Semester II Course Name : PROPERTIES OF MATTER AND SOUND Course code: PC2021

No. of Hours per Week	Credits	Total No. of Hours	Marks
4	4	60	100

Objective

To expose students to the fundamentals of properties of matter and sound.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO-1	identify the materials suitable for construction of buildings, based on the moduli of elasticity.	PSO-4	Ар
CO- 2	paraphrase the properties of liquids and its determination.	PSO-1	U
CO- 3	analyze the physics of sound and its applications	PSO-2	An
CO- 4	integrate the concepts of acoustic comfort and better understanding of the theories used in building acoustics	PSO-3	Ар

ModulesCredits: 4Total contact hours: 60 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Elasticit	y				
	1	Elasticity Hooke's law Elastic moduli Poisson's ratio	2	To understand the concept elasticity and	Lecture	Evaluation through short test

		Beams – Bending of		bending of	Discussion	
		beams – Expression		beams	with PPT	Multiple
		for bending moment		ocums	illustration	choice
					indstration	questions
	2	Cantilever- Theory	2	To be able to	Lecture	questions
	2	of uniform and non –	2	determine the	discussion	Formative
		Uniform bending -		Voung's	with	assessment I
		Determination of		modulus of the	illustration	ussessment I
		Voung's modulus		material	mustration	
	3	Koenig's method	3	To acquire	Lecture	
	5	Torsion of a body	5	to acquire	discussion	
		Expression for		Work done in	discussion	
		Expression for		twisting a wire		
		Work done in		twisting a wife		
		- work done m				
		twisting a wife				
	4	Torsional	2	To be able to	Lecture	-
		oscillations of a		distinguish	discussion	
		body - Rigidity		between		
		modulus by dynamic		dynamic		
		torsion method		torsion method		
		(Torsional		and static		
		pendulum) and static		torsion method		
		torsion method				
II	Surface	Tension		1		I
			-	·		
	1	Surface tension –	3	To understand	Lecture	Short test
		definition –		the concept of		
		Molecular forces –		surface tension	Illustration	Quiz
		Explanation of		according to		
		surface tension on		kinetic theory		
		kinetic theory –				Assignment
		Surface energy				
	2	Work done in	3	To determine	Lecture	Formative
	2	increasing the area	5	the excess	discussion	assessment I
		of a surface Excess		neceure inside	discussion	
		or a surface – Excess		pressure inside		
		pressure inside a		a spherical and		
		Excess pressure		drops and		
		- Excess pressure		hyphlas		
		of a surface – Excess pressure inside a curved liquid surface – Excess pressure inside a spherical		pressure inside a spherical and cylindrical drops and bubbles	discussion	

		and cylindrical drops				
		and bubbles				
	2	Duon moi cht mothod	2	To evolute	Lastaria	
	3	Drop weight method	3	the principle	Lecture	
		- Angle of contact-		the principle	TI I ()	
		Quincke's method-		of surface	Illustration	
		variation of surface		tension in		
		tension with		liquids and		
		temperature-		understand it		
		Experimental		by practical		
		determination-		experiments.		
		Jaegar's method				
III	Viscosity	I V	I	I	I	I
	1	Viscosity – Co	3	To have	Lecture	
		efficient of viscosity		practical	with PPT	Class test
		– Streamlined and		knowledge on	Illustration	
		turbulent motion –		determining		Ouiz
		Critical velocity		the coefficient		
				of viscosity of		
				a liquid		Formative
				a fiquid.		assessment II
	2	Rate of flow of	4	To understand	Question-	assessment n
		liquid in a capillary		the concept of	answer	
		tube – Poiseuille's		pressure and	session	
		formula – Viscosity		thrust.		
		of highly viscous			Lecture	
		liquid				
	3	Terminal velocity -	3	To evaluate		
		Stoke's method -		Stoke's		
		Ostwald Viscometer		formula and		
		- Viscosity of gas-		apply it in		
		Mayer's formula-		experiment to		
		Rankine 's method		understand the		
				viscous force		
				of a liquid.		
IV	Sound	1	<u> </u>	1	1	1
	1	Simple harmonic	3	To derive the	Lecture	
		motion – Differential		solution of the		Short test
		equation of motion		differential	Discussion	

		executing S.H.M. –		equation for a		Quiz
		Solution of the		simple		
		differential equation		harmonic		Formative
		of motion		motion		assessment II
	2	Composition of two	3	To distinguish		
		S.H.M. along the		between Free,	Lecture	
		same direction and at		damped and		
		right angles –		forced	Discussion	
		Lissajous figure –		vibration		
		Free, damped and				
		forced vibration				
	-					
	3	Frequency of	3	To acquire		
		vibrating string-		skills to do		
		Melde's experiment		experiments		
		and verification of		by sonometer		
		the laws of		and Melde's		
		transverse vibration		string.		
		of a string-				
		Sonometer –				
		Loudness level-				
		Sound Intensity				
		measurement				
X 7						
V	Ultrason	ics and Acoustics				
	1	Ultrasonics –	3	To compare	Lecture	Class test
		Production –		the methods of	with PPT	
		Piezoelectric crystal		ultrasonic		Formative
		method –		production.		assessment III
		Magnetostriction		1		
		method – Properties				
		and Applications				
		11				
	2	Acoustics of	5	To classify	Brain	
		building –		sound and to	storming	
		Reverberation-		examine the	session.	
		Sabine's		architectural		
		Reverberation		acoustics	Lecture	
		formula (No				
		derivation) - Factors			Illustration	
		affecting acoustics				

of building- Sound		
distribution in an		
auditorium-		
Requisites for good		
acoustics		

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze;

Course instructors: Dr.A.Lesly Fathima and Sr.S.Sebastianmal

SemesterIIName of the Course: Allied Physics IISubject code: AP2021

No. of hours per week	No. of credits	Total no. of hours	Marks
4	4	60	100

Objectives

To understand the concept of strength of materials, viscous properties of liquids, heat transformation from one place to another, converting heat to do mechanical work and basic properties of light such as interference and diffraction.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO 1	Acquire knowledge on elementary ideas of electricity and magnetism, electronics, optics and nuclear physics.	PSO-1	U
CO 2	Analyze the concepts and study their applications in the field of electricity and magnetism, electronics, optics and nuclear physics.	PSO-2	An
CO 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ар
CO 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	Ар

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment / Evaluation
Ι	Quantur	n Mechanics and Relativity				
	1	Wave mechanics – expression for group velocity – Davison Germer's experiment – Heisenberg's uncertainty principle – basic postulates of wave mechanics – time dependent form of Schrodinger equation – properties of wave function.	2	To understand the basic concepts of wave mechanics	Illustration and lecture	Evaluation through: quiz, short questions Multiple
	2	Heisenberg's uncertainty principle – basic postulates of wave mechanics – time dependent form of Schrodinger equation – properties of wave function.	2	To study the basic postulates of wave mechanics and derive Schrodinger equation	Illustration and theoretical derivation	choice, questions, Deriving theoretical
	3	Relativity – frame of reference – Newtonian relativity – Galilean transformation equations.	2	To understand Relativity and frame of reference	Illustration, theoretical derivation and Practical	Formulas Problem solving
	4	Special theory of relativity – Lorentz transformation equations.	3	To derive Lorentz transformation equations.	Lecture and theoretical derivation	Formative assessment
II	Nuclear	Physics				
	1	Nuclear constituents - size - mass - spin and charge - binding energy - binding energy curve	3	To understand the basic concepts of nuclear physics and study its units	Illustration, Theoretical formulation, Problem Solving	Evaluation through: quiz, short test
	2	Nuclear fission - chain reaction - nuclear reactor - radioactive disintegration	3	To determine nuclear fission	Lecture, Theoretical formulation	Assignment on applications.

				and radioactive disintegration		
				disintegration		Formative
	3	Half life period - radiation hazards.	2	To understand the causes of radiation hazards	Lecture, Illustration,	assessment
III	Electricit	y & Magnetism				
	1	Electric curent - current density - Ohm's law - Electrical conductivity - Kirchhoff's law	2	To understand the basic concepts of current and laws	Illustration and lecture	Evaluation through: quiz,
	2	Wheatstone's bridge - condition for balance - potentiometer - calibration of voltmeter and ammeter.	2	Tostudythebasicofpotentiometer,voltmeterandammeter	Illustration and theoretical derivation. Practical	short questions, Multiple choice, questions,
	3	Electromagnetic induction - laws of electromagnetic induction - Faraday's law - Lenz law	2	To understand the basic concepts of electromagnetic induction through experiment	Illustration, theoretical derivation and Demonstration	Deriving theoretical formulas
	4	Flemings right hand rule - self- inductance - mutual induction - coefficient of coupling.	2	To define convection mode of heat transfer and study its application	Illustration and lecture	Formative assessment
IV	Electron	ics				
	1	Formation of p-n junction diode – forward and reverse biasing of a junction diode	2	To understand the basic concepts of electronics	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions
	2	Zener diode - characteristics of the Zener diode – diode as a half wave and full wave rectifiers.	2	To analyse the various aspects of zener diode	Lecture, Demonstration, theoretical formulation	Multiple choice, questions, Deriving
	3	Bipolar junction transistor –	2	To understand the concept of	Lecture, Demonstration,	theoretical

	4	junction transistor – CE characteristics of a transistor Field effect transistor – drain characteristics of an n channel JFET.	2	Bipolar junction transistor To understand the concept of Field effect transistor	theoretical formulation Lecture, Demonstration, theoretical formulation	formulas Formative assessment
V	Digital H	Electronics				
	1	Digital logic gates – AND – OR – NOT gate – NAND and NOR as universal gates – integrated circuit – EX-OR gate	3	To understand the basic concepts of logic gates	Illustration, Theoretical formulation, Demonstration	Evaluation through: quiz, Deriving theoretical
	2	Boolean algebra– half adder – full adder – half subtractor.	2	To understand the basic concepts of Boolean Algebra	Lecture, Demonstration, Theoretical formulation	formulas Assignment on applications
	3	Decimal system – Binary system –conversion – binary addition – binary subtraction using 2s complement – binary multiplication – binary division.	3	To understand the number system and binary operations	Lecture, Demonstration, Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze;

Course Instructor: Ms.P. Aji Udhaya &Sr.S.Sebastiammal

Course Code: PNM202

No. of hours per week	No. of credits	Total no of hours	Marks
2	2	30	100

Objectives

- 1. To provide basic knowledge on the concepts of light, Electromagnetism and Electronics along with some applications.
- 2. To explain the wonders in universe using the principles of physics

. Course Outcomes

СО	Upon completion of this course, students will be able to:	CL
CO - 1	understand the principle and working of simple devices used in day to day life.	U
CO – 2	identify the symbols used for various electronic components and infer the electronic tools.	R
CO – 3	distinguish different heavenly bodies (star, planet, comets, galaxies)	R
CO - 4	recall various applications of physics concepts in everyday life	K

Teaching Plan

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagog y	Assessm ent/ Evaluat ion
Ι			Light	L		
	2	Introduction - Nature and properties of light - Reflection - Colours of light - Colours of objects- Reflection in everyday life Refraction - Dispersion - Rainbow formation- Refraction in everyday life	1	To understand the fundamental concepts of light To understand the fundamental phenomenon of light	Lecture, PPT Lecture , Demon strati on	Quiz test, Formative assessme nt
	3	Laser: principle and applications - Fiber optics and its applications - Applications of light in day to day life	1	To understand the principles and applications of	Lecture	

		1				'''''''''''''''''''''''''''''''''''''
				Laser and		
				fiber optics in		
				day to day life		
TT		Flectron	nagnetic R	adiation		
		Licci on	iagnetie i	aulation		
	1	Introduction- Properties of	1	To understand	Lecture	Quiz test,
		Electromagnetic waves - EM		the basic	,	Formative
		Spectrum-Radio sub spectrum		properties of	Demon	assessme
		Spectrum- Radio sub spectrum		electromagnet	strati	nt
				ic radiation	on	
	2	Cell phones, Microwaves -	2	To apply	Lecture	
		Microwave oven and sensor,		electromagnet	,	
		Terahertz radiation and its		1C radiations in	Demon	
		applications		electronic	strati	
				appliances	on	
	3	Infra red rays in everyday life –	1	To understand	Lecture	
		Infra Red and microwaves -		and apply the		
		comparison - visible light waves -		uses of		
		LW rove and its applications		microwave,		
		O v Tays and its applications		infrared and		
				visible light in		
				day to day lie		
III		Elec	tromagne	etism		
	1	Introduction - Magnetic materials	2	To understand	Lactura	Ouiz
	1	- Magnetic Field in and around a	2	10 understand Magnetia	Lecture	Quiz
		bar Magnet, Magnetic Fields in		Field and		Eormo
		and around Horseshoe magnet,		magnetic force		tive
		Magnetic lines of force				
	2	Electric charge - Ohm's Law -	1	To understand	Lectu	ment
		Practical Applications of Ohm's		Ohm's Law	re,	(II)
		Law in Daily Life		and the	PPT	(11)
				applications of		
			1	Ohm's law		
	3	Electromagnetism- Applications	I	To apply the		
		of electricity and magnetism:		applications of		
		Credit card machine, Use of		electricity and		
		electromagnetism in daily life.		magnetism in		
				digital		
				technology		
IV	Basic E	lectronics				
	1	Introduction - Electronic	1	To understand	Lecture	Quiz
		components - Electronic tools		and apply the		test,
				basic		Formativ
				electronic		e
				components		assessme

					and electronic tools	;	nt (II)
	2	Semiconductors and integrated circuits - Application of electronic devices	1		To understan Ohm's Law and th applications of Ohm's law	d Lecture, v PPT e f	
	3	Electromagnetism- Applications of electricity and magnetism: Credit card machine, Use of electromagnetism in daily life.	2		To apply the applications of electricity an magnetism in digital technology	f 1	
V	Space	Physics					
	1	Introduction - The big bang theory - Stars-Star system, multiple star, supernova, black hole - solar system	1	To the sol	understand stars and the ar system	Lecture	Quiz test, Formativ e assessme nt (II)
	2	Terrestrial and Jovian planets - Asteroids- Meteoroids - Meteors - Comets	2	To the cor aste	understand planets, nets and eroids	Lecture	
	3	Galaxy - Eclipse: solar and lunar - seasons	1	To the cha	understand seasonal inges	Lecture	

Course Code : PC2041

No. of hours per week	eek No. of credits Total No. of hours		Marks
4	4	60	100

Learning Objectives

- provide knowledge 1. To aberrations on the concept of in lenses, prisms and Spectroscopy.2. To understand the phenomenon like interference, diffraction, polarization
- through wave nature of light and itsapplications.

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO- 1	gain knowledge of geometric optics, helps in the practical design of many optical systems and instruments including aberrations in lens system.	PSO - 2	U
CO- 2	determine the behavior of a ray and wave at any optical surface.	PSO - 1	R
CO- 3	analyze the intensity variation oflight due to polarization, interference and diffraction.	PSO - 4	An
CO- 4	study the phenomena: interference, diffraction, and polarization lays the foundation for an understanding of concepts such as as holograms, interferometers.	PSO -5	E
CO- 5	gain knowledge on spectroscopy helps to extract the dynamic information about the mggcule.	PSO - 3	Ар

Modules

Total contact hours: 60 (Including lectures, assignments and Tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Geometr	ical optics				
	1	Lens – Spherical aberration in lenses – Methods of minimizing spherical aberration	3	To understand the spherical aberrations in lenses	Illustration and lecture	Evaluati on through: quiz, short
	2	Dispersion – Angular and Chromatic dispersion – combination of prisms to produce i)dispersion without deviation ii) deviation without dispersion	3	To define and understand angular and Chromatic dispersion	Illustration and lecture	questions Multiple choice,
	3	Direct vision spectroscope – Eyepieces – Ramsden's and Huygens's eyepieces	2	To explain spectroscopes and various eyepieces	Illustration and lecture	question s,
	4	Simple microscope (magnifying glass)– compound microscope	1	To compareSimpl e and compound microscope	Group discussion and lecture	Formative assessment
II	Interfere	ence	I	1		
	1	Conditions for interference – Theory of interference fringes – interference due to reflectedlight (thin films)	3	To understand the basic concepts of interference and its condition	Illustration, demonstration and lecture	Evaluation through: quiz, Multiple choice,
	2	Colours of thin films – wedge shaped thin film – theory – determination of diameter of a thin wire by Air wedge	2	To determine the diameter of any thin wire using air- wedge method	Demonstration and lecture	question s, Exhibiting Models,
	3	Test for optical flatness – Newton's rings by reflected light	2	To test the optical flatness	Group discussion	Formative assessment
	4	Determination of wavelength of light - Michelson's Interferometer – theory and its Application (Measurement of wavelength)	2	To determine the wavelength of light source	lecture and Demonstration	
		On Engage 12 a diffing at it at	Г Т	Differentiate	Looturo	Evelvetics
	1	Rectilinear propagation of light – zone plate – action of zone plate - Fraunhofer diffraction at single slit – Double slit	3 39	Fresnel's and Fraunhoffer diffraction	discussion, PPT	Evaluation through: quiz, Assignments

	2	Plane diffraction grating –theory of plane transmission grating - experiment to determine wavelength (Normal incidence method) –resolving power	3	Discuss the theory of plane transmission gratig	Lecture discussion &Demonstrati on, PPT	Multiple choice questions
	3	Rayleigh's criterion for resolution – resolving power of a telescope – resolving power of a microscope – resolving power of a prism - resolving power ofgrating.	3	Evaluate the resolving power of various optical devices	Lecture demonstration	Descriptive answers Formative assessment
IV	Polarisa	tion				
	1	Double refraction –Nicol Prism – Nicol Prism as polarizer and analyzer – Huygens's explanation of double refraction in uniaxial crystals	3	To explain the basic principles & phenomena of polarisation	Lecture discussion, PPT	Evaluation through: quiz Assignments
	2	Plane, elliptically and circularly polarized light– Quarter wave plates and Half wave plates – Production and detection of plane, circularly and elliptically polarized light	3	To analyze different types of polarization	Lecture Illustration	Short questions Descriptive answers
	3	Optical activity– Fresnel's explanation of optical activity	3	Determine the various optical parameters by using optical components	Lecture discussion PPT	Formative assessment
V	Spectros	scopy				
	1	Infrared spectroscopy – sources and detector – uses – ultraviolet spectroscopy – sources – quartz spectrograph - applications -	4	Explain UV & IR spectroscopy and its applications	Lecture discussion, PPT	Evaluation through: quiz, Assignments on applications
	2	Raman Spectroscopy Nuclear magnetic resonance –Nuclear quadrupole resonance	2	Discuss the principles of NMR spectroscopy	Lecture discussion, PPT	Formative
	3	Electron spin resonance		Analyze and study the	Group discussion,	

spectroscopies- (Qualitative study)	3	applications of ESR	PPT	
		spectroscopy.		

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. M. Abila Jeba Queen & Dr. R. Krishna Priya

Semester IV

Course Name: Computer Programming in C++

Course code: PC2042

No. of hours per week	No. of Credits	Total No. of hours	Marks
4	4	60	100

Objectives

- To provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs.
- 2. To enable the students developing their own applications using C++.

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand the different types of operators and expressions in C++ language.	PSO - 4	U
CO-2	implement different operation an arrays and use function to solve the given problem	PSO - 4	Ар
CO-3	understand member functions and constructors	PSO - 4	U
CO-4	analyze pointers, operator overloading and inheritance.	PSO - 4	An
CO-5	analyze input/output operations	PSO-4	An

Modules

Credit: 5

Total Hours: 60

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assesment/
	Section	Topics	hours	outcome		Evaluation

Ι	C++ An Int	roduction				
	1	Introduction - tokens - keywords - identifiers and constants - declaration of variables - basic data types - user defined data types-derived data types	2	To understand the basics of C++ language	Illustration and PPT	Evaluation through: quiz
	2	Symbolic constants - operators in C++ -expressions and their type-hierarchy of arithmetic operators	3	To understand the types of operators	Illustration, PPT	Formative assessment Evaluation
	3	Scope resolution operator – declaring, initializing and modifying variables-special assignment operators -	2	To understand the applications of different operators	Lecture Discussion	through short test
	4	Control structures- Structure of a simple C ++ program	2	To understand and apply them to solve simple physical problems	Writing simple programme	
II	Arrays and	Functions in C++		·		
	1	Introduction - one dimensional and two dimensional arrays - initialization of arrays-array of strings -	1	To understand the declaration of arrays	Illustration	Evaluation through: quiz
	2	Functions-introduction-function with no argument and no return values -function with no argument but return value - function with argument and no return values	3	To understand function and types of function	Lecture, Writing simple programmes	
	3	Function with argument and return values- call by reference return by reference	2	To understand the use of arguments in function	Lecture Illustration , Writing simple programmes	
	4	Function prototyping - inline functions - local, -global and static variables	2 42	To acquire knowledge on function prototyping	Illustration , Writing simple programmes	

	5	Function overloading - virtual functions-main function-math library functions.	1	To acquire knowledge on library functions	Illustration and PPT	
III	Classes and	l Objects				
	1	Introduction - specifying a class - defining member functions- C++ program with class	2	To understand the basic concepts of object oriented programming	Lecture and Discussion	Evaluation through: quiz
	2	Nesting of member functions - private member functions - objects as function arguments	2	To understand the access of member functions	Lecture Illustration , Writing simple programmes	Formative assessment Evaluation
	3	Arrays within a class-array of objects-static class members- friend functions	2	To understand and remember the array declaration and apply	Lecture Illustration , Writing simple programmes	through short test Multiple choice
	4	Constructors - parameterized constructors-multiple constructors - constructors with default arguments - copy constructor.	3	To understand and remember the use of constructors	Lecture Illustration , Writing simple programmes	questions
IV	Operator C	verloading, Inheritance and Poin	nters			
	1	Introduction -defining operator overloading - overloading unary operators -binary operators	2	To understand and remember the operators	Lecture Illustration , Writing simple programmes	Evaluation through: quiz,
	2	Inheritance - single inheritance – multipleinheritance - multilevel inheritance - hybrid inheritance- hierarchial inheritance	4	To understand and apply the concept of inheritance in solving problems	Lecture Illustration , Writing simple programmes	Problem solving Theoretical derivation
	3	virtual base class-abstract class	1	To understand and analyse	Lecture Illustration , Writing simple programmes	Formative assessment
	4	Pointers-definition-declaration- arithmetic operations	2 43	To understand and apply the concept of inheritance in	Lecture Illustration , Writing simple programmes	

V	Managing	Console I/O Operations		solving problems		
	1	Introduction - C++ stream - C++ stream classes -	2	To understand and remember the stream classes in C++	Lecture Illustration , Writing simple programmes	Evaluation through: quiz,
	2	unformatted I/O Operations - formatted console I/O operations	2	To understand ,analyse and apply in solving problems	Lecture Illustration , Writing simple programmes	solving Formative Assessment
	3	Working with files - classes for file steam operations	2	To understand ,analyse and apply in solving problems	Lecture Illustration , Writing simple programmes	Assignment
	4	Opening and closing a file - file pointers and their manipulations.	3	To understand ,analyse and apply in solving problems	Lecture Illustration , Writing simple programmes	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Semester III Course Name: Allied Physics II for Chemistry

Course Code: Subject code : AP2031

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Learning Objectives

- To understand the concepts of resistance of materials, capacity of conductors, effect of magnetic field due to passage of current, idea about the atom models and energy released in breaking of atom.
- 2. To make an awareness in physical concepts behind electricity , electronics, basicsemiconductor diodes,

transistor and basic logic gates. 44

Course Outcome

COs	Upon completion of this course students will be able to:	PSO addressed	CL
CO -1	Acquire knowledge on elementary ideas of electricity and magnetism, electronics, atomic and nuclear physics.	PSO-1	U
CO- 2	Analyze the concepts and study their applications in the field of electricity and magnetism, electronics and nuclear physics.	PSO -3	An
CO- 3	Apply their depth knowledge of Physics in day today life.	PSO -2	Ap
CO- 4	Develop their knowledge and carry out the practical by applying the concepts of a rectifier, amplifiers and oscillator, basic digital electronics principles through logic gates and the laws governing them.	PSO -4	R

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι		Current Electr	ricity			
	1	Ohm's law – Law of resistance in series and parallel – Specific resistance – capacitors – capacitors in serial and parallel	2	To understand the basic conceptsof Ohm's law, series and parallel,capacitors	Illustration and lecture,PPT	Evaluation through: quiz, short questions
	2	Kirchoff's laws – Wheatstone's network – condition for balance Carey-Foster's bridge	3	Explain Kirchoff's laws and Carey- Foster's bridge	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas Problem
	3	Measurement of resistance – measurement of specific resistance –determination of temperature coefficient of resistance	3	Discuss the temperature coefficient of resistance	Lecture and theoretical derivation	solving Formative assessment

	4.	Potentiometer – calibration of	1	Explain the orking	Illustration,	
		Voltmeter		of Potentiometer	theoretical	
				and calibration of	derivation	
				Voltmeter	and lecture	
TT			•			
11	1	Electromagnet		To understand the	Illus stustion	
	1	Electromagnetic Induction –	5	To understand the	illustration,	Evaluation
		Taraday s laws – Leliz law		laws of	derivation and	unrough:
				alactromagnetic	lecture	quiz, short
				Induction	lecture	questions
	2	Self Inductance – Mutual	3	Dicuss the	PPT	
	2	Inductance – Coefficient of	C C	inductance of the	theoretical	
		Coupling A C. Circuits		coil and coupling	derivation	Multiple
				of circuits		choice,
						questions,
	3	Mean value – RMS value – Peak	1	Derive Mean	Illustration,	- '
		value		value, RMS value	theoretical	Deriving
				and Peak value	derivation and	theoretical
					Demonstration	formulas
						Formative
						assessment
	4.	LCR in series circuit – impedance –	- 3	Explain the LCR	PPT, theoretical	
			c	circuit and	derivation and	
		resonant frequency – sharpness of	t	resonant	Demonstration	
		resonance.		frequency		
ттт	Atomic a	nd Nuclear Physics				
111		nu rucicar i nysics				
	1	Bohr's atom model – radius	2	To understand the	PPT, Lecture	
		energy – Atomic excitation –		concept of	and	
		Ionization potential		Bohr's atom	Demonstration	Multiple
				model		choice,
	2	Frank and Hertz Method –	2	Explain the Frank	Lecture,	questions,
		Nucleus – Nuclear properties –		and Hertz and	Theoretical	
		Mass defect – Binding energy		discuss the Nuclear	formulation	
				properties	Practical	
	2				demonstration	
	3	Radio isotopes – Uses of radio	3	I o understand the	Lecture,	Deriving
		isotopes – Nuclear fusion and		Radio isotopos	Illustration,	theoretical
		Nuclear fission		Uses of radio	I heoretical	formulas
			46	isotones	Dractical	101111111100
				Explain the	Flactical	Formative
				r		

	4.	X-rays – Production – properties	2	concept of Nuclear fusion and Nuclear fission Discuss X-rays,	Lecture,	assessment
		–Derivation of Bragg's law – uses in industrial and medical fields		applications	ion,PPT	
IV		Analog Electro	onics			
	1	Semiconductor – PN junction diode – Bridge rectifier – Zener diode – Regulated power supply.	2	To understand the basic concepts of electronics and various aspects of zener diode	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions Multiple
	2	Transistor – Working of a transistor – CE Configuration – current gain	2	To understand the concept of transistor and its working	Lecture, Demonstration, theoretical formulation	choice, questions, Deriving theoretical
	3	Transistor Characteristics – CE Configurationβ and αrelationship only	2	To understand the conceptof transistor characteristics	Lecture, Demonstration, theoretical formulation	formulas Formative assessment
	4	CE amplifier – feedback – Hartley oscillator	2	To understand the concept of feedback amplifier and oscillator	Lecture, Demonstration, theoretical formulation	
V		Digital Electro	onics			
	1	Number system – Decimal – Binary – Double Dabble method	2	To understand the number system		Evaluation through: quiz, Deriving theoretical formulas
	2	Binary addition, subtraction and multiplication – conversion of one number system to another number system	2	To understand the binary operations and conversions	Lecture, Theoretical formulation Problem solving	Tormutas
	3	Logic gates – OR, AND, NOT, XOR, NAND and NOR gates – truth tables	47	To understand the basic concepts of logic gates	Lecture, Demonstration,	

				Theoretical formulation
				Problem solving
4	Laws and theorems o Boolean'salgebra – De Morgan' theorems.	f 2	To understand the basic concepts of Boolean Algebra	Lecture, Theoretical formulation Problem solving

CO- Course Outcome; CL-Cognitive Level; R- Remember; U-Understand; Ap-Apply; C - Create.

Course Instructors: Ms. S.

Virgin JebaHead of the Department: Dr. C.

Nirmala Louis

Holy Cross College (Autonomous), Nagercoil-629004 B.Sc. Physics

SemesterVIName of the Course: Relativity and Quantum Mechanics : Major Core –VIIISubject Code: PC2061

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objective

1. To acquire sufficient knowledge in the concept of Relativity, dual nature of matter waves,

2. To apply the Quantum mechanics principles, Operator formalisms and derive Schrodinger equation and its applications.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	gain knowledge in the concepts of special and theory of relativity	PSO - 1	U
CO - 2	evolve ideas about dual nature of matter	PSO - 2	Ε
CO - 3	recognize basic terms in Quantum Mechanics and different operator mechanism	PSO - 3	С
CO - 4	apply of Schrödinger's equation to micro system	PSO - 4	Ар

Teaching Plan

Total contact hours: 90 (Including lectures, assignments and Tests)

Unit	Module	Topics	Lectur e hours	Learning outcome	Pedago gy	Assessment/ Evaluation
Ι	Relativit	y:				
	1	Frames of reference - Galilean transformation.	4	Describe different frame of reference and	Lectur e,disc ussion PPT	Multiple Choice Questions

				transform ations.		
	2	Michelson-Morley experiment -Postulates of special theory of relativity	3	Able to explain Michelson morely experiment.	Lecture demons tration PPT	Quiz,
	3	Lorentz transformation - length Contraction – time dilation - Relativity of simultaneity - addition of velocities	5	Able to apply Lorentz transormatio n in the case of length, time and velocity	Lecture demons tration PPT	Formative Assessment I
	4	Variation of mass with velocity– Mass energy relation - Elementary ideas of general relativity.	3	Able to understand general relativity.	PPT Lectur e discus sion	Assignment
II	Wave	Theory:	-			
	1	Wave Nature of Matter Phase and group velocity.	3	Describe particle wave nature.	PPT Lecture discussi on	Multiple Choice Questions
	2	Wave packet - expression of De Brogile's wave length.	4	Derive debroglie waveleng th	PPT Lecture discussi on	Quiz, Formative Assessment I
	3	Davisson and Germer's experiment - G.P.Thomson's experiment.	5	Able to explain wave nature experiments.	PPT Lecture	
	4	Heisenberg's uncertainty principle and its consequences.	3	Able to describe uncertanitie s.	Lecture PPT	
III	Funda	mentals of quantum mechanics:				
	1	Schrodinger Equation Inadequacy of classical mechanics - Basic postulates	4	Describe the postulates of quantum	Lectur e, PPT	Multiple Choice Questions

		of quantum mechanics.		mechanics.		
		Sobradinger equation Properties -	~		Lastres	Quiz,
	2	Schrödinger equation - Properties of wave function - Probability interpretation of wavefunction.	5	Derive and interpret schrodinger wave equation.	PPT	Formative Assessment I & II
	3	Linear operators - self adjoint operators .	3	Recognize operators	Lecture PPT	
	4	Expectation value - eigenvalues and eigenfunctions - commutativity and compatibility.	3	Able to calculate Eigen values and functions.	Lecture PPT	
IV	Opera	ators:			L	
	1 2 3	AngularMomentuminQuantumMechanicsOrbitalangularmomentum operators and theircommutation relations.Separation of three dimensionalSchrodinger equation into radial and angular partsElementaryideasofspinangularmomentumofanelectronPauli	5 5 5	Recognize different operators and its relations Separate Schrodinger equation into radial and angular parts Understand Elementary	Lectur e discus sion, PPT Lecture discussi on, PPT Lecture discussi	Multiple Choice Questions Quiz, Formative Assessment II
		momentum of an electron - Pauli matrices.		ideas in quantum mechanics	on, PPT	
V	Appli	cations of Schrodinger Equation:				
	1	Solutions of Schrödinger Equation – Time dependent and time independent Schrödinger equation.	5	Able to apply Schrodinger Equation in time dependent and time independent state.	Lecture discussi on, PPT	Multiple Choice Questions Quiz,

2	Free particle solution - Particle in a box - Potential well of finite depth (one dimension).	5	Able to apply Schroding er Equation in Particle in a box	Lecture discussi on, PPT	Formative Assessment II
3	Linear harmonic oscillator - rigid rotator and hydrogen atom.	5	Able to apply harmonic oscillator.	Group discussi on, PPT	

Course Instructor: Dr. M. Abila Jeba Queen

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

B.Sc. Physics

SemesterVIName of the Course: Digital and Communication Electronics: Major Core – IXSubject Code: PC2062

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

1. To understand the structure of various number system and basic Logic gates.

2. To design and solve the Boolean Algebra simplification and Karnaugh Maps.

3. To construct sequential circuits and to design counters.

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO -1	Understand the basic operation, and features related to Logic gates and interprets their applications.	PSO-1	U
CO -2	Acquire knowledge on number system, arithmetic building blocks, and memories.	PSO-3	Ε
CO -3	Understand the fundamental concepts of logic gates, counters, registers, fiber optics, etc.	PSO-1	U
CO -4	Develop skill to build and troubleshoot combinational digital circuits.	PSO-7	Ар
CO-5	Understand AM, FM and PM modulation and demodulation techniques.	PSO-1	U
CO-6	Assess the basic concepts of fiber optics and types of fiber	PSO-2	Ε

Course Outcome

	diodes, transistor, op-amps and converters.		
CO-7	Learn the working principle of satellite communication system.	PSO-6	С

Modules Credits: 5 Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Digital F	undamentals				
	1	NumberSystemsandConversions-Binary-CodedDecimal(BCD)Code-Graycode1'sand2'scomplements	6	To understand the concept of number systems.	Lecture discussion with PPT illustration	Evaluation through short test Multiple choice questions Formative assessment I
	2	Basic logic gates - NAND, NOR and EX-OR gates - NAND and NOR as Universal Building blocks - Laws and theorems of Boolean algebra	5	To analyze the operation of basic and universal logic gates and the laws of Boolean algebra.	Lecture discussion with illustration	
	3	NAND-NAND circuits - Karnaugh's map- Sum of Product (SOP) and Product of Sum (POS) - applications	4	To evaluate the Sum of Product (SOP) and Product of Sum (POS) using Logic gates.	Lecture discussion	

II	Sequenti	al Logic				
	1	RS-Flip flop, Clocked RS Flip flop, D-Flip flop, J-	6	To identify the principle of flip flops.	Lecture discussion with PPT	Short test Quiz
		K and J-K Master- Slave Flip-flop			Illustration	Assignment
	2	Shift registers and Counters - Multiplexers and Demultiplexers	4	To acquire knowledge on shift registers and multiplexers.	Lecture discussion	Formative assessment I
	3	Decoders and Encoders - Memory Circuits - D/A and A/D converters - applications	5	To categorize the applications of encoders and analog to digital converters.	Lecture Illustration	
III	Modulat	ion and Demodulation				
	1	AmplitudemodulationFrequencymodulation,PhaseModulationPulseModulation -	5	To recall the concept of modulation and to recognize the different types of modulation and demodulation techniques.	Lecture with PPT Illustration	Short test Quiz Assignment
	2	Detectors of Amplitude Modulation (AM), Frequency Modulation (FM)	4	To acquire knowledge on different kinds of the demodulators used in amplitude and frequency modulation.	Lecture discussion	assessment I
	3	Phase modulation (PM) and Pulse	6	To understand the concept of phase modulation	Question- answer session	

				r	1	r
		width modulation		and noise in	Lecture	
		(PWM), Phase		systems.		
		locked loop (PLL) -		5		
		Noise in				
		Communication				
		Systems.				
IV	Digital a	nd Satellite Communic	cation			
	1	Amplitude Shift	3	To understand	Lecture	
		Keying (ASK),		Amplitude	Illustration	Short test
		Frequency Shift		Shift Keying		
		Keying (FSK),		(ASK), Frequency		Quiz
		Phase Shift Keying		Shift Keying		
		(PSK) Modulation		(FSK), Phase Shift Keying		Assignment
		and Demodulation,		(PSK).		Formative
		Advantages and				assessment II
		disadvantages of				
		digital				
		communication				
		communication.				
	2	Communication	6	To acquire		
		Satellite Systems -		knowledge on	Lecture	
		- Telemetry		Satellite	Discussion	
		Tracking and		Communicatio		
		Command System-		n Systems.		
		Satellite Links				
	3	Commonly Used	6	To understand	Question-	
		frequency in		the concept of	answer	
		Satellite		phase	session	
		Communication -		modulation	T .	
		Multiple access -		and noise in AM and FM	Lecture	
1	1	LITOI Dettettion.	1		1	1

				systems.		
V	Fibre Op	otic Communication				
	1	Basic Fibre Optic System - Advantages of Fibre Optic System - Propagation of light through fibre	6	To acquire knowledge on fibre optic systems.	Lecture with PPT	Short test Quiz Assignment Formative assessment II
	2	Numerical aperture - Acceptance angle - Losses and distortion in optical fibres	5	To evaluate the parameters related to loss in optical fibres.	Brain storming session. Lecture Illustration	
	3	Basic Fibre Optical communication and links - Special applications	4	To learn the applications of optical communicatio n.	Lecture with PPT Illustration	

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; E-Evaluate; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. R. Krishna Priya& Dr. M. Priya Dharshini

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

B.Sc. Physics

Semester: VI Course Name: Nuclear Physics Course code: PC2063

Hours/Week	Credits	Total hours	Marks
5	5	75	100

Learning Objectives

- 1. To acquire knowledge on static properties of nuclei and its stability.
- 2. To understand the background of various nuclear models.
- 3. To know about different modes of decay and interaction of nuclear radiations with matter

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	understanding on the basics of nuclear physics that treats atomic nuclei as self-bound many-body quantum systems	PSO-1	U
CO2	knowledge about particle- antiparticle, decay processes and their outcomes.	PSO-2	U
CO 3	basic interaction between fundamental particles.	PSO-4	An

Modules

Credits: 5 Total contact hours: 75 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Properti	es and structure of Nuclei				
	1	General properties of nucleus- binding energy – BE/A curve - significance	3	To apply the binding energy per nucleon curve	Lecture Discussion and Problem Solving	Evaluati on through:
				in the calculation of energy.		quiz, short questions

	2	proton electron theory- proton neutron theory	3	To understand the fundamental principles of proton electron theory .	Lecture Discussion and Problem Solving	Formative assessment
	3	nuclear forces –characteristics – Meson theory of nuclear forces	3	To understand the various nuclear forces To study Meson theory of nuclear forces	Lecture Discussion and Problem Solving	
	4	Yukava Potential- Nuclear models.	3	To understand the principle and working of Nuclear models.	Discussion and lecture	
II	Radio A	ctivity				
	1	Fundamental laws of radio activity –theory of α , β and Υ decay	3	To understand the different modes of radio activity	Demonstration and lecture	Evaluation through: quiz,
	2	properties of alpha, beta and gamma rays	3	To apply the properties of alpha, beta and gamma rays in reactors	demonstration and lecture – cum- discussion, Problem Solving	Multiple choice, questions,
	3	neutrino and its properties- electron capture	2	To understand neutrino and its properties	Lecture-cum- Discussion and Demonstration	Formative
	4	nuclear isomers- Mossabauer effect - applications	2	To understand the principles and working of Mossabauer spectroscopy	Lecture- cum- discussion	a550551110111
	5	Radio carbon dating- radio isotopes – uses.	2	To compare radio isotopes and its uses.	Group Discussion and lecture	
III	Nuclear	Reactions				
	1	Kinematics of nuclear reaction- nuclear fission –Nuclear fusion	3	To understand about nuclear fission and Nuclear fusion	Lecture-cum- discussion, Problem solving	Evaluation through: quiz, Assignments

	2	Nuclear reactor-uses - atom bomb	3	To discuss about Nuclear reactor and its uses	Lecture discussion, Problem solving	Multiple
	3	hydrogen bomb-fusion reactor – plasma confinement	3	To discuss about hydrogen bomb and fusion reactor	Demonstration, Lecture-cum- discussion	choice questions
	4	Artificial transmutation-Q value of nuclear reaction-types of nuclear reaction	3	To discuss about types of nuclear reaction	Demonstration, Lecture-cum- discussion	Descriptive answers Formative assessment
IV	Nuclear	Detectors and Particle Accelerate	ors			
	1	Neutron sources and properties	3	To understand about Neutron sources and properties	Lecture-cum- discussion	Evaluation through: quiz Assignments
	2	Detectors-G.M.Counter- scintillation counter	3	To construct Detectors like G.M.Counter and scintillation counter	Lecture, Demonstration, Group discussion	Short questions
	3	bubble chamber-Wilson cloud chamber	2	To understand about bubble chamber and Wilson cloud chamber	Lecture-cum- discussion	Descriptive answers Formative assessment
	4	Accelerators-cyclotron- synchrocyclotron	2	To discuss about the Accelerators	Lecture-cum- discussion	
	5	betatron-synchrotrons	2	The understand about the principles of betatron and synchrotrons	Lecture-cum- discussion	
V	Cosmic	Rays and Elementary Particles			_	
	1	Cosmic rays-introduction- discovery-latitude, altitude and azimuth effects- longitudinal effect-north –south effect	3	To understand the basic concepts of Cosmic rays	Lecture-cum- discussion, Demonstration	Evaluation through: quiz, Assignments
	2	seasonal and diurnal changes- primary and secondary cosmic rays-nature of cosmic rays- cosmic ray showers Van Allen belt- origin of cosmic radiation.	3	To discuss primary and secondary cosmic rays	Lecture-cum- discussion, Demonstration	on operational amplifier problems
	3	Elementary particles-	3	To understand	Lecture-cum-	Formative

	introduction-particles and antiparticles-antimatter-the fundamental interaction		Elementary particles	discussion, Demonstration	assessment
4	elementary particle quantum	3	To construct the	Lecture-cum-	
	numbers-conservation laws and		quark model	discussion,	
	symmetry-the quark model			Demonstration	

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply;

An-Analyze; C - Create.

Course Instructors: Dr. C.Nirmala Louis & Dr. V.Shally

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

B.Sc. Physics

Semester: VI

Name of the Course: Nanophysics: Elective- III (b)

Subject Code : PC2065

Hours /Week	Credits	Total hours	Marks
5	4	75	100

Learning Objectives

- 1. To gain knowledge on synthesis and characterization of nanomaterials.
- 2. To understand the advancements and applications of nanostructures.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	infer the history of nanotechnology and explain the synthesis of nanomaterials.	PSO - 1	U
CO - 2	interpret quantum well, quantum wires and quantum dots.	PSO - 5	Е
CO - 3	explain the carbon nanotubes and its applications.	PSO - 6	Е
CO - 4	discuss the applications of nanotechnology in various fields.	PSO - 4	С

Modules

Total contact hours: 90 (Including lectures, assignment and tests)

Unit	Section	Topics	Lecture Hours	Learning outcomes	Pedagogy	Assessment/Eval uation
Ι	Nanoma	terials				
	1	History of	3	То	Lecture	
		Nanotechnology		understand	Discussion	
		- Background -		the	with PPT	

		Conceptual		backgroun	Illustration	
		origins -		d and	mustiution	
		Experimental		importanc		
		advances -		e of nano		
		Nanostructures		e or nano		
	2	Nanomatoriala	2	To be oble	Locturo	Evolution
	Z	Similaria of	3		Lecture	Evaluation through Opting
		Synthesis of			discussion	unrough: Online
		oxide		differentia		quiz,
		nanoparticles-		te the		T
		Sol-gel		synthesis		Formative
		processing -		methods in		assessment I
		Synthesis of		nanomater		
		semiconductor		ial		
		nanoparticles		preparatio		
				n		
	3	Arrested	3	To be able	PPT	
		precipitation -		to	Illustration	
		Synthesis of		understand		
		metallic		the		
		nanoparticles		synthesis		
				of metallic		
				nanopartic		
				les		
	4	Sonochemical	3	To learn	Lecture	
		reduction		about the	discussion	
		process -		chemical		
		Electrochemical		and bio		
		deposition		synthesis		
		method -		of		
		Biosynthesis of		nanopartic		
		nanoparticles		les		
II	Quantum	Hetero structure				
	1	Super lattice -	3	То	PPT and	
		Preparation of		understand	group	Evaluation
		Quantum		the	Discussion	through: Online
		nanostructure -		concept		quiz,
		Quantum well		quantum		Short questions
		lasers		well		Descriptive
	2	Quantum cascade	3	To be able	Lecture	answers
		laser -		to	Discussion	Formative
		Application -		synthesize	with PPT	assessment I
		Quantum wire -		nanowires	Illustration	
		production of				
	2	nanowires	2	m 11	DDT	
	3	Structure of	3	I o able to		
		nanowires - Use		learn the	Illustration	
		of nanowires -		applicatio		

		Quantum dot -		ns of		
		Application of		quantum		
		Quantum dots		dots		
	1	Quantum dot	3	Toknow	Locturo	-
	4	information	5		Discussion	
		storage		the various	Discussion	
		Quantum dot		applicatio	with PPT	
		infrared photo		ns of	Illustration	
		detectors		quantum		
		Quentum det		dots		
TTT	Carbon	Janetuhag				
111		vanotubes			-	
	1	Discovery of	3	То	Lecture	Evaluation
		Nanotubes -		understand	discussion	Evaluation
		Carbon		the CNTs		through: Online
		Allotropes -		and its		quiz,
		Diamond -		types		Short questions
		Graphite - Carbon		51		Descriptive
	-	Nanotubes				answers
	2	Types of carbon	3	To be able	Lecture	Formative
		Nanotubes-		to	Discussion	ronnarve
		Single walled		distinguish	with PPT	
		carbon nanotubes		different	Illustration	
		- Multiwalled		types of		
		carbon nanotube -		CNTs		
		Fullerite - Torus -		CIVIS		
		Nanobuds				_
	3	Graphene sheet to	3	To be able	Lecture	
		a single walled		to study	discussion	
		nanotube -		the		
		Electronic		structure		
		structure of		of CNTs		
		Carbon				
		Nanotubes				_
	4	Synthesis of	3	То	PPT and	
		Carbon		understand	group	
		Nanotube -		the	Discussion	
		Electric Arc		different		
		Discharge		synthesis		
		mothed Lagra		methods in		
		method - Laser		CNT		
		method.		production		
				±		
IV	Magneto	Electronics		·	I	
	1	Nanocrystalline	3	То	Lecture	Evaluation through:
		soft material -		understand	Discussio	Online quiz,
		Permanent		the	n with	Problem solving
		magnet		fundament	PPT	short questions
		material		als of	Illustratio	Descriptive

				magnetic	n	answers
				nanomater		Formative
				ials		assessment II
	2	Theoretical	3	То	Lecture	
		background -		understand	discussion	
		Super		the		
		paramagnetism		principle		
		- Coulomb		behind the		
		blockade		superpara		
				magnetism		
	3		3	To be able	PPT	
				to mention	Illustratio	
				the	n	
		Ouantum		importanc		
		cellular		e of		
		Automata-		nanomech		
		Spintronics		anics		
	4	Giant magneto	3	То	Lecture	
	•	resistance		understand	Discussio	
		(GMR) - Types		the	n with	
		of GMR.		concent	PPT	
				giant	Illustratio	
				magnetore	n	
				sistance	11	
V	Annlicati	on of Nanotechnold		Sistance		
•	1		3	To be able	DDT	Evaluation through:
	1		5	to analyze	Illustratio	Online quiz
				the	nusuallo	Droblem colving
				environme	11	short questions
				ntal		Descriptive
				problems		Descriptive
				and find		
		Chemistry and		the		Formative
		Environment -		solutions		assessment II
		Energy		using		
		applications of		nanotechn		
	2	Indhotechnology	2	ology	T a a fai	
	2	Communication	3	TO DE ADIE	Lecture	
				to apply	Discussio	
		Industry –		nanotechn	n with	
		Consumer		ology in	PPT	
		goods		communic	Illustratio	
		0		ation	n	
	2		2	TT 1	T (
	3	Nanomedicine -	3	10 learn	Lecture	
		Medical		the	aiscussion	
		annucation of	1	annlicatio	1	

Nanotechn - Biomarko and Bioima	ology ers aging	ns of nanopartic les in Medicine	
4 Targeted d delivery - Nanorobot	rug 3 s.	To learn the applicatio ns of nanopartic les in medical field	PPT Illustratio n

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U –Understand; Ap- Apply, An- Analyze; E-Evaluate; C-Create

Staff-in charge: Dr. A. Lesly Fathima & Dr. S. Sonia