Semester II

Practical I - Biochemistry and Ecobiology Course Code: PZ20P1

No. of hours/week	No of credits	Total number of hours	Marks
4	4	60	100

Learning Objectives

1. To design and perform biochemical experiments.

2. To understand the interaction between abiotic and biotic environment.

Course Outcomes

СО	Upon completion of this course the students will be able	PSO	CL
	to:	addressed	CL
CO - 1	describe the knowledge necessary for professional or	PSO - 1	U
0-1	academic work in the field of biochemistry and ecology.		
CO - 2	analyse the biomolecules and physico-chemical parameters	PSO - 2	An
	in samples.		
CO - 3	develop drawing and writing skills and design experiments.	PSO - 4	Ар
CO - 4	estimate the components of an ecosystem.	PSO - 2	Е

Teaching Plan with Modules Total Hours 30

S.	Topics	Η	Learning Outcome /	Pedagogy	Assessmen
No		ou rs	CO addressed		t
1	Colorimetry- verification of Beer-Lambert's law.	2	Demonstrate the principle of Beer- Lambert's law in biological samples using colorimetry CO 1	Demonstration in lab, Virtual demonstration, Hands on training	Test Record Testing the skill in
2	Preparation of Acid & Alkali solutions and acid- base titration applying Henderson-Hasselbalch' equation.	4	Prepare Acid & Alkali solutions and identify the pH of an unknown solution CO 2		preparation of solutions
3	Preparation buffers of known pH and solutions of known molarity, normality, percentage, ppt, ppm.	4	Prepare solutions of different units and use in biochemical studies CO 2		
4	Chromatographic		Interpret the aminoacid	1	

	separation of amino acids.	2	composition of		
			biological samples CO 2		
5	Quantitative estimation of glucose (Blood/ Tissue).	3	Analyze the changes in glucose level of any sample CO 3		
6	Quantitative estimation of protein (standard graph).	3	Evaluate the protein level of any sample. CO 3		
7	Quantitative estimation of total lipid (Blood/ Tissue).	3	Analyze the changes in lipid level of any sample CO 3		
8	Quantitative estimation of ascorbic acid.	2	Explore the level of ascorbic acid CO 3		
9	Quantitative estimation of blood urea.	2	Analyse the changes in glucose level of any sample CO 3		
10	Determination of salivary amylase activity in relation to substrate applying Michaelis - Menten equation.	3	Interpret the role of salivary amylase activity on substrates CO 2		
11	Instruments/Charts/ Models Colorimeter, pH Meter, Centrifuge, Chromatogram, Electrophoretic unit	2	Identify the instruments and discuss its applications CO1	Video on the components of the insturments	

Course Instructor Dr. J. Josephine Vinoliya Mary

Head of the Department Dr. S. Mary Mettilda Bai

Teaching plan with Modules Total Hours: 30 (Incl. Test) Ecobiology (30 Hours)

Uni t	Modul es	Topics	Hour s	Learning outcome / CO addressed	Pedagogy	Assessment
Ι	1	Measurement of	2	Recall primary	Online	
		primary		productivity	Practical	

					V. I V.	C - 1f
		productivity (O ₂		and its	Videos, You	Self-
		measurement		measurement	tube links,	assessment
		method).		(CO-2,3)	Record	
					writing &	
					submitting on	
					Google	
					Classroom	
	2	Sampling of	2	Identify	Online	
		animal		various animal	Practical	
		population using		population of	Videos,	
		quadrate		an area.	Practical in	Performance
		method.		(CO-3)	the students	-
		incuriou.			house yard,	
					Record	based
					writing &	Assessment.
					submitting on	Assessment.
					-	
					Google Classroom	
	3	Observations	4			
	3	Observation of	4		Online	
		life table in an		Recognise the	Practical	
		insect.		stages in the	Videos, You	NG 11
				life table of an	tube links,	Model
				insect. (CO-3)	Record	examination
					writing &	
					submission	
	4	Collection and	4		Field Visit in	
		identification of			the students'	
		fresh water		Identify the	neighbourhoo	
		planktons.		different	d/	
				freshwater	You tube	
				planktons of	links, Record	
				an area. (CO-	writing &	
				3)	submitting on	
				,	Google	
					Classroom	
	5	Measurement of	2	Spot the		
		turbidity using	-	turbidity of	Videos, You	
		Secchi disc.		any water	tube links	
		Second dise.		body. (CO-2)		
	6	Estimation of	4	Test the LC_{50}	Practical	
	0	LC ₅₀ of a	-	of a pesticide.	Videos, You	
		pesticide.		(CO-2)	tube links	
	7	Estimation of	2		Online	
	/		L	Identify the	Practical	
		H_2S in water		H ₂ S content in		
		sample.		any water	Videos, You	
				sample. (CO-	tube links,	
				2)	Record	
					writing &	
					submitting on	
1						
					Google Classroom	

8	Estimation of salinity in water sample.	2	Test the salinity of a water sample. (CO-2)	Online Practical Videos, You tube links, Record writing & submitting on Google Classroom	
9	Estimation of CO ₂ in water sample.	2	Identify the amount of CO ₂ in water sample. (CO- 2)	Online Practical Videos, You tube links, Record writing & submitting on Google Classroom	
10	Study report of a pond ecosystem.	2	Document on a pond ecosystem that has been visited. (CO- 3)	Field Visit in their neighbourhoo d/ You tube links, Record writing & submitting on Google Classroom	
11	Commensalism s (Shark and <i>Echeneis</i>), Mutualism (Sea anemone and Hermit crab).	2	Discriminate between commensalis m and mutualism. (CO-3)	e-Content on Spotters, PDF, Related Videos	
12	Food chain, Food web, Conventional energy source (coal) and non- conventional energy source (wind mill).	2	Identify between conventional and non- conventional energy source. (CO-3,5)	e-Content on Spotters,PDF, Related Videos	

Course Instructor Dr. Jeni Chander Padua Head of the Department Dr. S. Mary Mettilda Bai

Semester: II

Core V Name of the Course: Biostatistics, Computer Applications and **Bioinformatics** : PZ2021

Course code

No. of hours/ week	No. of credits	Total number of hours	Marks
6	4	90	100

Learning Objectives

- To enable the students to collect and use the data to derive inferences in various biological experiments. 1.
- To develop analytical skills of statistics and draw valid conclusions in research. 2.

	Course Outcomes		
СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall different biological data, methods of collection, processing and retrieval tools in sequence analysis.	PSO - 1	R
CO - 2	Explain measures of dispersion, significance of data and soft wares applied in biostatistics and biological databases.	PSO - 2	U
CO - 3	analyze the data and interpret the results manually or by using software.	PSO - 2	An
CO - 4	apply statistical and bioinformatics tools in research and gain	PSO - 3	Ар

Course Outcomes

	employability in Research and Development organizations.		
CO - 5	evaluate biological data and critically analyse the research findings.	PSO - 4	E
CO - 6	formulate hypothesis, solve problems and present data to the scientific community.	PSO - 4	C

Modules with Teaching Plan

UNIT	Sec	ction	Description	H	ours	Learning outcome / CO addressed	Pedagogy	Assessment		
Ι	Da	Data collection and presentation (18 hrs)								
	1	biolo	lation and sample in ogical studies, bles and sampling ods	2	and Diffe popu	sifies variables constants. erentiate alation and ple. (CO-1)	PPT	Short test, MCQ, Seminar, Online Assignment		

Total Hours: 90 (Incl. Seminar & Test)

	2	Types of biological data.	2	Compares primary and secondary data (CO-1)	PPT	Class test I Formative assessment I
	3	Measurement scales - ratio scale, interval scale, ordinal scale, nominal scale - parameters and statistics. Accuracy and precision.	4	Recognize different kinds of scales (CO-2)	PPT, Group discussion	Quiz I
	4	Data collection and presentation - Tabulation	3	Recognize different methods of Classification and Tabulation. (CO-3)	PPT, Group discussion	
	5	Data collection and presentation – graphs and diagrams	3	Creates different types of diagrams and graphs (CO-3)	problem based learning	
	6	Measures of central tendency: types of mean, median, mode.	4	Distinguish measures of central tendency. (CO-1)	Problem solving	
Π	Me	asures of dispersion (18 hrs))			
	1	Measures of dispersion: range – quartile and percentile.	2	Assess and construct Quartiles and Percentiles. (CO-2)	PPT	MCQ Mind map
	2	Mean deviation - standard deviation - coefficient of variation	2	Differentiates absolute and relative measures of dispersion. (CO-2)	Problem solving	Seminar, Online Assignment
	3	Skewness and kurtosis - standard error	2	Evaluates and interprets the skewness and	PPT, Problem solving	Formative assessment I (1)
				kurtosis. (CO-2)		Quiz I
		Distribution: Binomial, Poisson and Normal.	2	Apply probability distributions to solve problems. (CO-3)	PPT, Problem solving. video clipping	Formative assessment II (2,3,4, 5,6,7) Quiz II
	5	Parametric and non parametric tests.	2	Apply parametric and non-parametric analysis. (CO-3)	PPT	
	6	Hypothesis testing – single and two population mean - types of error (Type I and Type II)	4	Relate Type I and Type II error and statistical significance. (CO-6)	Problem solving, Chalk and talk	

, ,			. .			1 1
	7	Chi-square analysis – test	4	Elucidate goodness	Problem	
		for goodness of fit and		of fit using chi-	solving	
		homogenecity.		square test. (CO-5)		
III	An	alysis of Data (18 hrs)				
	1	Student's <i>t</i> -distribution	2	Perform t-tests to	Problem	Mind map,
				verify the level of	solving	Short test,
				significance. (CO-5)	U	, , , , , , , , , , , , , , , , , , ,
				-		Seminar,
	_					Online
	2	Analysis of variance	3	Perform analysis of	Problem	Assignment
		(ANOVA) one way and		variance. (CO-5)	solving	8
		two way classification				Formative
		(Factorial design).				assessment I
	3	Probability: Addition	1	Solves problems on	Exercise	(1,2,3)
		theorem, multiplication		probabilities. (CO-		Quiz I
		theorem and conditional		4)		(1,2,3,4)
		theorem.				(1,2,3,4)
	4	Permutation and	2	Identifies the	Problem	
		combination		concept of	solving	
				permutation and	C	
				combinations. (CO-		
				4)		Formative
	5	Correlation – types,	3	test the significance	Problem	
	e	methods of study and		of different statistics.	solving	assessment II
		testing the significance.		(CO-1)	50171115	(5-7)
	6	Regression: equations –	4	Estimate regression	brain	
	0	regression lines – simple	-	and find the	storming,	
		linear regression and		significance of the	solve	
		0		e		
		testing its significance.		slope. (CO-4)	problems	
	7	Mathamatical modaling in	3	Examina mahlama	PPT	
	/	Mathematical modeling in	3	Examine problems		
		biology: types and		using the appropriate		
		applications		mathematical		

				models. (CO-5)		
IV	Co	mputer applications (18 hrs))			
	1	Computer applications. Micrtosoft office - M.S. Power point	3	Create document and power point slides in Microsoft word programs. (CO-1)	PPT, Practical	MCQ Seminar, Online
	2	MS Excel	2	Generate charts and graphs. (CO-1)	PPT, Practical	Assignment Formative assessment I - (1- 4)

	3	MS Excel : statistical function - Descriptive statistics	3	Perform statistical analysis. (CO-1)	Solve problems using Excel	Short test
	4	MS Excel : statistical function - <i>t</i> –test, ANOVA,	4	Solve problems using Excel. (CO-1)	Demonstrati ons, Problem solving	Formative assessment II (5-7)
	5	MS Excel : statistical function correlation, regression, Chi-square test.	2	Find significance using MS Excel. (CO-1)	Demonstrati on, exercises to solve problems	
	6	Viruses and worms.	1	Browse internet, sent emails and address viruses and worms. (CO-6)	Lecture and demonstrati on	
	7	Statistical Packages: SPSS, Minitab, Sigmaplot, Originpro	3	Explain the usage and applications of Statistical Packages. (CO-5)	PPT	
V	Bio	informatics (18 hrs)				
	1	Bioinformatics: Scope	1	Realizes the scope of	mind	Listing out
				bioinformatics. (CO-5)	storming	important terms,
	2	Biological data bases – Data base retrieval tools (Locus link, ENTREZ, PubMed and SRS) – Nucleotide sequence data base (NCBI, EMBL) - Protein data base (SWISS)	4		storming demonstrati on using soft wares	terms, Slip test, Seminar, Online Assignment
	2	Data base retrieval tools (Locus link, ENTREZ, PubMed and SRS) – Nucleotide sequence data	4	(CO-5) Distinguish Biological databases and their uses. (CO-	demonstrati on using	terms, Slip test, Seminar, Online
		Data base retrieval tools (Locus link, ENTREZ, PubMed and SRS) – Nucleotide sequence data base (NCBI, EMBL) - Protein data base (SWISS- PROT)		(CO-5) Distinguish Biological databases and their uses. (CO- 1)	demonstrati on using soft wares	terms, Slip test, Seminar, Online Assignment Formative assessment I - (1, 2) Quiz I Formative assessment II
	2	Data base retrieval tools (Locus link, ENTREZ, PubMed and SRS) – Nucleotide sequence data base (NCBI, EMBL) - Protein data base (SWISS-	4	(CO-5) Distinguish Biological databases and their uses. (CO-	demonstrati on using	terms, Slip test, Seminar, Online Assignment Formative assessment I (1, 2) Quiz I Formative

4	Biological sequence analysis (BLAST, FASTA Biological sequence analysis: sequence alignment, pair-wise alignment and multiple sequence alignment (CLUSTALW).	5	Perform pairwise and multiple sequence alignment using software. (CO-1)	PPT, Mind storming Jigsaw	
5	Protein structure visualizing tools (RasMol, Swiss PDB Viewer).	3	Analyze structure of proteins. (CO-4)	Chart, video	
6	Applications of bioinformatics tools.	2	Recall the applications of bioinformatics tools. (CO-4)	Discussion	

Course instructor

Dr. Josephine Vinoliya Mary Dr. F. Brisca Renuga

Head of the Department Dr. S. Mary Mettilda Bai

Seminar topics

- **1.** Population, sample in biological studies and parameters and statistics
- **2.** Biological variables.
- **3.** Types of biological data
- 4. Measurement scales ratio scale, interval scale, ordinal scale, nominal scale
- 5. Data collection
- **6.** Sampling methods
- 7. Presentation of data: Tabulation.
- 8. Presentation of data: Graphs and diagrams.
- **9.** Frequency distribution histogram frequency curves and Ogives.
- **10.** Measures of central tendency
- **11.** Measures of dispersion

- **12.** Hypothesis testing and Type I and II errors.
- **13.** Microsoft office M.S. Power point.
- **14.** Microsoft office MS Excel. table and charts.
- **15.** Statistical function: Descriptive statistics –*t*-test, ANOVA,
- **16.** Statistical function: Correlation and regression
- **17.** Statistical function: Chi-square test.
- **18.** Viruses and worms.
- **19.** Scope of Bioinformatics, Biological data bases
- **20.** Data base retrieval tools -Locus link, ENTREZ, Pubmed and SRS.
- 21. Nucleotide sequence data base NCBI and EMBL.
- 22. Protein data base Protein data bank (PDB)
- **23.** Data base similarity research tools BLAST and MSA.
- 24. Protein structure visualizing tools RasMol, Swiss PDB Viewer
- **25.** Applications of bioinformatics tools.

Semester : II Name of the Course : Cell and Molecular Biology Course code : PZ2022

No. of Hours/ week	No. of Credits	Total Number of Hours	Marks
6	4	90	100

Learning Objectives

Core VI

1. To provide knowledge on the structure and functions of bio-membranes, cell organelles and signaling pathways.

2. To avail employment in educational institutions and research laboratories.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	recognize the structural and functional organization of plasma	PSO - 1	R
	membrane, cell organelles, cell receptors, protein synthesis and		
	abnormal cell growth.		
CO - 2	illustrate cellular organization and changes occurring in cells.	PSO - 1	U

Course Outcomes

CO - 3	analyse the prokaryotic and eukaryotic cells, flow of genetic	PSO - 2	An
	information from DNA to protein, cell signaling and regulation		
	of cell cycle.		
CO - 4	evaluate the changes in the cells, cell cycle and proteins	PSO - 4	E
	involved in the regulation and apoptosis.		
CO - 5	apply the principles and techniques of molecular biology for	PSO - 3	Ар
	research and employment.		

Teaching Plan with Modules

Units	_	dules	Торіс		ours	Learning outcome/ CO addressed	Pedagogy	Assessment
Ι	Cel	l Struc	ture & Functions of co	ell o	rgane	lles (18 Hrs.)		
	1	proka	aryotic and eukaryotic – structure.	2	Diff cells	erentiate prokaryotic from eukaryotic . (CO-3)	Lecture, ppt, Group discussion	Short test, MCQ, Seminar, Online
	2	Struc	na membrane: ture and function - e transport and pumps	4	men	ain transport across abranes and the role of proteins involved in it. -1)	Lecture, video	Assignment Formative assessment - I (1,2,3,4,5,6)
	3		sport by transporter ins – membrane itial.	3	mec	prehend the hanism of resting hbrane potential (CO-	Lecture, ppt	Quiz I
	4	0	junction junction.	2		all and relate the role ght and gap junction. -1)	Lecture, ppt	
	5	Micro	skeleton – ofilaments, nediate filaments and otubules.	4	role	cribe the structure and of cytoskeletons of cell. (CO-2)	Lecture, video	
	6	Colla	cellular matrix – gen and non – gen components.	3		uate the function of acellular matrix. (CO-	Lecture, ppt	
П	Cel	0	elles and Nucleic acid	s (18	8 Hrs.)		
	1	Nucle	ture and functions of eus, mitochondria and plasmic reticulum.	6	coor	trate and relate the dination of Nucleus, chondria and ER. -2)	Seminar, Lecture, video	Short test, Seminar, Online Assignment,

Total Hours: 90 (Incl. Seminar & Test)

	2	Structure, functions of Golgi complex and lysosomes.	4	Identify and describe the structure of the Golgi comples and lysosomes and infer their relationship. (CO-1) Discriminate the flow of	Lecture, Group discussion Lecture,	Formative assessment – I (1,2,3)
		of genetic information.		information from DNA to a protein. (CO-3)	ppt, video clipping	Quiz I
	4	Types, structure and functions of DNA.	3	Identify the main cytoskeletal components in diagrams and EM micrographs. (CO-1)	Seminar, ppt	Formative assessment - II (4,5)
	5	Types, structure and functions of RNA.	2	Recall the role of RNAs. (CO-3)	Seminar	Quiz II (4,5)
III	Cell	signaling (18 Hrs.)				
	1	Signaling pathways: Cell adhesion molecules - Extra cellular signaling	3	Describe the structure and functions of the different families of cell adhesion receptor molecules. (CO- 3)	Lecture, ppt	Short test, MCQ, Seminar, Online Assignment
	2	Signaling molecules and their receptors	2	Explain the types of signaling molecules and functions of the cell surface receptors. (CO-3)	Lecture, ppt	Formative assessment - I (1,2) Quiz I Formative
	3	Pathways of intracellular signal transduction: G protein coupled receptors	3	Understand the intracellular signal transduction pathways and G protein coupled	Lecture, video, mind map	assessment - II (3,4, 5, 6) Quiz II

				receptors. (CO-3)		
	4	Cyclic AMP pathways,	3	Explain the Cyclic AMP	Lecture,	
		Receptor Tyrosine Kinases		pathways and Receptor	ppt	
		(RTKs).		Tyrosine Kinases		
			2	(RTKs).(CO-3)	.	_
	5	Ras, Raf and MAP kinase	3	Relate the Ras, Raf and	Lecture,	
		pathway		MAP kinase	ppt, mind	
	6	Second messengers,	4	pathways.(CO-3)	map Lastura	_
	0	C ,	4	Identify the role of second messengers in	Lecture, video	
		signaling from plasma		signal transduction	video	
		membrane to nucleus.		pathways and mechanism		
				of signaling from plasma		
				membrane to the nucleus.		
				(CO-3)		
IV	Pro	tein synthesis and transport	È			
	1	Transcription – Translation	3	Describe the structure of	Seminar	Seminar,
		in prokaryotes.	-	Gene. (CO-3)	-	
	2	Transcription – Translation	5	Narrate stepwise the	Lecture,	Online
		in eukaryotes.		synthesis of proteins.	ppt, Video	Assignment,
				(CO-3)	Video, Seminar	
	3	Protein trafficking -	4	Describe protein sorting,	Lecture,	Formative
	5	sorting - from ER to Golgi.	+	its necessity and vesicle	ppt, video	assessment -
		solung nom Ex to Golgi.		trafficking. (CO-3)	ppt, video	II
	4	Anterograde and	3	Discuss how proteins are	Lecture,	(1,2,3,4,5)
		retrograde transport –		targeted and distributed to	ppt, video,	Quiz II
		transport to lysosome –		different compartments of	Seminar	
		exocytosis – endocytosis.		a cell. (CO-3)		
	5	Membrane protein and	3	Differentiate membrane	Lecture	
		secretory proteins.		and secretory proteins.		
V	Nor	mal and abnormal call grow	th ((CO-3)		
v	1	mal and abnormal cell grow Cell cycle – Mitosis –	m (Lastura	Listing out
	1	Meiosis.	0	Identify the stages of the cell cycle and thereby	Lecture and chart, ,	Listing out important
		WEIOSIS.		Carry out a range of	Seminar	terms,
				practical scientific skills.	Semma	Slip test,
				(CO-5)		Shp test,
	2	Cyclin and Cyclin	4	Discuss the role of Cyclin	Lecture	Seminar,
		dependent kinases –		and cyclin kinases in cell	and Video,	Online
		Regulation of cyclin		cycle. (CO-4)	Seminar	Assignment,
		dependent kinases (cdk) –				
		Cyclin activity.				Quizizz

3	Apoptosis– mechanism and significance.	3	Explain the mechanism and significance of Apoptosis. (CO-4)	Lecture, Ppt, mind map	Formative assessment -
4	Molecular aspects of cancer, proto-oncogenes – oncogenes, tumour suppressor genes	5	Analyse the role of oncogenes and tumour suppressor genes. (CO-4)	Lecture, video,	II (1,2,3,4) Quiz - II

Course instructor

Dr. C. Josephine Priyatharshini (In - charge) Dr. P. T. Arokya Glory

Head of the Department Dr. S. Mary Mettilda Bai

:

Seminar and Online Assignment topics

1. Seminar	: Structure and functions of prokaryotic cell.
Assignment :	Structure and functions of prokaryotic cell.
2. Seminar	: Structure and functions of eukaryotic cell.
Assignment :	Structure and functions of eukaryotic cell.
3. Seminar	: Plasma membrane: Structure and function
Assignment :	Plasma membrane: Structure and function
4. Seminar	: Cell adhesion molecules: Selectin – Integrin – Cadherin.
Assignment :	Cell adhesion molecules: Selectin – Integrin – Cadherin.
5. Seminar	: Tight junction and gap junction.
Assignment :	Tight junction and gap junction.
6. Seminar	: Extracellular signaling – signaling molecules and their receptors. Assignment
Extracellular	signaling – signaling molecules and their receptors.
7. Seminar	: Pathways of intracellular signal transduction: G protein coupled receptors
Assignment :	Pathways of intracellular signal transduction: G protein coupled receptors
8. Seminar	: Pathways of intracellular signal transduction: Ras pathway.
Assignment :	Pathways of intracellular signal transduction: Ras pathway.
9. Seminar	: Pathways of intracellular signal transduction: Raf pathway.
Assignment :	Pathways of intracellular signal transduction: Raf pathway.
10. Seminar	: Pathways of intracellular signal transduction: MAP kinase pathway.
Assignment :	Pathways of intracellular signal transduction: MAP kinase pathway.
11. Seminar	: Structure and functions of Nucleus.
Assignment :	Structure and functions of Nucleus.
12. Seminar	: Structure and functions of mitochondria.
Assignment :	Structure and functions of mitochondria.
13. Seminar	: Structure and functions of Endoplasmic reticulum.
Assignment :	Structure and functions of Endoplasmic reticulum.

14.	Seminar	:	Structure and functions of Golgi complex.
Assigr	nment :	Struc	ture and functions of Golgi complex.
15.	Seminar	:	Structure and functions of RNA.
Assigr	nment :	Struc	ture and functions of RNA.
16.	Seminar	:	DNA template
Assigr	nment :	DNA	template
17.	Seminar	:	Transcription – Translation – Post translation
Assigr	nment :	Trans	cription – Translation – Post translation
18.	Seminar	:	Protein trafficking - sorting – Secretory pathway
Assigr	nment :	Prote	in trafficking - sorting - Secretory pathway
19.	Seminar	:	Protein trafficking - sorting – endocytic pathway
Assigr	nment :	Prote	in trafficking - sorting – endocytic pathway
20.	Seminar	:	Membrane protein and secretory proteins
Assigr	nment :	Mem	brane protein and secretory proteins
21.	Seminar	:	Cell cycle – Mitosis
Assigr	nment :	Cell c	ycle – Mitosis
22.	Seminar	:	Cell cycle – Meiosis
Assigr	nment :	Cell c	ycle – Meiosis
23.	Seminar	:	Cyclin activity
Assigr	nment :	Cyclir	n activity
24.	Seminar	:	Apoptosis – definition – mechanism and significance.
Assigr	nment :	Арор	tosis – definition – mechanism and significance.
25.	Seminar	:	Neoplastic transformation: cancer – proto-oncogenes – tumour suppressor genes
Assigr	nment :	Neop	lastic transformation: cancer – proto-oncogenes – tumour suppressor genes

Semester	: 11	Core VII
Name of the Course	: Developmental Biology	
Course code	: PZ2023	

No. of hours/ week	No. of credits	Total number of hours	Marks
5	4	75	100

Learning Objectives To enable the students to gain knowledge on the process by which a zygote multiplies, differentiates and 1. develops into an adult.

2. To gain employment at fertility centers, hospitals and health centers.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	discuss basic concepts and developmental processes of different organ systems and techniques in reproductive biology.	PSO - 1	R
CO - 2	distinguish the embryonic structures, origin and development of organ systems.	PSO - 1	U
CO - 3	analyse the regulating mechanisms of developmental processes and identify deformities.	PSO - 2	An
CO - 4	apply knowledge to pursue higher studies and gain employability in biological research laboratories.	PSO - 3	Ар

Teaching plan with Modules Total Hours 75 (Incl. Seminar & Test)

Unit	Modules		Topics		ours	Learning outcome/ CO addressed	Pedagogy	Assessment
Ι	Int	roducti	on (15 Hrs.)					
	1		ical perspectives and es of embryology.		-	lain the theories of ryology. -2)	PPT	Short test, Quizziz, Mind map,
	2	Sexua	l and asexual		Diff	erentiate the process	Lecture	Formative
		Parthe	luction - enogenesis and types.		(CO	,	with Open board	assessment I (1,2,3,4)
	3	3 Male reproductive system of a mammal, spermatogenesis, structure and function of sperm, semen and seminal fluid.			func repr	euss the structure and etion of male oductive system and unction (CO-2)	PPT, Video lesson	Quiz 1(1,2,3,4) Seminar, Online Assignment
	4	of a ovulat	e reproductive system mammal, oogenesis, ion, vitellogenesis, of eggs.	,	ooge of fe syste Clas	sify the types of eggs d on various factors	PPT, Flipped classroom	
II	Fer	tilizati	on and molecular aspe	ects (15 Hr	s.)		
	1		nanism of fertilization, ries of fertilization.		ferti	lyze the theories of lization with the hanism (CO-3)	PPT	MCQ Open book test
	2	patter	/age: laws - planes – rns – chemical changes g cleavage		patte Sum char	tify the planes and erns of cleavage marize the chemical ages that takes place ng cleavage (CO-4)	Video lesson, Lecture with open board	Flow chart Formative assessment I (1) Quiz 1(1)

	3	Cleavage and blastulation in chick and mammal. Cell lineage, Fate map of chick and Mammal.		Outline the concepts of cleavage and blastulation in chick and mammal (CO-2) Explain the cell lineage and fate map of chick and mammal (CO-3)	PPT, Video PPT, Discussion	Formative assessment II (2,3,4) Quiz II (2,3,4) Seminar, Online Assignment
III	-	rphogenetic movements& Org			DDT V' 1	MCO
	1	Morphogenetic movements and Gastrulation in chick and mammal. Germinal layers and their derivatives.	5	Differentiate the types of morphogenetic movements and the dermal derivatives Describe gastrulation in in chick and mammal. (CO-2)	PPT, Video	MCQ Short test, Quiz, Mind map Flow chart Formative assessment I
	2	Neurogenesis, Notogenesis, development of mesoderm and coelom.	2	Illustrate neurogenesis and notogenesis. Comprehend the development of mesoderm and coelom. (CO-1)	PPT, Video	Quiz 1 Seminar, Online Assignment
	3	Development of eye, skin	3	Explain the formation of	Flipped	
		and its derivatives in chick and mammal.		eye and skin. (CO-3)	Class: PPT	
	4	Development of heart, kidney, limbs, alimentary canal and its derivatives in chick and mammal.	5	Explain the development of heart, kidney, limbs, alimentary canal and its derivatives in chick and mammal. (CO-3)	PPT, Discussion	
IV	Dev	elopment of reproductive org	ans			
	1	Development and differentiation of testis.	3	Comprehend the development of male reproductive organ. (CO- 3)	PPT, Video	MCQ, Short test, Seminar,
	2	Development of male genital ducts and accessory glands.	2	Differentiate the development of testis and accessory glands. (CO-3)	PPT, Video	Online Assignment Seminar,
	3	Development and differentiation of ovary, female genital ducts and accessory glands.	4	Differentiate the development of ovary and accessory glands. (CO-3)	PPT, Video	Formative assessment II Quiz II
	4	Teratogenesis and teratogens. Infertility – causes and treatment	3	Analyse the different causes of infertility and methods to solve. (CO- 3,4)	PPT, Video	

	5	Development of extra embryonic membranes. Placentation in mammals.	3	Identify the extra embryonic membranes. Compare the placenta of mammals. (CO-3)	PPT, Video	
V	Emb	bryonic induction, Metamorp	hos			
	1 2	Embryonic induction in vertebrates – types – exogenous and endogenous. Theories of organizer or inductor, competence. Differentiation - characteristics and types, selective action of genes in	4	Explain the process of induction and competence. (CO-3) Explain the role of genes in differentiation. (CO-4)	PPT, Classroom screen PPT, Video	MCQ. Short test. Online Assignment. Formative assessment II (1,2,3,4) Quiz II
		differentiation.		· · ·		(1,2,3,4).
	3	Metamorphosis in insects and amphibians. Neoteny.	3	Explain the process of metamorphosis and neoteny. (CO-1)	PPT, Video	Seminar
	4	Regeneration - Regenerative ability in animals and mechanism.	5	Analyse the regenerative ability of animals. (CO- 3)	PPT, Video	

Course instructor Dr. X. Venci Candida

Mettilda Bai

Head of the DepartmentDr. S. Mary Mettilda BaiDr. S. Mary

Seminar & Assignment Topics

1. Seminar: Theories of embryology Assignment: Historical perspectives of embryology. 2. Seminar: Parthenogenesis and types. Assignment: Different types of asexual reproduction in animals. 3. Seminar: Male reproductive system of a mammal. Assignment: Spermatogenesis & Factors influencing spermatogenesis. 4. Seminar: Female reproductive system of a mammal. Assignment: Oogenesis. 5. Seminar: Structure and function of sperm. Assignment: Semen and seminal fluid. 6. Seminar: Vitellogenesis and ovulation. Assignment: Types of eggs. 7. Seminar: Mechanism of fertilization. Assignment: Theories of fertilization. 8. Seminar: Cleavage and blastulation in chick. Assignment: Fate map of chick. 9. Seminar: Cleavage and blastulation in mammal. Assignment: Fate map of mammal. 10. Seminar: Cleavage: laws - planes - patterns Assignment: Chemical changes during cleavage. 11. Seminar: Teratogenesis and teratogens. Assignment: Cell lineage and numbering. 12. Seminar: Gastrulation in chick. Assignment: Morphogenetic movements in chick. 13. Seminar: Gastrulation in mammal. Assignment: Germinal layers and their derivatives in vertebrates. 14. Seminar: Neurogenesis. Assignment: Notogenesis. 15. Seminar: Development of eye. Assignment: Development of skin and its derivatives. 16. Seminar: Development of Heart. Assignment: Development of mesoderm and coelom. 17. Seminar: Development of kidney. Assignment: Development of limb. 18. Seminar: Development and differentiation of testis, Assignment: Development of male genital ducts and accessory glands. 19. Seminar: Development and differentiation of ovary, Assignment: Development of female genital ducts and accessory glands.

20. Seminar: Infertility – causes and treatment.

Assignment: Assisted Reproductive Technology (ART).
21. Seminar: Development of extra embryonic membranes.
Assignment: Extra embryonic membranes.
22. Seminar: Placentation in mammals
Assignment: Different types of placenta in mammals.
23. Seminar: Metamorphosis in amphibians.
Assignment: Neoteny.
24. Seminar: Metamorphosis in insects.
Assignment: Larval and pupal forms in insects.
25. Seminar: Regeneration.

Assignment: Regenerative ability in animals and mechanism.

M.Sc.Zoology_{II}

CoreVIII

Name of the Course: Research MethodologyCoursecode : PZ2024

No.ofhours/week	No.ofcredits	Totalnumberofhours	Marks
5	3	75	100

LearningObjectives

1. Toenablethestudentstounderstandtheworkingprinciplesofbio-

instrumentsandmethodologiesused in biological investigations.

2. Toenhancereportwritingskillsandcreateself-employmentopportunities.

CourseOutcomes

со	Upon completion of thiscourse thestudentswillbeable	PSO	CL
co	to:	addressed	CL
CO-1	outlinetheprinciplesandworkingmechanism of laboratory	PSO-1	R
	equipmentandresearchtechniques.		
CO-2	explainlaboratoryor field procedures, methods, and	PSO-1	U
	instrumentationforbiological studies.		
CO-3	analyzescientificmethodstodevelophypotheses,designandexec	PSO-2	An
	uteexperimentsbyselectingtheappropriate research		
	techniques.		
CO-4	conceptualizeresearchprocesses, datapresentation, report	PSO-3	Ар
	writingandpublicationinjournals.		
CO-5	evaluatescientificideasanddesignexperimentstoaddress	PSO-4	Е
	medical, social and environmental problems.		

TeachingPlanwithModules

TotalHours:75(Incl.Seminar&Test)

Unit	Sec	tion	Descr	iption	H	ours	Learning outcome/COaddresse d	Pedagogy	Assessmen t
I	Mi 1 2	Princi interfe electr scann micro Atom	onmicr ingtum scope. ic forc	bes- fluorescence,confocal, oscopes-	8	Discuss andinst atomic cforce	the instrumentation rent types of cope(CO-1,2). s the principle rumentation of force, near field agopticalandMagneti cope(CO-1,2).	PPT Lecture,P PT	MCQ Shorttest Formative Assessmen tI,
	3	Magn crogra	aphy.	force microscope.Photomi	3	ofphoto of micr	the principle ographyintakingphotos to and macro- ms(CO-1,2).	Lecture,V ideo,PPT	QuizI
Π	<u>Ce</u> 1	Princi factor Types	ple- saffect	(15Hrs.) ingsedimentationrate- plicationsof	4		ncentrifugesavailablei ch/clinicallabs.	Lecture,P PT	MCQ Openbookt est

	2 3	Cryotechniques - cryopreservation.Cytotechnique: Whole mounts. Microtome: Rotary and Freezingmicrotome. Microtomy: Fixation,Dehydration and Clearing,Microtomy: Embedding andSectioning, Staining andMounting.	2 9	Discuss the cryopreservation(CO-1,2). Preparewholeandpermanentm ount of specimens/tissues(CO-1,2).	Lecture,P PT Lecture,P PT,	Shorttest FormativeAss essment I(1, 2) Quiz1&II FormativeAss essmentII(3)
Ш	Cł	hromatography(15Hrs.)		-		
	1	Chromatography:Principle	2	Discusstheprincipleof chromatography(CO-1,2).	Lecture, PPT	MCQ
	2	types - gas and liquidchromatography - HighPerformance LiquidChromatography- Ionexchange- Affinitychromatography.	6	Explain the principle andapplicationsofdifferenttype sofchromatography(CO-1,2).	Lecture,P PT	FormativeAss essmentII (1,2) QuizII
	3	Electrophoresis:Principles,types - gel - Polyacrylamide gel,agarosegel,blottingtechniques,I so-electricfocusing–Immuno- electrophoresis.	5	Demonstrate principles, typesof electrophoresis and blottingtechniques(CO-1, 2).	Onlinevi deo,PPT , Interactive class	FormativeAss essmentI (3,4) QuizI
	4	Proteinsequencingmethods.	2	Develop phylogram usingsequencing methods (CO-1,2).	PPT, Virtual demonstrat ion	
IV	Sp	pectrophotometer(15Hrs.)	_	·		
	1	Spectrophotometer: principle,designand applications. Spectroscopy:principle-design	3	Analyzesamplesusingsp ectrophotometerand spectroscopy(CO-1,2).	PPT, video	MCQ, Class
	2	Types- Atomic AbsorptionSpectroscopy,Flameph otometer,	3	Analyze the constituents ofthesamplesusingAASand flamephotometer(CO-1,2).	PPT, onlinevi deo	
	3	Chemiluminometre	1	Examinechemiluminescence ofcompounds/samples(CO-	video, Interacti	testOnline

				1,2).	veclass	Quiz,
	4	NuclearMagneticResonancesp ectroscopy. FTIR spectrometry andElectronSpinResonanc e.	4	Explain the principle andapplicationofNMR,FTI Rspectrometryand electron spin resonance (CO- 1,2).	Seminar,P PT, Interactive class	OnlineAssi gnment Formative Assessmen t -I
	5	MagneticResonanceImagingandap plications.	2	Explain the principle andapplication of MRIs (CO-1,2).	PPT, Interactiv eclass	(1,2,3) Formative Assessmen
	б	Radioactivitycounters	2	Differentiatethetypesofradioacti vitycounters and its applications(CO-1,2).	Lecture,V ideo.	t–II (4,5,6)
V	Ex	perimentaldesignandReportwriting	g (1	5Hrs.)		()-)-)
	1	Essential steps in researchLiterature collection and Reviewofliterature		reviewandcollectionoflit erature(CO-3,4,5).	PPT, Collection ofliteratur e	OnlineQuiz ,Openbook test,Online Assignmen
	2	Research anddiscriminative reading,Bibliography.	2	Comprehendliteratureand bibliography(CO-3,4,5).	Demonst ration,	t
	3	Indexcard,Literaturecitation,Pl agiarism, Alphabet numbersystem. Researchreport:TablesandFigure s,Formattingandtyping.	6	Identifyplagiarismandpr epare good Researchreport(CO-3,4,5).	Preparei ndexcar dDrawT ablesand figures	Formative Assessmen t–II (1,2,3,
	4	Openaccess journals, Impact factor andCopyRight	3	Publish articles in journalswithIF,Claimcopyrig htandpatent fortheirinnovation (CO-3,4,5).	PPT, experienti allearning	4,5)
	5	Laboratorysafety.	1	Followsafetyrulesinthelab oratory.(CO-3,4,5).	Interactiv e class,onli ne video	
~				II J. Alk . D		

Courseinstructor

HeadoftheDepartment Dr. MaryMettilda Bai

Dr.ShylaSuganthi Dr.A.Punitha

SeminarTopics

- 1. Interferencemicroscope
- 2. Fluorescencemicroscope
- 3. Electronmicroscope
- 4. Confocalmicroscope
- 5. Magneticforcemicroscope
- 6. Types and applications of centrifuge
- 7. Cryotechnique
- 8. Cryopreservation
- 9. Fixation
- 10. Rotaryand Freezingmicrotome
- 11. Ion exchangechromatography
- 12. Gaschromatography
- 13. Polyacrylamidegelelectrophoresis
- 14. Immuno-electrophoresis.
- 15. Isoelectricfocusing
- 16. AtomicAbsorption Spectroscopy
- 17. Flamephotometer
- 18. FTIRspectrometry
- 19. ElectronSpinResonance
- 20. MagneticResonanceImaging
- 21. Researchreport
- 22. Onlineliteraturecollection
- 23. Bibliography
- 24. H-index
- 25. Patentandcopyrights

Semester: IIElective II (a)Name of the Course: Animal Behaviour and ChronobiologyCourse code: PZ2025

No. of hours/week	No. of credits	Total number of hours	Marks
4	3	60	100

Learning Objectives

- 1. To acquaint students with deep understanding of Animal behaviour and Chronobiology.
- 2. To develop skills of animal watching and procure jobs insanctuaries.

СО	Upon completion of this course the students will be able	PSO	CL
CO	to:	addressed	
CO - 1	describe animal behaviour, reflexes, biological rhythms and	PSO - 1	R
	Chronobiology.		
CO - 2	summarize the history of ethology, social behaviour in	PSO - 1	U
	animals, organization of circadian system in multicellular		
	animals.		
CO - 3	illustrate the developing compassion towards animals, group	PSO - 1	Ap
	selection, altruism, predict biological clock system, circadian		
	pacemaker system in vertebrates.		
CO - 4	analyse the patterns of animal behaviour and complexity of	PSO - 3	An
	biological clock system in vertebrates.		
CO - 5	assess the relevance of biological clocks for human welfare	PSO - 4	Е
	and taking decisions.		

Course Outcomes

Teaching Plan with Modules

Total Hours: 60 (Incl. Seminar & Test)

Uni	Modules	Topics	Hours	Learning	Pedagogy	Assessment
t				outcome / CO		
				addressed		

1	Principles of Animal Behaviour, Historical perspectives of ethology, Approaches to animal behaviour.	3	Explain the concepts and perspectives of animal behaviour (CO-1,2)	PPT, E- Content	MCQ,				
2	Ethogram - Methods and recording of a behaviour. Innate behavior	3	Summarize the methods of evaluating and recording behaviour. (CO-1,2)	PPT, Youtube links, Blended teaching, E- Contents	Online Assignmen , Formative Assessment I (1,2,3)				
3	Neurological basis of animal behaviour, hormonal control ofbehaviour.	3	Differentiate between the neurological and hormonal control of behaviour. (CO-1,2)	PPT, E- Contents, Mind map	Quiz I				
Pa	Patterns of Behaviour (12 Hrs)								
1	Reflexes - types, reflex path, characteristics of reflexes.	4	Summarize the various processes involved in reflex action and its associated characteristics	PPT, E- Content	MCQ,				
2	Orientation: Primary and secondary orientation, kinesis - orthokinesis, klinokinesis; taxis - tropotaxis, klinotaxis, menotaxis, mnemotaxis.	3	(CO-3,4) Differentiate primary and secondary orientation. (CO-3,4)	PPT, Youtube links, Blended teaching.	Online Assignmen , Formative assessment I (1,2,3) Quiz II				

	1	Social Behaviour: Concept of Society; various modes of animal communication. Altruism; Insect's society with Honey bee as example Foraging in honey bee and bee communication. Nesting	3	Summarize the concept of a society (CO-2,3) Summarize the foraging and nesting	PPT, Discussio n, Lecture PPT, Videos	Short test, MCQ, Seminar, Online assignment, Formative
	3	behaviour in birds. Sexual Behaviour: Mate choice, intra-sexual selection (male rivalry), inter-sexual selection (female choice), sexual conflict in parental care.	2	behaviour in animals (CO-2,4) Classify the various strategies of sexual behaviour in animals (CO-3,4)	PPT, You tube	assessment I (1,2) Quiz I Formative assessment II (3) Quiz II
IV	In 1	troduction to Chronobiology (Historical developments in chronobiology; Biological oscillation: the concept of average, amplitude, phase and period.	3	Hrs) Explain the historical perspectives and concepts of chronobiology (CO- 3,4)	PPT, Web based tutorials, Videos	
	2	Biological clocks: central and peripheral biological clock, adaptive significance of biological clocks,	3	Summarize central and peripheral biological clocks (CO-3,4)	You tube, Lecture, PPT	Short test, MCQ,
	3	Chronopharmacology, Chronomedicine, Chronotherapy.	3	Evaluate the importance of Chronomedicine and Chronotherapy (CO-4,5)	Group discussi on, Web based	Seminar, Online assignment,
						Formative assessment

						II (1,2,3) Quiz II
V	Bi	ological Rhythm (12 Hrs)				
	1	types of biological rhythms: short- and long- term rhythms, Circadian rhythms	4	Describe short and long term biological rhythms (CO-3,5)	PPT, You tube videos	
	2	molecular biology of the circadian pacemaker system, Tidal rhythms and Lunar rhythms.	4	Evaluate the various circadian pacemaker systems (CO-4,5)	Group discussio n, PPT, You tube links	Short test, MCQ, Seminar, Online assignment.
	3	Circannual rhythms, Photoperiod and regulation of seasonal reproduction of vertebrates, Role of melatonin.	4	Formulate, Analyse and Interpret the role and effect of melatonin in circannual rhythms (CO-4,5)	Group discussio n, PPT	Online assignment, Formative assessment II (1,2,3) Quiz II

Course instructor

Dr. Jeni Chandar Padua

Head of the Department

Dr. S. Mary Mettilda Bai

Semester: IIPractical IIName of the Course: Biostatistics, Computer applications and
Bioinformatics & Cell and Molecular BiologyBiologyCourse code: PZ20P2

No. of hours/week	No of credits	Total number of hours	Marks
4	4	60	100

Learning Objectives

1. To design an experimental problem and evaluate critically with inferential biostatistics and necessary computer skills.

2. To develop the skills involved in cell biology, histology and biomolecules separation techniques.

СО	Upon completion of this course the students will be able	PSO	CL
CO	to:	addressed	CL
CO - 1	analyze and interpret the collected data using statistical	PSO - 1	An
	methods manually and soft wares.		
CO - 2	evaluate the biological samples applying research	PSO - 2	Е
	techniques.		
CO - 3	develop drawing and writing skills through record and	PSO - 2	Ар
	design experiments.		
CO - 4	design biological experiments.	PSO - 2	С

Course Outcomes

Teaching Plan with Modules

Total Hours: 60 (Including Demonstration, Observation & Test) Biostatistics, Computer applications and Bioinformatics (30 Hrs.)

UNIT	Sec tion	Description	Hrs.	Learning outcome& CO addressed	Pedagogy	Assessment
Ι	1	Collection of biological data (Primary and Secondary).	4	Perform data collection.(CO-1)	Field visit and direct application	Pre- assessment.
	2	Classification and representation (Graphical and Diagrammatic) of collected data.	3	Analyse the data collected and apply graphical representation. (CO-2)	Practical	Performanc e- based Assessment.
	3	Measures of dispersion- Standard deviation and standard error	2	Recalls and apply the distribution. (CO-1)	Practical	Model examination Self-
	4	Estimation of population by Mark and Recapture method using beads.	2	Estimate any population by mark and recapture method.(CO-4)	Practical	assessment
	5	Correlation co-efficient – length and width of molluscan shells.	2	Recalls and analyse the relation between two variables. (CO-2)	Practical	

6	Study of probability using coin tossing with 2 and 3 coins and chi square test	2	Recalls and apply the theory. (CO- 1)	Practical
7	Regression Analysis	2	Apply the theory and analyse the relation between two variables. (CO-41	Practical
8	Test of significance (student's <i>t</i> -test).	2	Recalls and apply the theory. (CO-3)	Practical
9	Preparation of graph using M.S. Excel.	2	Apply the theory and Perform the same. (CO-3)	Practical
10	Retrieval of DNA and protein sequence from NCBI.	4	Retrieve protein and DNA sequence of biological data.(CO-1)	Practical

11	Visualizing protein structure	3	Identify and	Practical
	using RasMol.		interpret protein	
			structures.(CO-1)	
Ch	NCBI, SWISS-PROT and	2	Distinguish	Practical
arts	PubMed		Biological	
/			databases and	
Мо			their uses.(CO-1)	
dels				

Course instructor Dr. Josephine Vinoliya Mary Dr. F. Brisca Renuga Head of the Department

Dr. S. Mary Mettilda Bai

Cell and Molecular Biology (30 Hrs.)

Units	Мо	dules	Торіс	Ho	Hours Learning outcome/ CO addressed		Pedagogy	Assessment
Ι	Cell	and N	Iolecular Biology (30	Hrs.))			
	1	0	ion and observation f sub cellular rganelles.	3		tte and identify the cellular organelles. -4)	Practical	Continuous performance
	2		rvation of mitosis - 1 root tip	1		tify the different es of mitosis in cells. -4)	Practical	– based assessment,
	3		rvation of meiosis - hopper testis	3		tify the different es of mitosis in cells. -4)	Practical	Record, Internal
	4	chror	rvation of polytene nosome - salivary l of Chironomus larva	3		tify the different es of mitosis in cells. -4)	Practical	assessment
	5	Barr-	body identification	2		tify the different es of mitosis in cells. -4)	Practical	
	6	musc	rvation of striated le fibre - coxal le of cockroach	2		riminate the striated non-striated muscles. -2)	Practical	
	7		rvation of adipocytes body of cockroach	2	Iden (CO	tify the adipocytes. -2)	Practical	
	8		nolymph smear kroach).	2		ognize and classify the nocytes. (CO-2)	Practical	
	9		e mount preparation pecimen	6	prine	nonstrate the ciples of permanent e preparation. (CO-4)	Practical	

10	Sectioning and staining of a tissue	3	Demonstrate staining techniques. (CO-4)	Practical	
	Spotters/ Slides Fluid mosaic model, Golgi complex, Cancer cell, Cadherins, Karyotype, Haemocytometer		Identify and narrate the structureand functions of cell organelles. (CO-3)	Observation	

Course instructor

Dr. C. Josephine Priyatharshini Dr. P.T. Arokya Glory

Head of the Department Dr. S. Mary Mettilda Bai

Semester : IV III Name of the Course: Physiology and Immunology CourseCode : PZ17P3

Practical

No. of hours/week	No of credits	Total number of hours	Marks
4	4	60	100

Learning Objectives

1. To design experiments and apply it in physiological research.

2. To understand the various immune-techniques and apply inimmunological experiments.

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	gain knowledge on the functioning of organ and organ systems.	PSO - 1	U
CO - 2	demonstrate the effect of abiotic factors on the physiology of the systems through experiments.	PSO - 2	Ap; An
CO - 3	identify the immune cells in a blood smear.	PSO - 1	R
CO - 4	demonstrate immune-techniques on antigen-antibody interaction.	PSO - 10	Ар

Teaching plan with Modules

Total Hours 30 (Incl. Practicals& Test)

Units	M	odules	Topics	Ho	Hours Learning outcome/ CO addressed		Pedagogy	Assessment	
Ι	Phy	siology	(30 Hrs.)						
	1	of Fre	of temperature on heartbeat shwater Mussel and ation of Q_{10} .	2	ten Fre	d out the effect of perature on heartbeat of shwater Mussel and culate Q ₁₀ .(CO -2)	Demonstration & practical	Continuous performance based	
	2		of temperature on salivary se activity and calculation	2 Find out the effect of temperature on salivary amylase activity and calculate Q ₁₀ (CO -2)		pperature on salivary ylase activity and	Demonstration & practical	assessment Internal assessment	
	3 Effect of pH on salivary amylase activity.		2	sali	id out the action of ivary amylase in relation oH. (CO -2)	Demonstration & practical			
	4		ss and salt gain in a vater fish.	2	salt	monstrate Salt loss and t gain in a freshwater n. (CO -2)	Demonstration & practical		

	5	Examination of excretory products of fish, bird and mammals.	2	Find out the type of nitrogenous waste eliminated by different animals. (CO -1)	Demonstration & practical	
	6	Survey of digestive enzymes in Cockroach.	2	Find out the digestive enzymes present in the different parts of the digestive system of Cockroach. (CO -1)	Demonstration & Observation	
	7	Counting of blood cells using haemocytometer.	2	Count blood cells using haemocytometer. (CO -1)	Demonstration &Observation	
	8	Haemolysis of blood – Demonstration.	2	Demonstrate hemolysis of blood. (CO -1)	Demonstration &Observation	
	9	Observation of haemin crystals in blood.	2	Mount haemin crystals in blood under microscope. (CO -1)	Demonstration & Observation	
	10	Estimation of haemoglobin (any method).	2	Estimate the amount of haemoglobin in vertebrate blood samples. (CO -1)	Demonstration & Observation	
	11	EEG, ECG, Conditional reflex, Skeletal muscle, Kymograph, Sphygmomanometer, Intestine, Nervous tissue, Liver, Lungs, Heart, Kidney.		Identify the apparatus/ equipments/ slides/ charts/ specimens/ models and comment on it. (CO -1)	Observation of apparatus/ equipments/ slides/ charts	
II	Imn	nunology (30 Hrs.)	1	I	I	
	1	Dissection of Lymphoid organs of a vertebrate (Demonstration).	2	Identify lymphoid organs. (CO -1)	Demonstration	Continuous
	2	Histology of lymphoid organs (Chart / CD).	2	Identify cells and parts of lymphoid organs. (CO -1)	Chart / CD	performance based
	3	Identification of various types of immune cells in peripheral blood smear.	2	Identify blood cells. (CO -3)	Practical	assessment
	4	Separation and preparation of cellular antigen (RBC and bacteria).	2	Differentiate the RBCs and bacteria. (CO -3)	Practical	
	5	Methods of immunization- Intravenous, intraperitoneal and subcutaneous routes.	4	Differentiate intravenous and subcutaneous routes. (CO -1)	Virtual lab	
	6	Methods of blood collection and serum preparation.	4	Demonstrate different blood collection methods. (CO -1)	Virtual lab	
	7	Antigen antibody interaction: Blood typing and Hemagglutination.	2	Identify different blood groups. (CO -4)	Demonstration and observation	
	8	ELISA test (Demonstration).	2	Demonstrate ELISA. (CO -4)	Demonstration and	

		1		observation
9	Radial immunodiffusion,	4	Demonstrate immunodiffusion. (CO -4)	Demonstration and observation
10	Double immunodiffusion	2	Demonstrate immunodiffusion. (CO -4)	Demonstration and observation
11	Immunoelectrophoretic apparatus Semi dry blotting apparatus Counter current immunoelectrophoresis (chart), Rocket immunoelectrophoresis (chart).	4	Differentiate different Immuno electrophoretic apparatus. (CO -4)	Observation of apparatus/ charts

Courseinstructors theDepartment

Dr. J. VinoliyaJosephineMary Mettilda Bai Dr. C. JosephinePriyatharshini

Dr. S. Mary

Head of

behavior and hibernation,	physiological and	PPT,
neoplastic growth and	behavioural role of	Videos
colour change in vertebrates.	hormones in animals. (CO-5)	

Courseinstructor

theDepartment

Dr. S. MaryMettilda Bai Mary MettildaBai

Seminar & Assignment Topics

2. Sem inar: Ani mal mod els for rese arch. Assi gnm ent: End ocrin Head of

Dr. S.

- emet hodo logie s.
- 3. Seminar: Chemical messengers neurocrine, paracrine, autocrine,endocrine. Assignment: Pheromones andchalones.
- Seminar: Neuroendocrine mechanisms and functions in insects. Assignment: Hormonal regulation of migration inbirds.
- Seminar: Neuroendocrine mechanisms and functions incrustaceans. Assignment: Hormonal regulation of migration infishes.
- Seminar: Neuroendocrine mechanisms and functions in non-arthropod invertebrates. Assignment: Hormonal regulation of behavior andhibernation.
- 7. Seminar: Structure, functions and pathophysiology of pituitary. Assignment: Structure, functions and pathophysiology of hypothalamus.
- Seminar: Structure, functions and pathophysiology of thyroid. Assignment: Structure, functions and pathophysiology of parathyroid.
- 9. Seminar: Biosynthesis, storage and release ofcatecholamines. Assignment: Biosynthesis, storage and release ofthyroxine.
- Seminar:
 Biosynthesis, storage and release of growthhormone.
 Assignment:
 Biosynthesis, storage and release of insulin.

Semester

IV

Practical III Name of the

Course: Physiology and Immunology

CourseCode : PZ17P3

No. of hours/week	No. of hours/week No of credits		Marks
4	4	60	100

Learning Objectives

- 1. To design experiments and apply it in physiological research.
- 2. To understand the various immune-

:

- techniques and apply inimmunological
- experiments. Course Outcomes

PSO CO Upon completion of this course the students will be able to : addressed CO - 1 **PSO - 1** gain knowledge on the functioning of organ and organ systems. CO - 2 **PSO - 2** demonstrate the effect of abiotic factors on the physiology of the systems through experiments. <u>CO - 3</u> **PSO - 1** identify the immune cells in a blood smear. **PSO - 10** CO - 4 demonstrate immune-techniques on antigen-antibody interaction.

Teaching plan with Modules

Total Hours 30 (Incl. Practicals& Test)

CI

U

Ap;

An

Ap

R

Units	Mo	odules	Topics	Ho	urs	Learning outcome/ CO addressed	Pedagogy
Ι	Phy	siology	(30 Hrs.)				
	1	of Fre	of temperature on heartbeat shwater Mussel and ation of Q_{10} .	2	tem Fre	d out the effect of aperature on heartbeat of shwater Mussel and culate Q_{10} (CO -2)	Demonstration & practical
	2		of temperature on salivary se activity and calculation	2			Demonstration & practical
	3	Effect activit	of pH on salivary amylase y.	2	sali	d out the action of vary amylase in relation bH. (CO -2)	Demonstration & practical
	4		ss and salt gain in a vater fish.	2	salt	monstrate Salt loss and gain in a freshwater h. (CO -2)	Demonstration & practical

	-				
	5	Examination of excretory products of fish, bird and mammals.	2	Find out the type of nitrogenous waste eliminated by different animals. (CO -1)	Demonstration & practical
	6	Survey of digestive enzymes in Cockroach.	2	Find out the digestive enzymes present in the different parts of the digestive system of Cockroach. (CO -1)	Demonstration & Observation
	7	Counting of blood cells using haemocytometer.	2	Count blood cells using haemocytometer. (CO -1)	Demonstration & Observation
	8	Haemolysis of blood – Demonstration.	2	Demonstrate hemolysis of blood. (CO -1)	Demonstration &Observation
	9	Observation of haemin crystals in blood.	2	Mount haemin crystals in blood under microscope. (CO -1)	Demonstration & Observation
	10	Estimation of haemoglobin (any method).	2	Estimate the amount of haemoglobin in vertebrate blood samples. (CO -1)	Demonstration & Observation
	11	EEG, ECG, Conditional reflex, Skeletal muscle, Kymograph, Sphygmomanometer, Intestine, Nervous tissue, Liver, Lungs, Heart, Kidney.		Identify the apparatus/ equipments/ slides/ charts/ specimens/ models and comment on it. (CO -1)	Observation of apparatus/ equipments/ slides/ charts
	T	(20 tr)			
Π	Imn	nunology (30 Hrs.)			
	1 Imn	Dissection of Lymphoid organs of a vertebrate (Demonstration).	2	Identify lymphoid organs. (CO -1)	Demonstration
		Dissection of Lymphoid organs of a vertebrate (Demonstration). Histology of lymphoid organs (Chart / CD).	2 2		Chart / CD
	1	Dissection of Lymphoid organs of a vertebrate (Demonstration). Histology of lymphoid organs (Chart / CD). Identification of various types of immune cells in peripheral blood smear.		(CO -1) Identify cells and parts of	Chart / CD Practical
	1 2	Dissection of Lymphoid organs of a vertebrate (Demonstration). Histology of lymphoid organs (Chart / CD). Identification of various types of immune cells in peripheral blood smear. Separation and preparation of cellular antigen (RBC and bacteria).	2	 (CO -1) Identify cells and parts of lymphoid organs. (CO -1) Identify blood cells. (CO -3) Differentiate the RBCs and bacteria. (CO -3) 	Chart / CD Practical Practical
	1 2 3	Dissection of Lymphoid organs of a vertebrate (Demonstration). Histology of lymphoid organs (Chart / CD). Identification of various types of immune cells in peripheral blood smear. Separation and preparation of cellular antigen (RBC and bacteria). Methods of immunization- Intravenous, intraperitoneal and subcutaneous routes.	2 2	 (CO -1) Identify cells and parts of lymphoid organs. (CO -1) Identify blood cells. (CO -3) Differentiate the RBCs and bacteria. (CO -3) Differentiate intravenous and subcutaneous routes. (CO -1) 	Chart / CD Practical Practical Virtual lab
	1 2 3 4	Dissection of Lymphoid organs of a vertebrate (Demonstration). Histology of lymphoid organs (Chart / CD). Identification of various types of immune cells in peripheral blood smear. Separation and preparation of cellular antigen (RBC and bacteria). Methods of immunization- Intravenous, intraperitoneal and subcutaneous routes. Methods of blood collection and serum preparation.	2 2 2	 (CO -1) Identify cells and parts of lymphoid organs. (CO -1) Identify blood cells. (CO -3) Differentiate the RBCs and bacteria. (CO -3) Differentiate intravenous and subcutaneous routes. 	Chart / CD Practical Practical
	1 2 3 4 5	 Dissection of Lymphoid organs of a vertebrate (Demonstration). Histology of lymphoid organs (Chart / CD). Identification of various types of immune cells in peripheral blood smear. Separation and preparation of cellular antigen (RBC and bacteria). Methods of immunization- Intravenous, intraperitoneal and subcutaneous routes. Methods of blood collection and 	2 2 2 4	 (CO -1) Identify cells and parts of lymphoid organs. (CO -1) Identify blood cells. (CO -3) Differentiate the RBCs and bacteria. (CO -3) Differentiate intravenous and subcutaneous routes. (CO -1) Demonstrate different blood collection methods. (CO -1) Identify different blood groups. (CO -4) 	Chart / CD Practical Practical Virtual lab
	1 2 3 4 5 6	Dissection of Lymphoid organs of a vertebrate (Demonstration). Histology of lymphoid organs (Chart / CD). Identification of various types of immune cells in peripheral blood smear. Separation and preparation of cellular antigen (RBC and bacteria). Methods of immunization- Intravenous, intraperitoneal and subcutaneous routes. Methods of blood collection and serum preparation. Antigen antibody interaction: Blood typing and	2 2 2 4 4	 (CO -1) Identify cells and parts of lymphoid organs. (CO -1) Identify blood cells. (CO -3) Differentiate the RBCs and bacteria. (CO -3) Differentiate intravenous and subcutaneous routes. (CO -1) Demonstrate different blood collection methods. (CO -1) Identify different blood 	Chart / CD Practical Practical Virtual lab Virtual lab Demonstration and

9	Radial immunodiffusion,	4	Demonstrate immunodiffusion. (CO -4)	Demonstration and observation
10	Double immunodiffusion	2	Demonstrate immunodiffusion. (CO -4)	Demonstration and observation
11	Immunoelectrophoretic apparatus Semi dry blotting apparatus Counter current immunoelectrophoresis (chart), Rocket immunoelectrophoresis (chart).	4	Differentiate different Immuno electrophoretic apparatus. (CO -4)	Observation of apparatus/ charts

Courseinstructors theDepartment Dr. J. VinoliyaJosephineMary Dr. S. Mary Mettilda Bai Head of

Semester:IVPractical III Name ofthe Course: Physiology and Immunology
CourseCode: PZ17P3

No. of hours/week	No of credits	Total number of hours	Marks
4	4	60	100

Learning Objectives

3. To design experiments and apply it in physiologicalresearch.

4. To understand the various immune-

techniques and apply inimmunological experiments.

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO addressed	CI
CO - 1	gain knowledge on the functioning of organ and organ systems.	PSO - 1	U
CO - 2	demonstrate the effect of abiotic factors on the physiology of the systems through experiments.	PSO - 2	Ap; An
CO - 3	identify the immune cells in a blood smear.	PSO - 1	R
CO - 4	demonstrate immune-techniques on antigen-antibody interaction.	PSO - 10	Ap

Teaching plan with Modules

Total Hours 30 (Incl. Practicals& Test)

Units	s Modules		Topics	Но	urs Learning outcome/ CO addressed	Pedagogy				
Ι	Physiology (30 Hrs.)									
	1	Effect of temperature on heartbeat of Freshwater Mussel and calculation of Q_{10} .		2	Find out the effect of temperature on heartbeat of Freshwater Mussel and calculate Q ₁₀ .(CO -2)	Demonstration & practical				
	2	Effect of temperature on salivary amylase activity and calculation of Q ₁₀ .			Find out the effect of temperature on salivary amylase activity and calculate Q ₁₀ .(CO -2)	Demonstration & practical				
	3	Effect activit	of pH on salivary amylase y.	2	Find out the action of salivary amylase in relation to pH. (CO -2)	Demonstration & practical				
	4	Salt loss and salt gain in a freshwater fish.			Demonstrate Salt loss and salt gain in a freshwater fish. (CO -2)	Demonstration & practical				
	5	Examination of excretory products of fish, bird and mammals.			Find out the type of nitrogenous waste eliminated by different animals. (CO -1)	Demonstration & practical				
	6	Survey Cockre	y of digestive enzymes in bach.	2	Find out the digestive enzymes present in the different parts of the digestive system of Cockroach. (CO -1)	Demonstration & Observation				
	7	haemo	ing of blood cells using cytometer.	2	Count blood cells using haemocytometer. (CO -1)	Demonstration &Observation				
	8		olysis of blood – nstration.	2	Demonstrate hemolysis of blood. (CO -1)	Demonstration & Observation				
	9	Observer blood.	vation of haemin crystals in	2	Mount haemin crystals in blood under microscope. (CO -1)	Demonstration & Observation				
	10	Estima metho	ation of haemoglobin (any d).	2	Estimate the amount of haemoglobin in vertebrate blood samples. (CO -1)	Demonstration & Observation				
	11	Skelet Sphyg Nervo Heart,	ECG, Conditional reflex, al muscle, Kymograph, momanometer, Intestine, us tissue, Liver, Lungs, Kidney.		Identify the apparatus/ equipments/ slides/ charts/ specimens/ models and comment on it. (CO -1)	Observation of apparatus/ equipments/ slides/ charts				
II	Imn	,	gy (30 Hrs.)		Γ	,				
	1	a verte	etion of Lymphoid organs of bbrate (Demonstration).	2	Identify lymphoid organs. (CO -1)	Demonstration				
	2	(Chart	ogy of lymphoid organs / CD).	2	Identify cells and parts of lymphoid organs. (CO -1)	Chart / CD				
	3		fication of various types of the cells in peripheral blood	2	Identify blood cells. (CO -3)	Practical				

	4	Separation and preparation of cellular antigen (RBC and bacteria).		2	Differentiate the RBCs bacteria. (CO -3)	and	Practica	ıl
	 Methods of immunization- Intravenous, intraperitoneal and subcutaneous routes. Methods of blood collection and serum preparation. 		nd	4	Differentiate intravenous and subcutaneous routes. (CO -1) Demonstrate different blood collection methods. (CO -1)		Virtual la	ab
			nd	4			Virtual la	ab
Antigen antibody interaction:7 Blood typing and Hemagglutination.			2	Identify different blood groups. (CO -4)		Demonstration and observation		
	8 ELISA test (Demonstration).		•	2	Demonstrate ELISA. (CO -4)		Demonstration and	
	9 Radial immunodiffusion, 9 Double immunodiffusion 10 Immunoelectrophoretic apparatus Semi dry blotting apparatus Counter current immunoelectrophoresis (chart), Rocket immunoelectrophoresis (chart), Rocket immunoelectrophoresis (chart), Rocket immunoelectrophoresis (chart),					ob	servation	
9			4		Demonstrate immunodiffusion. (CO -4)		emonstration and observation	
10			2	Demonstrate immunodiffusion. (CO -4)			Demonstration and observation	
11			4	Differentiate different Immuno electrophoretic apparatus. (CO -4)			Dbservation of apparatus/ charts	

Courseinstructor

Head of

theDepartment Dr. P.T. Arockya Glory

Dr. S. Mary MettildaBai

Dr. F. Brisca Renuga