	Illustration and PPT	Evaluation through: quiz
	2	Tycho Brahe and Galileo"s Observations-Kepler"s Laws ofPlanetary Motion-Newtonian Concept Of Gravity	3	To know the physical significance of Tycho Brahe and Galileo''s Observations and Laws Physics	Illustration, PPT	Formative assessment Evaluati on through t test Multiple
	3	Highlights of Einstein"s Special and General Theory Of Relativity	4	To know the Highlights of Einstein"s Special and General Theory of Relativity	Lecture Discussion	choice questions
	4	Curved Space Time-Evidence of Curved Space Time- Bending Of Light- Time Dilation	4	To have a knowledge on Bending of Light- Time Dilation	Lecture Discussion and Group Discussion	
II	Stars & C	Jalaxies				
	1	Stars and Galaxies-Distances- Trigonometric Parallax-Inverse Square Law	3	To understand the basic concepts of Stars and Galaxies	Illustration and PPT, Videos	Evaluation through: quiz Formative
	2	Magnitude of Stars-Apparent Magnitude-Absolute Magnitude and Luminosity	4	Knowledge on Magnitude of Stars	Illustration and PPT, Videos	assessme nt
	3	Color and Temperature- Composition of Stars-Velocity, Mass and Sizes of Stars-Types of Stars	4	To acquire knowledge on Color and Temperature-	Illustration , PPT, Lecture and Discussion	Evaluation through short answers

Modules Total Hours:90 (Incl. Seminar & Tes

				Types of Stars		
	4	TemperatureDependence-SpectralTypes-Hertzsprung-Russell(HR)Diagram-SpectroscopicParallax	4	To acquire a knowledge on Spectral Types and HR Diagram	Illustration , PPT, Lecture and Discussion	
III	Lives An	d Death of Stars				
	1	Stellar Evolution-Mass Dependence-Giant Molecular Cloud-Protostar-Main Sequence Star-Subgiant, Red Giant, Supergiant-Core Fusion	4	To understand the basic concepts of Stellar Evolution, Mass Dependence and Giant Molecular Cloud	Illustration , PPT, Lecture and Discussion	Evaluation through: quiz Formative assessme
	2	Red Giant (Or) Supergiant- Planetary Nebula(Or) Supernova-White Dwarfs- Novae And Supernovae- Neutron Stars-Pulsars	4	To acquire knowledge on Supernova- White Dwarfs- Novae And Supernovae- Neutron Stars- Pulsars	Illustration , PPT, Lecture and Discussion	nt. Evaluati on through: quiz,
	3	Black Holes-Detecting Black Holes The Sun- Its Size and Composition- Sun"s Interior Zones-Sun"sSurface	4	To understand the basic concept of Black Holes and The Sun	Illustration , PPT and Videos	
	4	Photosphere-Chromosphere- Corona-Sun's Power Source- Fusion Reaction Mechanism.	3	To be able to distinguish between Photosphere- Chromosphere and Corona	Illustration , PPT and Videos	
IV	Cosmolog	gy I				
	1	Introduction to Cosmology- Basic Observations and implications-Olbers' Paradox - Expanding Universe	4	To understand the basic concepts of Cosmology	Illustration, Theoretical formulation	Evaluation through: quiz,
	2	Gravitational Redshift-Doppler Effect-Hubble's Law and the	4	To understand and analyze the spectral shift	Illustration, Theoretical formulation	Problem solving

		Age of the Universe			and Problem
	3	CosmologicalPrinciple-ThePerfectCosmologicalPrinciple-ObservationinterpretationofCosmicMicrowavebackgroundRadiation (CMBR)	5	To understand and analyze the various Cosmological Principles	Descriptive lecture and Theoretical formulation
	4	Evidence Supporting the General Big Bang Theory- Salient features of Steady State Theory	2	To understand and analyse the Big Bang theory and the Steady State theory	Descriptive lecture and Theoretical formulation
V Cosmology II					
	1	Fate of the Universe- Dependence on Mass (Curvature of Space)-Critical density-Open Universe-Closed Universe.	5	To understand basic concepts of the universe	Illustration, Theoretical formulation
	2	Homogenous and Isotropic Freidman-Robertson-Walker Universes- Deriving the Geometry of the Universe from	6	Understand and analyze the geometry of the universe	Illustration, and Problem solving
	3	Flatness Problem-Horizon Problem-Inflation and its effect on the universe-The Cosmological Constant.	4	To understand and analyze the various cosmological problems	Illustration, Theoretical formulation

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An-

Analyze; E-Evaluate; C- Create

Course Instructor:Dr.V.Shally&Ms.S.J.Jenepha Mary