Semester - I

Major Core I: GENERAL CHEMISTRY - I

Course Code: CC2011

Hours Per week	Credits	Total Hours	Marks
4	4	60	100

Objectives

- To gain basic knowledge on classification nomenclature of organic compounds
- To understand the quantum theory and wave mechanical concept
- To understand the chemistry of s block elements and the principles of volumetric analysis

Course Outcome

COs	Upon completion of this course, students will	PSO	Cognitive
	be able to	Addressed	Level
CO - 1	understand the structure and naming of various organic compounds	PSO-1	U
CO - 2	interpret various electronic effects and chemical bonding	PSO-3	An
CO - 3	analyse the periodic properties of elements	PSO-2	An
CO - 4	apply wave mechanical concept in other fields	PSO-6	A
CO - 5	predict the properties of elements and the principle behind volumetric analysis	PSO-6	An

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Classific	ation and Nomenclature				
	2	Classification of organic compounds - based on the nature of carbon skeleton and functional groups - classification of C and H atoms of organic compounds (primary/secondary/tertiary) IUPAC system of nomenclature of common organic compounds (upto C-10) - alkanes, alkenes and alkynes. Naming of cycloalkanes, bicycloalkanes with and without bridges and aromatic compounds	4	Classify organic compounds Know about the IUPAC nomenclature of organic compounds	Lecture and power point presentation Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz, slip test and group discussion Formative assessment I

	4	Naming of organic compounds with one functional group - halogen compounds, alcohols, phenol, aldehydes, ketones, carboxylic acids and its derivatives, cyano compounds, amines, nitro compounds Naming of compounds with two functional groups - naming of compounds with more than one carbon chain. Naming of heterocyclic compounds containing one and two hetero atoms present in five/giv membered rings.	3	Learn to name organic compounds with one functional group Know to name organic compounds	Lecture and seminar Lecture with power point presentation	
II	Bonding	in five/six membered rings in Organic Molecules			<u> </u>	
	1	Hybridization and geometry - bond angle, bond length, bond strength of C-H and C-C bonds -Van der Waal's interactions, Inter & Intra molecular forces and their effects on physical properties	3	Classify the elements based on the force of attraction and properties.	Question answer session	Evaluation through Multiple choice questions, short test, quiz and slip
	2	Electronic effects - inductive effect, resonance effect - drawing of resonance structures - conditions for resonance - stability of resonance structures	3	Know about various types of electronic effects	Lecture	Formative assessment I
	3	Hyper conjugation, electromeric effect, steric effect - steric overcrowding - steric inhibition of resonance - steric relief (with examples)	3	Distinguish various effects	Lecture with power point presentation and Group discussion	
	4	Dissociation of bonds - homolysis and heterolysis - radicals, carbocations, carbanions - electrophiles and nucleophiles - Influence of electronic effects - dipole moment - relative strengths of acids and bases - stability of olefins - stability of radicals, carbocations and carbanions	3	Know about electrophiles, nucleophiles and stability of different ions	Lecture with power point presentation	

III	Periodic Properties						
	1	Atomic orbitals - Quantum numbers- Principal, Azimuthal, Magnetic and Spin quantum numbers and their significance	2	Know about various quantum numbers and filling up of atomic orbitals	Seminar and power point presentation	Evaluation through Multiple choice questions, short test,	
	2	Principles governing the occupancy of electrons in various quantum levels-Pauli's exclusion principle - Hund's rule- Aufbau Principle, (n+1) rule	2	Learn about different principles governing the occupancy of electrons	Lecture and Problem solving	quiz and class test Formative assessment II	
	3	Stability of half-filled and completely filled orbitals-inert pair effect. Variation of metallic characters - Factors affecting the periodic properties	2	Remember the factors affecting the periodic properties	Lecture and Problem solving		
	4	Anomalies and variations in atomic radius, ionic radius, electronic configuration	2	Calculate the atomic radius and ionic radius	Problem solving		
	5	Variation of electron affinity and electro negativity, ionization energy, metallic character of elements along the group and periods	2	Distinguish various periodic properties	Illustration, Seminar and Power point presentation		
	6	Influence of various characters on stability, colour, coordination number, geometry, physical and chemical properties	2	Calculate coordination number	Power point presentation		
IV	Atomic S	Structure					
	1	Planck's quantum theory - Photoelectric effect, Compton effect	2	Understand the Plank's quantum theory	Power point presentation and videos	Evaluation through Multiple choice	
	2 Bohr's model of hydrogen atom 2 Know Bohr's Lecture model of hydrogen atom		Lecture	questions, short test, quiz and			
	3	Wave particle duality, de Broglie equation, Heisenberg uncertainty principle	2	Learn to derive de Broglie equation	Lecture	class test	

	5	Eigen function and Eigen value - Postulates of Quantum mechanics Schrodinger's time independent wave equation (no derivation), wave functions and its physical properties -Normalization and	4	Differentiate Eigen function and Eigen value Understand the importance of Schrodinger's wave equation	Problem solving Lecture	Formative assessment II
V	,	Orthogonal function				
	ii) Princi	ples of Volumetric Analysis				
	1	Position of hydrogen in the periodic table, General characteristics of s - block elements. Compounds of s-block metals - oxides, hydroxides, peroxides, superoxide's-preparation and properties - oxo salts - carbonates - bicarbonates - nitrates - halides and polyhalides	3	Recognize the various metals, oxides and hydroxides	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz and class test Formative assessment I
	2	Extraction of Be and Mg - physical and chemical properties - Uses	2	Understand the extraction process	Lecture with videos	
	3	Complexes of s-block metals - complexes with crown ethers - biological importance sodium and potassium - Organometallic compounds of Li and Be	1	Explicate the biological importance of sodium and potassium	Seminar	
	4	General principles of volumetric Analysis, Types of titrations. Requirements for titrimetric analysis. Concentration systems	1	Know about the principles of volumetric analysis	Power point presentation, seminar	
	5	Primary and secondary standards, criteria for primary standards, preparation of standard solutions, standardization of solutions. Limitation of volumetric analysis, endpoint and equivalence point	2	Understand the criteria of preparation of standard solutions	Demonstration	
	6	Neutralisation-titration curve, theory of indicators, choice of indicators. Use of phenolphthalein and methyl orange	1	Acquire knowledge about the use of indicators.	Demonstration	

	7	Complexometric titrations:	2	Analyse the	Problem	
		Stability of complexes,		stability of	solving	
		titration involving EDTA.		complexes		
		Metal ion indicators and				
		characteristics. Problems				
		based on titrimetric analysis				

Course Instructor: Dr. R. Gladis Latha HOD: Dr. G. Leema Rose

Semester I Allied Chemistry - Botany and Zoology Major Chemistry for Life Sciences Course Code: CA2011

Hours Per week	Credits	Total Hours	Marks
4	3	60	100

Objectives:

- To acquire knowledge on atomic structure and bonding
- To understand the importance of photochemistry and catalysis
- To apply the principles of chromatography techniques

Course Outcome

COs	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	remember the structure and bonding in atoms and molecules	PSO-1	R
CO-2	analyse the types of bonding and the ways of expressing concentration in molecules	PSO-2	An
CO-2	understand the concepts of biophysical analysis, catalysis and buffer action	PSO-1	U
CO-3	apply the concepts of photochemistry and chromatography to various chemical processes.	PSO-6	A

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Atomic S	Structure				
	1	Dual nature of electron, de-Broglie equation	2	Acquire knowledge on Dual nature of electron and de-Broglie equation	Lecture, power point presentation and videos	Evaluation through Multiple choice
	2	Davisson and Germer experiment	1	Understand Davisson and Germer experiment	Lecture and power point presentation	questions, short test, quiz
	3	Heisenberg's uncertainty principle and its significance	1	Understand Heisenberg's uncertainty principle and its significance	Lecture, power point presentation and discussion	Formative assessment I

	4	Compton effect - Schrodinger's wave equation and its significance, eigen values and eigen functions, quantum numbers and their significance	3	Distinguish eigen values and eigen functions	Lecture and power point presentation	
	5	Atomic orbitals - significance, shapes, difference between orbit and orbital	1	Differentiate between orbit and orbital	Lecture, power point presentation and illustration	
	6	Rules for filling up of orbitals - Pauli's exclusion principle, Aufbau principle and Hund's rule	2	Know about different principles governing the filling up of orbitals	Lecture and power point presentation	
	7	Electronic configuration of elements up to 20	2	Gain knowledge on the filling up of atomic orbitals	Lecture and power point presentation	
II	Chemica	ll bonding				
	1	Ionic bond, formation of ionic bond, general characteristics of ionic compounds	1	Know about ionic bond and its characteristics	Lecture and power point presentation	Evaluation through Multiple choice questions,
	2	Lattice energy, Born-Haber cycle and its applications	2	Understand lattice energy	Lecture and power point presentation	short test, quiz
	3	Covalent bond - formation of covalent bond with examples characteristics of covalent compounds	2	Gain Knowledge about Covalent bond	Lecture and power point presentation	Formative assessment I
	4	Ionic character in covalent compounds, Fajan's rule	1	Acquire knowledge about Ionic character and Fajan's rule	Lecture and power point presentation	
	5	Coordinate bond - formation of coordinate bond with examples.	2	Understand Coordinate bond formation	Lecture and Power point presentation	
	6	Metallic bond -band theory, conductors, insulators and semiconductors.	2	Explicate the difference between conductors, insulators, semiconductors	Lecture with power point presentation	

	7	Hydrogen bonding - types - inter and intramolecular and effect of hydrogen bonding.	2	Understand Hydrogen bonding and its effect	Lecture with power point presentation	
III	Photoch		<u> </u>	I	I	ı
	1	Importance of photochemistry, difference between thermal and photochemical reactions. Laws of photochemistry - Beer-Lambert's Law, Grother's-Drapers law and Stark-Einstein's law	3	Differentiate between thermal and photochemical reactions	Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative assessment II
	2	Quantum efficiency, Electronic excitations - singlet and triplet states, Jablonski diagram, internal conversion - intersystem crossing - fluorescence, phosphorescence. Difference between fluorescence and phosphorescence	3	Understand various electronic excitations	Lecture and power point presentation	
	3	Types of photochemical reactions based on quantum efficiency $(\phi = 1, \phi < 1 \text{ and } \phi > 1)$ - primary and secondary process of photochemical reactions	2	Differentiate primary and secondary process of photochemical reactions	Lecture and power point presentation	
	4	Photochemical rate law - kinetics of photochemical combination of H ₂ and Cl ₂ and decomposition of HI	2	Acquire knowledge about kinetics of photochemical combination of H ₂ and Cl ₂ - decomposition of HI	Lecture with power point presentation	
	5	Photosensitization, photosensitizers, chemiluminescence and bioluminescence	2	Differentiate chemiluminescence and bioluminescence.	Lecture with power point presentation	

IV	Biophysi	ical Analysis and Catal	ysis			
	1	Osmosis, osmotic pressure and isotonic solutions	1	Understand Osmosis, osmotic pressure, isotonic solutions	Lecture with power point presentation	Evaluation through Multiple
	2	Determination of molar mass by osmotic pressure measurement	2	Acquire knowledge on molar mass by osmotic pressure measurement	Lecture with power point presentation	choice questions, short test, quiz
	3	Reverse osmosis	1	Understand reverse osmosis	Lecture and power point presentation	Formative assessment
	4	Adsorption - types, factors influencing adsorption and applications of adsorption	2	Acquire knowledge on adsorption, types, factors influencing adsorption and its applications	Lecture and power point presentation	l II
	5	Catalysis - types, theories, intermediate compound formation theory and adsorption theory	3	Understand catalysis, types and theories	Lecture and power point presentation	
	6	Enzyme catalysis - Michaelis-Menten equation and theory	3	Understand Enzyme catalysis, Michaelis, Menten equation	Lecture and power point presentation	
V	Analytic	al Chemistry				
	1	Methods of expressing concentration - normality, molarity, molality, mole fraction, ppm and ppb	2	Understand methods of expressing concentration of solution	Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Ionic product of water - pH and pOH	1	Acquire knowledge about Ionic product of water, pH and pOH	Lecture and power point presentation	Formative assessment I
	3	Strength of acids and bases - K _a and K _b , pK _a and pK _b	2	Understand strength of acids and bases	Lecture and power point presentation	
	4	Buffer solutions - examples and theory of buffer action	1	Know about buffer solutions and theory of buffer action	Lecture and power point presentation	

5	Chromatography -	2	Understand	Lecture with	
	classification,		chromatography and	videos	
	Column		column		
	chromatography -		chromatography		
	principle,				
	experimental				
	techniques, factors				
	affecting column				
	efficiency and its				
	applications				
6	TLC - principle,	1	Know about TLC	Lecture with	
	experimental			videos	
	techniques,				
	advantages,				
	limitations and				
7	applications	2	A' 111	T 4	
7	GC – principle,	2	Acquire knowledge	Lecture with	
	experimental		about GC	videos	
	techniques and				
8	applications	1	Understand UDLC	T4:41-	
8	HPLC - principle	1	Understand HPLC	Lecture with	
	and experimental			videos	
1	technique				

Course Instructor: Dr. S. Ajith Sinthuja HOD: Dr. G. Leema Rose

Semester - I Part IV: NME Applied Chemistry - I Course Code: CNM201

Hours Per week	Credits	Total Hours	Marks
2	2	30	100

Objectives:

- To know the preparation and importance of agrochemicals
- To acquire knowledge about soaps and sugar
- To understand the chemicals used in day to day articles

Course Outcome

CO	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	remember the importance of soaps and detergents	PSO-2	R
CO-2	analyse the characteristics and advantages of agrochemicals	PSO-2	An
CO-2	understand the process of manufacture of sugar and paper	PSO-4	U
CO-3	apply the chemical reactions to synthesize day to day articles	PSO-4	A

Total Number of Contact hours: 30 (Including lectures, assignments and tests)

Unit	Section	Topics	Hours	Learning outcome	Pedagogy	Assessment / Evaluation
I	Fertilize	ers				
	1	Plant nutrients - macronutrients - micronutrients -need for fertilizers - characteristics of a good fertilizer -role of N, P and K in plant growth	2	Know the role of nutrients and fertilizers in plants	Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Classification of fertilizers - natural fertilizers - artificial fertilizers - manufacture and uses of artificial fertilizers -urea - calcium cyanamide	2	Classify fertilizers and understand the method of manufacturing	Lecture and discussion	Formative assessment I

	3	Calcium ammonium nitrate - superphosphate of lime- triple superphosphate - potassium chloride. Biofertilizers and their advantages	2	Remember the methods of manufacture of fertilizers	Explanation using equations	
II	Pesticid				1 +	In
		Pesticides- classification based on the use and chemical composition. Insecticides- structure and uses of lead arsenate - calcium arsenate - methoxychlor - baygon - malathion- D.D.T BHC	2	Classify and know the structure and uses of pesticides	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Fungicides - preparation and uses of limesulphur - bordeaux mixture - sodium sulphate - thallium sulphate	2	Remember the uses and methods of preparation of fungicides	Lecture and group discussion	
	3	Weedicides - structure and uses of butachlor - eptam - DNOC. Rodenticides - preparation and uses of zinc phosphide - aluminium phosphide - warfarin	2	Analyse the characteristics and advantages of weedicides and rodenticides	Lecture and power point presentation	
III	Soaps a	nd detergents			•	
	1	Soaps -classification -hard soap - soft soap - raw materials -manufacture of toilet soap - transparent soap - liquid soap - medicated soap - herbal soap - cleansing action of soap	3	Acquire knowledge about soaps	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative assessment II

	2	Detergents - classification - examples- advantages of detergents over soaps -detergent action -detergent chemicals-additives - excipients - colors - flavours - environmental hazards	3	Remember the importance of detergents	Lecture and group discussion	
IV	Sugar a	and Paper industry				
	1	Sugar -manufacture - double sulphitation process - refining and grading of sugar-sugar substitute - saccharin - synthesis and uses - manufacture of ethanol from molasses.	2	Understand the process of manufacture and uses of sugar and sugar substitute	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative assessment
	2	Paper - manufacture - production of wood pulp by sulphate process - processing - blending - beating - refining and calendaring -	2	Understand the process of manufacture of paper	Lecture and discussion	II
	3	Types of paper - printing paper - newsprint paper - writing paper - wrapping paper - bond paper - art paper - blotting paper - tissue paper - parchment paper - cardboard.	2	Remember the types of paper	Peer group teaching	
V	Chemic	cals in day-to-day life		1		
	1	Ingredients and preparation of tooth powder - tooth paste - writing inks - gum paste - boot polish - talcum powder	3	Apply chemical principles to prepare articles of day - to-day life.	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,

2	2	Ingredients and preparation of	3	Apply chemical principles to prepare	Peer group teaching	quiz
		sealing wax - agar		articles of day - to-	teaching	Formative
		agar - chalk crayons		day life		assessment
		-liquid blues -				I
		camphor tablets -				
		agar battis -				
		phenoyle- moth				
		balls.				

Course Instructor: Ms. L. Deva Vijila HOD: Dr. G. Leema Rose

Semester – III Major Core – III : GENERAL CHEMISTRY - III Course Code: CC2031

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
4	4	60	100

Objectives

- To gain knowledge on aromaticity, aromatic compounds and electrophilic substitution reactions.
- To understand the characteristics of (Group 13 and 14) Group 14 and 15)
- To gain knowledge on different colloids and photochemical processes

.

Course Outcome

COs	Upon completion of this course, the students will	PSO	Cognitive
	be able to:	Addressed	Level
CO - 1	gain knowledge on aromatic compounds	PSO -1	U
CO - 2	synthesize aromatic compounds	PSO -4	Ap
CO - 3	remember the characteristics of group 13 and 14 elements	PSO -2	U
CO - 4	predict the chemistry of nitrogen and oxygen family	PSO -2	Е
CO - 5	to understand the different colloidal systems	PSO -1	Ap
CO - 6	explain the various photochemical processes	PSO -1	U

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topic	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation			
I	Aromatic Compounds								
	1	Aromaticity - definition - Huckel's rule - consequence of aromaticity-structure of benzene - stability, carbon-carbon bond lengths in benzene ring - resonance energy	3	Understand about aromaticity, stability of benzene and resonance energy	Lecture and discussion	Evaluation through Multiple choice questions, short test, quiz			
	2	Aromatic electrophilic substitution - general pattern of the mechanism involving σ and π complexes, mechanism of nitration, halogenation, sulphonation	3	Know about Aromatic electrophilic substitution reactions	Lecture and discussion	assessment I			

	4	Mercuration, formylation and Friedel-Crafts reaction - Energy profile diagrams. Activating and deactivating substituents - orientation in mono substituted benzenes Reactions of aromatic side chain - halogenation and oxidation - methods	2	Gain knowledge about activating and deactivating substituents Know about reactions of aromatic compounds	Lecture	
	5	of formation and Chemical reactions of alkylbenzenes Biphenyl, naphthalene and anthracene - synthesis	2	Understand about the synthesis of benzene	Question answer	
		of 3-nitrotoluene, 4- bromonitro benzene, 4- bromoacetophenone, 3- (4-nitrophenyl)prop-1- ene, 3-nitrostyrene		compounds	session and lecture	
II	n-block e	lements – Boron and Carbo	n family	(Group 13 and 14)		
	1	General characteristics of elements of Group 13 - extraction of boron physical and chemical properties of boron	3	Know about characteristic, extraction and properties of boron	Lecture with power point presentation	Evaluation through Multiple choice questions,
	2	Compounds of boron - borax, boric acid, diborane, boron nitride- extraction of Al -physical and chemical properties - uses	3	Know the compounds of boron along with uses	Lecture and illustration	short test, quiz Formative assessment I
	3	Compounds of aluminium -Al ₂ O ₃ , AlCl ₃ , alums - alloys of Aluminium. General characteristics of elements of Group 14 - allotropic forms of carbon - structure of graphite, diamond and fullerene	3	Understand clearly about the Allotropic forms of carbon	Lecture and discussion	
	4	Chemistry of charcoal- chemistry of oxides of carbon-preparation of silicon - physical and chemical properties of Si - uses -oxides of silicon - structures of silicates - chemistry of silicones	2	Study about chemistry of silicones	Lecture and discussion	

	5	Manufacture of glass - types of glasses - ceramics - extraction of lead - physical and chemical properties - uses - lead pigments	2	Understand about the extraction, properties and uses of lead	Question answer session and lecture	
III	p-block e	elements – Nitrogen and Ox	ygen fami	ly (group 15 and 16)		
	1	General characteristics of elements of group 15 - Preparation of nitrogen - physical and chemical properties of nitrogen - uses	2	Know about Characteristic, extraction, properties and uses of nitrogen	Lecture and illustration	Evaluation through Multiple choice questions, short test, quiz
	2	Chemistry of nitrogen - hydrazine, hydroxylamine, hydrazoic acid, nitric acid - nitrogen cycle. Preparation, physical and chemical properties and uses of phosphorus	3	Learn about chemistry of nitrogen compounds	Lecture and illustration	Formative assessment II
	3	Chemistry of PH ₃ , PCl ₃ , PCl ₅ , POCl ₃ , P ₂ O ₅ and oxyacids of phosphorous - phosphate fertilizers - super phosphate of limetriple super phosphate	1	Analyse the effects of phosphate fertilizers and super phosphate	Lecture	
	4	Oxides of nitrogen and Phosphorous - oxoacids of nitrogen and phosphorus. Anomalous behavior of oxygen - allotropy of oxygen and phosphorous	3	Know about allotropy of oxygen and its anomalous behaviour	Lecture with power point Illustration	
	5	Structure of ozone, oxides - peroxides, suboxides, basic oxides, amphoteric oxides, acidic oxides, neutral oxides - oxides of sulphur - oxoacids of sulphur - sulfuryl compounds - extraction - uses - selenium and tellurium	3	Understand about oxides and oxoacids of sulphur	Question answer session and lecture	

IV	Colloids					
	1	Definition -classifications - lyophobic and lyophilic colloids - differences. True solutions, colloidal solutions and suspension - definition and characteristics	3	Know about true, colloidal solutions and suspensions	Lecture	Evaluation through Multiple choice questions, short test, quiz
	2	Preparation of colloidal solutions - dispersion methods and condensation methods-purification of colloidal solutions- optical properties-Tyndall effect	3	Understand about different methods of colloidal solutions	Lecture and discussion	Formative assessment II
	3	Kinetic properties - Brownian motion- electrical properties- Helmholtz and diffuse double layers - electro kinetic or zeta potential - electrophoresis - applications -coagulation	3	Acquire knowledge about kinetic and electric properties	Lecture	
	4	Methods- Hardy Schultz law -Hofmeister series - protective colloids - protective action - gold number -applications	2	Know about methods of colloids	Lecture and discussion	
	5	Emulsions - classification, preparation, Gels - preparation - properties - thixotropy -syneresis- imbibitions - application of colloids	1	Study about emulsions, gels and applications of colloids.	Lecture with power point presentation	
V	Photo Ch	emistry				
	1	Introduction-comparison of thermal and photochemical reactions Laws of photochemistry - Beer-Lamberts law-Grothus-Drapper law - Stark-Einstein law of photochemical	3	Know about the Laws of photochemistry	Lecture and discussion	Evaluation through Multiple choice questions, short test, quiz
		equivalence				Formative assessment I

2	Quantum efficiency - determination of quantum efficiency - chemical actinometry -consequence of light absorption - Jablonski diagram	3	Gather knowledge regarding quantum efficiency and Jablonski diagram	Lecture	
3	Radiative and non- radiative transitions- primary and secondary processes-fluoresence- phosphoresence — photochemical reactions	1	Understand about primary and secondary processes	Lecture and Illustration	
4	Photochemical rate law-kinetics of photochemical combination of H ₂ and Cl ₂ , H ₂ and Br ₂ and decomposition of HI – energy transfer in photochemical reactions	2	Learn about kinetics of photochemical reactions.	Lecture and Discussion	
5	Photosensitization - photosynthesis in plants - chemiluminescence - thermoluminescence- bioluminescence. Lasers- principle-types- applications.	2	Know about different types of lasers	Lecture wit power point presentation	

Course Instructor: Dr. G. Leema Rose HOD: Dr. G. Leema Rose

Semester - III Major Elective I a- Pharmaceutical Chemistry Course Code: CC2032

Hours / Week	Credits	Total hours	Marks
4	3	60	100

Objectives:

- To understand the classification, sources, design and action of common drugs.
- To impart knowledge on various diseases and treatment.

Course Outcome

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO-1	to understand the characteristics, classification and sources of drugs	PSO-1	U
CO-2	interpret the chemical structure and pharmacological activities of drugs	PSO-3	E
CO-3	compare the action of various drugs	PSO-2	An
CO-4	design common drugs and interpret their therapeutic uses	PSO-5	Ap
CO-5	identify common diseases, their causes and treatment	PSO-2	An

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning	Pedagogy	Assessment/
				Outcome		Evaluation
I	Classific	ation and sources of drugs				
	1	Important terminologies used in pharmaceutical chemistry - pharmacy - pharmacology - pharmacodynamics - pharmacokinetics- pharmacophore-metabolites- antimetabolites-actionmycetes- chemotherapy-pharmacopoeia- pharmacognosy- pharmacotherapeutics	3	Gain knowledge about the various terminologies used in pharmaceutical chemistry	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Classification of drugs -drugs acting on central and peripheral nervous system- chemotherapeutic drugs - pharmacodynamic agents	2	Understand the action of drugs and classify them	Lecture	

	3	Drugs for metabolic diseases	2	Know the	Lecture	
		and endocrine function. Nature	_	sources,	with power	
		and sources of drugs - various		nature,	point	
		sources of drugs		functions of	presentation	
				drugs		
	4	Drug development -pre-clinical	3	Understand the	Lecture	
		and clinical trials		various steps		
				involved in		
				drug		
				development		
	5	Patenting and legal issues -	2	Gain	Lecture	
		chemical and process		knowledge	with power	
		development		about the	point	
				importance of	presentation	
				patenting		
II	Drug De	sign and chemicals in medicine				
	1	Introduction- physical and	3	Recall the	Question	Evaluation
		chemical properties of drugs		physical and	answer	through
				chemical	session	Multiple
				properties of		choice
	2	Designing of draws are so draws	3	drugs	Lastuma	questions,
	2	Designing of drugs procedures followed lead component	3	Understand the steps involved	Lecture	short test, quiz
		methods of lead discovery lead		in designing of		Formative
		modification		drugs		assessment I
	3	Prodrugs types-applications	2	Explain about	Lecture	assessificite i
		drawbacks soft drug advantages.	_	prodrugs	with group	
		Physical and chemical factors of			discussion	
		drug design				
	4.	Chemical structure and	2	Draw the	Group	
		pharmacological activities of		structure of	discussion	
		drugs		various drugs		
	5.	Preparation, properties and uses	2	Understand the	Lecture	
	3.	of alum-aluminium hydroxide		methods of	method	
		gel -phosphoric acid -arsenous		preparing	memou	
		anhydride-ferrous fumarate –		drugs and		
		ferric ammonium citrate -		recall their		
		mercury with chalk (Grew		properties and		
		powder)		uses		
		,				
III	Drug Ac	tion and Metabolism of drugs				
	1	General principles - assay of	2	Get idea about	Seminar	Evaluation
		drugs - biological assay		general		through
				principles and		Multiple
				assay of drugs		choice
						questions,

	2	Absorption - drug distribution - drug metabolism	2	Predict the mechanism of drug absorption	Lecture and power point presentation	short test, quiz Formative assessment II
	3	Biological role of salts of sodium, potassium, calcium, zinc and iodine. Agonist and antagonist. Receptor forces - types - theories	3	Recognize the role of salts in drugs	Lecture	
	4	Mechanism of drug action - actions at extra cellular site - actions at cellular site. Mechanism of different types of drug action	2	Write the mechanisms of drug action	Lecture	
	5	Time response relationships - dose response relationship - biotransformation of drugs. Metabolism of drugs - oxidation -reduction -hydrolysis - conjugation	3	Know the metabolism of drugs	Lecture	
IV	Common	n Drugs				
	1	Antibacterial drugs -preparation and therapeutic uses of sulpha drugs - sulphanilamide - sulphadiazine - sulphathiazole- sulphafurazole -prontosil. Mechanism of action of sulpha drugs	3	Know about antibacterial drugs	Lecture and Seminar	Evaluation through Multiple choice questions, short test, quiz
	2	Antibiotics - classification based on chemical structure and biological action - structure and therapeutic uses of chloramphenicol - Penicillin - Streptomycin - Tetracyclin - Erythromycin	3	Know the importance of antibiotics	Lecture and group discussion with power point	Formative assessment II
	3	Antiseptics and Disinfectant-distinction between antiseptics and disinfectants. Disinfectant- definition - examples - phenol -preparation and uses -chloroxylenol-structure - properties and uses. Antiseptics- Chloramine T - preparation and uses -crystal violet -structure and uses	3	Differentiate and know the importance of antiseptics and disinfectants.	Lecture	

V	5 Common	Antipyretics - definition - examples - aspirin -methyl salicylate -paracetamol, phenacetin - preparation and therapeutic uses diseases and treatment	3	Understand the importance of antipyretics	Lecture	
•	1	Insect borne diseases - malaria	2	Know about	Lecture and	Evaluation
	_	and filariasis. Airborne diseases - diphtheria-influenza and TB. Waterborne diseases - cholera and typhoid		insects borne diseases	discussion	through Multiple choice questions,
	2	Blood pressure - definition- factors affecting blood pressure- systolic pressure - diastolic pressure - pulse pressure - blood	3	Understand the reasons and methods of treating blood	Lecture with power point presentation	short test, quiz Formative assessment I
		pressure levels. Hyper tension- types - control antihypertensive agents. Hypotension - measurement		pressure		
	3	Anaemia - symptoms and causes - types - antianaemic drugs - types	3	Realize the causes and symptoms of anaemia	Lecture and group discussion	
	4	Cardio-vascular drugs cardiac- glycosides- cardiovascular action - antiarrhythmic drugs- functions -therapeutic uses	2	Gain knowledge about cardio - vascular drugs	Lecture with power point presentation	
	5	Vasodilators orvasopressor - definition- examples - antianginal drugs -example. Cancer -causes -antineoplastic agents-cis-platin-vinblastine and mustine	2	Explain the importance of vasodilators and antineoplastic drugs	Lecture	

Course Instructor: Ms. L. Deva Vijila HOD: Dr. G. Leema Rose

Allied Chemistry for Physics Major Semester III

Inorganic and Physical Chemistry Course Code: CA2031

Hours / week	Credits	Total hours	Marks
4	4	60	100

Objectives

- 1. To acquire knowledge on atomic structure and bonding
- 2. To know about metallurgy and the structure of solids
- 3. To understand the principles of nuclear reactions

Course Outcome

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO-1	remember the structure and bonding in atoms and molecules	PSO-1	R
CO-2	know about different types of bonding	PSO-2	Y
CO-2	understand the metallurgical processes and the methods of purification of metals	PSO-6	A
CO-3	understand the concepts of solid state chemistry and nuclear chemistry	PSO-1	U

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

T 1 24	1	Tomics	,	, , ,		rí i
Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/
						Evaluation
I	Atomic S	Structure				
	1	Dual nature of electron - de-Broglie equation	2	Acquire knowledge on Dual nature of electron and de-Broglie equation	Lecture and power point presentation	Evaluation through Multiple choice
	2	Davisson and Germer experiment	1	Learn Davisson and Germer experiment	Lecture and power point presentation	questions, short test, quiz
	3	Heisenberg's uncertainty principle and its significance.	1	Understand Heisenberg's uncertainty principle and its significance	Lecture and power point presentation	Formative assessment I
	4	Compton effect - Schrodinger's wave equation and its significance	1	Understand Schrodinger's wave equation	Lecture and power point presentation	
	5	eigen values and eigen functions	1	Distinguish eigen values and eigen functions	Lecture and power point presentation	

	6	quantum numbers and their significance	2	Understand the various quantum numbers	Lecture and power point presentation	
	7	Atomic orbitals - shapes - significance - difference between orbit and orbital	1	Differentiate between orbit and orbital	Lecture and power point presentation	
	8	Rules for filling up of orbitals - Pauli's exclusion principle - Aufbau principle - Hund's rule	2	Know about different principle Governing the filling up of orbitals	Lecture and power point presentation	
	9	Electronic configuration of elements	1	Know about the filling up of atomic orbital	Lecture and power point presentation	
II	C	hemical bonding				
	1	Ionic bond, formation of ionic bond, general characteristics of ionic compounds	1	Know about ionic bond and its characteristics	Lecture and power point presentation	Evaluation through Multiple choice
	2	Lattice energy, Born- Haber cycle and its applications	1	Understand Lattice energy	Lecture and power point presentation	questions, short test, quiz
	3	Covalent bond, formation of covalent bond with examples, general characteristics of covalent compounds	1	Gain knowledge about covalent bond	Lecture and power point presentation	Formative assessment I
	4	Ionic character in covalent compounds, M.O. theory	1	Acquire knowledge about Ionic character	Lecture and power point presentation	
	5	Fajan's rule. percentage of ionic character and bond moment	1	Understand Fajan's rule	Lecture and power point presentation	
	6	bonding, antibonding and non-bonding molecular orbitals	1	Explicate the difference between bonding, antibonding and non-bonding molecular orbitals	Lecture and power point presentation	
	7	M.O diagram of H ₂ , N ₂ , O ₂ and F ₂ , bond order	2	Draw the M.O diagram of H ₂ , N ₂ , O ₂ and F ₂	Lecture and power point presentation	
	8	Coordinate bond - formation of coordinate bond with examples	1	Understand Coordinate bond formation	Lecture and power point presentation	

	9	Metallic bond, band theory, conductors, insulators and semiconductors	1	Explicate the difference between conductors, insulators and semiconductors	Lecture and power point presentation	
	10	Hydrogen bonding types - inter and intramolecular, effect of hydrogen bonding	2	Understand Hydrogen bonding and its effect	Lecture and power point presentation	
III	Metallur	gy and Alloys				
	1	Difference between minerals and ores, metallurgical processes, gravity separation and magnetic separation	3	Differentiate minerals and ores	Lecture and power point presentation	Evaluation through Multiple choice questions, short test,
	2	Froth floatation process, roasting, calcination, smelting	1	Understand various ore dressing methods	Lecture and power point presentation	quiz Formative
	3	purification of metals, electrolytic refining and zone refining	1	Understand various purification methods	Lecture and power point presentation	assessment II
	4	Van - Arkel de-Boer process, Kroll's process. Extraction and uses of Ti ,V, W and Mo	2	Understand the extraction of metals	Lecture and discussion	
	5	Purpose of making alloys, types of alloys - ferrous alloys and non- ferrous alloys and preparation of alloys	2	Gain knowledge on alloys.	Lecture and power point presentation	
	6	Heat treatment of alloys, composition and uses of bronze and german silver	1	Understand the types of alloys.	Lecture and discussion	
	7	Nichrome, monel metal, stainless steel, gun metal and bell metal	2	Gain knowledge on types of metals.	Lecture and discussion	
IV	Solic	l State Chemistry		1	ı	1
	1	Amorphous and crystalline solids, difference between amorphous and crystalline solids	2	Differentiate amorphous and crystalline solids	Lecture and power point presentation	Evaluation through Multiple choice questions, short test,

	2	Isotropy and anisotropy, elements	2	Understand various symmetry elements	Lecture and power point	quiz
		of symmetry, plane of symmetry, axis of symmetry, centre of symmetry and law of rational indices			presentation	Formative assessment II
	3	Miller indices and elements of symmetry of a cubic crystal	1	Gain knowledge on miller indices	Lecture and power point presentation	
	4	Point groups and seven basic crystal system, Bravais lattice	2	Understand basic crystal system.	Lecture and power point presentation	
	5	Bragg's equation- derivation, determination of crystal structure by powder method	3	Gain knowledge on determination of crystal structure	Lecture and power point presentation	
	6	Structure of crystals - diamond, graphite and fullerene. Imperfections in a crystal - Point defect, Schottky defect, Frenkel defect, metal excess defect, metal deficiency defect	2	Understand the structure of graphite and diamond	Lecture and power point presentation	
V	Nuc	lear Chemistry		1	1	
	1	Nuclear forces, nuclear size, atomic mass unit, N/P ratio, packing fraction, mass defect and binding energy	2	Understand packing fraction and binding energy	Lecture and power point presentation	Evaluation through Multiple choice questions,
	2	Radioactivity - α , β , γ radiations and properties, Soddy's group displacement law	1	Knowledge on α , β and γ radiations	Lecture and power point presentation	short test, quiz Formative assessment I
	3	Natural radioactivity - detection and measurement of radioactivity by Geiger-Muller method	2	Know the detection and measurement of radioactivity	Lecture and power point presentation	
	4	Rate of radioactive disintegration, decay constant, half-life period and average life period	1	Gain knowledge on decay constant and half life	Lecture and power point presentation	

5	Nuclear reactions - nuclear fission, principle of atom bomb, nuclear reactor, radioactive hazards and disposal of radioactive waste from nuclear reactors	2	Understand the types of nuclear reactions and nuclear hazards	Lecture and power point presentation
6	Nuclear fusion - principle of hydrogen bomb and stellar energy	1	Understand hydrogen bomb	Lecture and power point presentation
7	Principle and working of cyclotron. Applications of radio activity	2	Gain knowledge on cyclotron	Lecture and power point presentation
8	Radioactive tracers in agriculture, medicine and industry. Radiocarbon dating	1	Gain knowledge on various applications of radioactivity	Lecture and power point presentation

Course Instructor: Dr. M. Anitha Malbi HOD: Dr. G. Leema Rose

Semester - V Major Core V: ORGANIC CHEMISTRY- I

Course Code: CC2051

Hours Per week	Credits	Total hours	Marks
5	5	75	100

Objectives:

- To understand symmetry elements, stereo isomerism and conformational analysis of organic compounds.
- To know the methods of synthesis and the reactions of carbonyl, nitrogen containing and heterocyclic compounds.

Course Outcome

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the concept of optical activity, stereoisomerism and stereo isomers.	PSO-1	U
CO - 2	remember the preparation and synthesis of carbonyl, Nitrogen containing and heterocyclic compounds.	PSO-4	R
CO - 3	apply the synthetic methods to synthesize new compounds	PSO-4	A
CO - 4	analyze the synthetic importance of different organic compounds	PSO-2	An
CO - 5	create alternate routes to prepare new compounds.	PSO-5	С

Total Hours: 75 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Stereoche	mistry				
	1	Optical activity-elements of symmetry, optical activity of compounds containing asymmetric carbon atoms - lactic and tartaric acids. Chirality-achiral carbon molecules - (+), (-) and D, L notations	2	Understand the concept of optical activity	Lecture with models	Evaluation through quiz, slip test, group discussion and problem solving
	2	Projection formulae - Newmann, Fischer, Flying wedge, Sawhorse and projection formulae notation for optical isomers, Cahn - Ingold and Prelog rules, R-S notation	3	Predict the projection formulae and R-S notation of optical isomers	Lecture and group discussion	

	3	Enantiomers and diastereomers, racemic and mesoforms. Racemisation-resolution of racemic mixtures. Walden inversion and asymmetric synthesis	2	Categorize optical isomers and define the racemization and asymmetric synthesis	Lecture	Formative assessment I
	4	Optical activity of compounds without asymmetric carbon atomsbiphenyl, allenes and spiranes	2	Illustrate the optical activity of biphenyls, allenes and spiranes	Lecture with power point presentation	
	5	Geometrical isomerism: Maleic and fumaric acidaldoximes and ketoximes. Methods of distinguishing geometrical isomers, determination of configuration of ketoximes -Beckmann rearrangement, E-Z notation	3	Differentiate geometrical isomers and determine its E-Z notation	Lecture with power point presentation	
	6	Conformational analysis: Introduction of terms- configuration and conformation, dihedral angle, torsional strain, conformational analysis of ethane, n- butane, 1,2- dichloro ethane and cyclohexane	3	Describe the conformational analysis of simple organic compounds	Lecture with models	
II	Carbonyl	Compounds - I (Aldehydes ar	nd Ketones)		
	1	Synthesis of aldehydes from acid chlorides, Stephen's reduction - Gattermann - Koch and Etard reactions	2	Synthesize aldehydes from the given reactions	Lecture	Evaluation through quiz, slip test and group
	2	Synthesis of ketones from nitriles, dialkylcadmium, alkyl lithium and lithium dialkylcuprate and Friedel- Crafts and Hoesch reactions	3	Synthesize ketones from the given reagents and reactions	Lecture	discussion
	3	Mechanism of nucleophilic additions to carbonyl group - addition of HCN, alcohols, thiols, sodium bisulfite, Grignard reagents - condensation with ammonia and its derivatives	2	Illustrate the mechanism of nucleophilic additions to carbonyl group	Lecture	Formative assessment I

	5	Aldol, Perkin, Benzoin and Knoevenagel condensations, Wittig reaction, Mannich reaction, Reformatsky reaction and Cannizaro reaction Oxidation by Tollen's reagent, KMnO ⁴ , hypohalite, SeO ₂ and peracids. Reduction by H ₂ /Ni, H ₂ -Pd-C, NaBH ₄ , LiAlH ₄ , MPV, Clemmenson and Wolff-Kishner	4	Explain the reactions of carbonyl compounds Understand the oxidation and reduction reactions of carbonyl compounds	Lecture	
		reductions, α , β unsaturated aldehydes and ketones -				
		preparation and reactions				
III	Carbonyl	Compounds – II (Carboxylic		T T T T T T T T T T T T T T T T T T T		
	1	Preparation of carboxylic acids, acidity of carboxylic acids, effects of substituents on acid strength, acidity of aliphatic and aromatic acids	3	Analyze the preparation and properties of carboxylic acids	Lecture with videos	Evaluation through class test, quiz and group discussion
	2	Reactions of carboxylic acids - Hell-Volhard-Zelinsky reaction, Synthesis of acidchlorides, esters and amides, Reduction of carboxylic acids, methods and mechanism of decarboxylation	3	Know the reactions of carboxylic acids	Lecture	Formative assessment II
	3	Methods of preparation and chemical reactions of halo acids - Hydroxy acids - malic, tartaric and citric acids - unsaturated monocarboxylic acids - dicarboxylic acids	3	Explain the preparation and properties of carboxylic acids	Lecture	
	4	Preparation and reactivity of carboxylic acid derivatives - acid chlorides, esters, amides and anhydrides - Mechanisms of esterification and hydrolysis - acid catalysed reactions	3	Describe the preparation and reactivity of carboxylic acid derivatives	Lecture	
	5	Relative stability of acyl derivatives interconversion of acid derivatives by nucleophilic acyl substitution	3	Understand the relative stability and interconversion of acid derivatives	Lecture with power point presentation	

IV	Nitrogen	Containing Compounds				
	1	Preparation of nitroalkanes and nitroarenes - Chemical reactions of nitroalkanes and nitroarenes - reduction in acidic, neutral and alkaline media	3	Compare the preparation and reactions of nitroalkanes and nitroarenes	Lecture	Evaluation through class test, quiz and group discussion
	2	Methods of preparation of alkyl and aryl amines - Ritter reaction, Hofmann ammonolysis - Hofmann degradation - Schmidt, Curtius reaction - Leuckart reaction - Ullmann reaction - Gabriel phthalimide reaction and Hofmann reaction	4	Illustrate the methods of preparation of alkyl and aryl amines	Lecture	Formative assessment II
	3	Separation of a mixture of primary, secondary and tertiary amines - Hinsberg's and Hofmann's method	3	Understand the separation of primary, secondary and tertiary amines	Lecture with videos	
	4	Basicity of amines - basicity of aliphatic and aromatic amines - reactions of amines	2	Explain the basicity and reactions of aliphatic and aromatic amines	Lecture	
	5	Aryl diazonium salts – benzene diazonium chloride -preparation, reactions and synthetic transformations	3	Describe the synthetic transformations of aryl diazonium salts	Lecture	
V	Heterocyc	clic Compounds				
	1	Aromatic characteristics of pyrrole, furan, thiophene and pyridine	2	Understand the aromaticity of heterocyclic compounds	Lecture	Evaluation through class test, quiz and group
	2	Comparison of the basicity of pyridine, piperidine and pyrrole	2	Compare the basicity of heterocyclic compounds	Lecture with power point presentation	discussion
	3	Methods of synthesis and chemical reactions with special emphasis on the mechanism of electrophilic substitution and mechanism of nucleophilic substitution reaction in pyridine derivatives	3	Analyze the mechanism of substitution reactions of pyridine derivatives	Lecture	Formative assessment I

4	Preparation and reactions of	4	Explain the	Lecture
	indole, quinoline and		synthesis and	
	isoquinoline - Fischer indole		reactions of	
	synthesis, Skraup synthesis		indole, quinoline	
	and Bischler-Napieralski		and isoquinoline	
	synthesis			
5	Reactions and mechanism	4	Describe the	Lecture and
	of electrophilic substitution		electrophilic	group
	reactions of indole,		substitution	discussion
	quinoline and isoquinoline		reactions of	
			indole, quinoline	
			and isoquinoline	

Course Instructor: Sr. K. Francy HOD: Dr. M. Anitha Malbi

Semester - V Major Core VI: INORGANIC CHEMISTRY- I

Course code: CC2052

Hours per week	Credits	Total hours	Marks
5	5	75	100

Objectives

- To understand the chemistry of transition, inner transition elements and organometallic compounds
- To know the nomenclature and isomerism in co-ordination compounds
- To learn the principles of analytical chemistry

Course Outcome

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
CO - 1	acquire knowledge on transition and inner transition elements	PSO – 1	U
CO - 2	name the co-ordination compounds	PSO – 5	R
CO – 3	analyse the nature of bonding in co-ordination and organometallic compounds	PSO – 2	An
CO – 4	predict the geometry and colour and spin of co-ordination compounds	PSO – 4	Е
CO – 5	minimize the errors in chemical analysis	PSO – 2	A

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation				
Ι										
	1	General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties and ability to form complexes	3	Know about the group trends	Lecture and power point presentation	Evaluation through short test, assignment quiz Formative				
	2	Difference between the first, second and third transition series. Extraction, properties and uses of Ti, V, Mo and W. Toxicity of Cd and Hg - oxides, mixed oxides, halides, and oxohalides of transition metals	3	Differentiate between different transition series	Lecture and power point presentation	assessment I				

	4	Synthesis, reactivity and uses of vanadates, chromates, dichromate, molybdates, tungstates, tungsten bronzes, manganate, permanganate, ferrocyanide, ferricyanide, platinum(IV)chloride, chloroplatinic acid and purple of Cassius Interstitial compounds - nitrides,	2	Know about different salts Learn about	Illustration and lecture Lecture and	
	5	carbides, hydrides, borides of Ti, V, Cr, W and their industrial uses Electronic configuration, oxidation states, colour, spectral and magnetic properties. Causes and consequences of lanthanide contraction - uses of lanthanides	2	interstitial compounds Know about lanthanide contraction	Lecture with power point presentation	
II	6 Co-ordir	Comparison between lanthanides and actinides. Extraction, properties and uses of thorium and uranium, compounds of uranium-zinc uranyl acetate and uranium hexa fluoride	2	Able to compare between lanthanides and actinides.	Lecture and power point presentation	
	1	Double salts and co-ordination compounds-differences - types of ligands. Nomenclature, and isomerism- structural isomerism - ionization, hydrate, co-ordination, linkage and co-ordination position isomerism	4	Know about the nomenclature and isomerism	Question answer session	Evaluation through Multiple choice questions, short test, quiz
	2	Stereoisomerism - geometrical isomerism in tetrahedral and octahedral complexes - optical isomerism in octahedral complexes. Theories of coordination compounds	4	Differentiate octahedral and tetrahedral complexes	Lecture	Formative assessment I
	3	Werner's theory- postulates - verification of Werner's theory - cobalt ammine complexes. EAN rule - calculation of EAN in metal complexes and carbonyls. Pauling's theory (VBT) - postulates	4	Learn about different theories	Lecture with power point presentation and group discussion	
	4	Application of VBT to square planar and tetrahedral complexes, inner and outer complexes - merits and demerits of VBT	3	Know about inner and outer complexes	Lecture with power point presentation	

III	Co-ordin	nation Chemistry – II				
	1	Shapes of d-orbitals. Crystal field theory - Crystal field splitting of tetrahedral, square planar and octahedral complexes. Factors affecting crystal field stabilisation energy CFSE crystal field splitting energy values and stability of complexes	5	Know about Crystal field theory and factors affecting CFSE	Seminar and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Weak and strong field ligands - spectrochemical series. Distortion from perfect symmetry - Jahn- Tellar theorem and its effect	3	Learn about weak and strong field ligands	Lecture and problem solving	Formative assessment II
	3	Molecular Orbital Theory (MOT) MO diagrams of ML ₆ type complexes. Stability of metal complexes	3	Know about MO diagrams different complexes	Lecture and problem solving	
	4	Relation between stability constant and dissociation constant - factors affecting the stability of metal complexes from thermodynamic data	2	Gather knowledge regarding stability constant and dissociation	Problem solving	
	5	Irving William series - stabilization of unstable oxidation state. Substitution reactions of square planar complexes - trans effect	2	Learn about square planar complexes	Illustration, seminar and power point presentation	
IV	Analytic	al Chemistry		l	1	
	1	Types of errors- determinate and indeterminate errors - minimization of errors. Precision and accuracy- ways of expressing precision	2	Understand about different types of errors	Power point presentation with videos	Evaluation through Multiple choice questions, short test,
	2	Standard deviation- mean deviation - relative mean deviation and coefficient of variance	3	Know about standard deviation and mean deviation	Lecture	quiz Formative assessment I
	3	Accuracy - absolute error- relative error- confidence limit- Rejection of a doubtful value - Q Test and related problems	3	Differentiate between absolute error and relative error	Lecture	
	4	Principles and requirements of gravimetric analysis- mechanism of precipitation - digestion, filtration, washing, drying and ignition	3	Learn the steps in gravimetric analysis	Lecture and power point presentation	

V	5 Organor	Factors affecting solubility of precipitate - co-precipitation and post precipitation - prevention and difference between co-precipitation and post precipitation, precipitation from homogenous solution metallic Chemistry	3	Understand the principles of coprecipitation and post precipitation	Lecture with power point presentation	
	1	Introduction - structure and application of metal carbonyls - mono and poly nuclear carbonyls of Ni, Fe, Cr, Co and Mn - synthesis and structure -nitrosyl compounds	3	Understand the structure and application of metal carbonyls	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,
	2	Classification, preparation and properties -structure of nitrosyl chloride and sodium nitroprusside.	3	Gather knowledge regarding the properties of compounds	Lecture with videos	quiz Formative assessment
	3	Nomenclature of organometallic compounds, 16- and 18- electron rule. Structure and bonding in transition metal carbonylspolynuclear carbonyls.	3	Learn about the nomenclature of organometallic compounds	Seminar	II
	4	Bridging and terminal carbonyls, transition metal alkyls, carbenes, and carbynes, and metallocenes. Photochemistry of organometallic compounds.	3	Know about carbonyls	Power point presentation and seminar	
	5	Wilkinson's catalyst and alkene hydrogenation, hydroformylation, Monsanto acetic acid process, Ziegler – Natta catalyst and polymerization of olefins.	3	Understand about different catalysts and reactions	Demonstration	

Course Instructor: Dr. R. Gladis Latha HOD: Dr. M. Anitha Malbi

Semester - V

Major Core VII: PHYSICAL CHEMISTRY

Course code: CC2053

Hours per week	Credits	Total hours	Marks
6	5	90	100

Objectives:

- To know the concepts of conductance, strong and weak electrolytes
- To understand the working of electro chemical cells, EMF measurement and their applications
- To learn the basic principles and applications of spectroscopy

Course Outcome

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the basic principles of electrochemistry	PSO - 1	U
CO - 2	apply EMF measurements in different fields of chemistry	PSO - 2	A
CO - 3	analyze the working of electrical appliances in day to day life	PSO - 5	An
CO - 4	remember the principle and applications of the different spectral techniques	PSO - 7	R
CO - 5	interpret the IR,NMR and ESR spectra of simple molecules	PSO - 3	E

Total Hours: 90 (Including lectures, assignments and tests)

	Total Hours. 70 (Including feetures, assignments and tests)						
Unit	Module	Topic	Hours	Learning	Pedagogy	Assessment/	
				Outcome		Evaluation	
Ι	Electroch	emistry – I					
	1	Conductance, specific conductance, equivalent conductance and molar conductance, factors affecting conductance of a solution	3	Understand the factors affecting conductance of a solution	Lecture	Evaluation through Multiple choice questions, short test,	
	2	Strong and weak electrolytes, variation of equivalent conductance with dilution. Debye- Huckel theory of strong electrolytes, Debye- Huckel-Onsagar equation	3	Know the differences between strong and weak electrolytes	Lecture and group discussion	quiz Formative assessment I	

	3	Kohlrausch's law and its applications. Applications of conductance measurements, Determination of λ _∞ of weak acid and weak base, degree of dissociation of weak electrolytes, solubility and solubility products of sparingly soluble salts and conductometric titrations	2	Understand the applications of conductance measurements	Lecture	
	4	Transport number, determination of transport number by Hittorff's method and moving boundary method	3	Determine the transport number	Lecture with power point presentation	
	5	Hydrolysis, hydrolysis constant, degree of hydrolysis of salts of weak acids and strong bases, weak bases and strong acids	4	Illustrate the hydrolysis of salts	Lecture with power point	
	6	Determination of degree of hydrolysis, conduction and distribution methods	3	Describe the degree of hydrolysis	Lecture	
II		emistry – II			T -	
	1	Electrochemical cells, reversible and irreversible cells, EMF of cells, determination, cell representation	3	Determine EMF of cells	Lecture	Evaluation through Multiple choice questions,
	2	Single electrode potential, types of electrodes, metalmetal ion electrodes, amalgam electrodes, gas electrodes, metalminsoluble metal salt electrodes and oxidation reduction electrodes, standard hydrogen electrode (SHE) and calomel electrode	3	Know the types of electrodes	Lecture	short test, quiz Formative assessment I
	3	Nernst equation for electrode potential, Nernst equation for emf of cells, standard electrode potential determination	3	Derive Nernst equation	Lecture with tutorials	

	4	Electro chemical series, thermodynamics of galvanic cells, ΔG, ΔH, ΔS and equilibrium constant (K). Concentration cells with transference and without transference, liquid junction potential and its elimination	3	Explain the thermodynami cs of galvanic cells	Lecture	
	5	Applications of EMF measurements, determination of transport number, valency of an ion, pH of a solution using hydrogen, quinhydrone and glass electrode	3	Know the applications of EMF measurements	Lecture with tutorials	
	6	Potentiometric titrations, acid-base, oxidation-reduction and precipitation titrations. Decomposition potential and overvoltage	3	Illustrate the principle of potentiometric titrations	Lecture with power point presentation	
III	Applied E	Application of electrochemical principle in inorganic chemistry, manufacture of NaOH and H ₂ O ₂ . Organic electro chemistry	3	Know the applications of electrochemica l principle in inorganic chemistry	Lecture with videos	Evaluation through Multiple choice questions, short test,
	2	Electro chemical oxidation, Kolbe's synthesis, electro reduction of carbonyl compounds, adiponitrile synthesis	3	Understand the electro chemical reactions	Lecture	quiz Formative assessment II
	3	Electroplating, principle, electro plating of copper, nickel and cadmium, types of coating, protection of pipelines, protection of ships in sea	4	Explain the principle of electroplating	Lecture	
	4	Power sources, primary cells, Lechlanche cell, principle, selection of anode and cathode, alkaline MnO ₂ cells	3	Describe the principle and working of power sources	Lecture	
	5	Secondary cells, characteristics, lead storage, lithium and nickel-cadmium battery	3	Understand the characteristics of secondary cells	Lecture with power point presentation	

	6	Fuel cells, principle, hydrogen - oxygen fuel cells and alkaline fuel cells	2	Acquire knowledge on the principle and working of fuel cells	Lecture with power point	
IV	Spectroso	copy –1				
	1	Electromagnetic radiation, electromagnetic spectrum, general spectroscopic methods, Born-Oppenheimer approximation, types of molecular spectra	3	Understand the characteristics of electromagnetic radiation	Lecture	Evaluation through Multiple choice questions, short test, quiz
	2	Microwave spectra, principle, intensity, selection rule and applications determination of bond distances in diatomic molecules	4	Illustrate the principle of microwave spectra	Lecture	Formative assessment II
	3	Infra-Red spectra, principle of harmonic oscillator, unharmonicity, selection rules, intensity, modes of vibrations and types, force constant, determination	3	Understand the principle of harmonic oscillator	Lecture with videos	
	4	Applications of IR, important functional groups and elucidation of structure, hydrogen bonding, Fermi resonance, overtones and combination bands	4	Explain the applications of IR spectroscopy	Lecture	
	5	Electronic spectra, selection rules, Frank Condon Principle, types of transitions, applications.	4	Describe the applications of electronic spectra	Lecture	
V	Spectroso	copy –II				
	1	NMR, introduction, conditions, principle, type, origin, Larmor procession, signals, chemical shift, screening constant, spinspin coupling	3	Understand the principle of NMR spectroscopy	Lecture	Evaluation through Multiple choice questions, short test, quiz

2	Applications of NMR- elucidation of molecular structure, hydrogen bonding, tautomerism, study of water of crystallization in solids and Nuclear magnetic resonance imaging	4	Know the applications of NMR	Lecture with power point presentation	Formative assessment I
3	ESR spectroscopy, principle, hyperfine structure, application of ESR to hydrogen and methyl radicals	4	Analyze the ESR spectrum of hydrogen and methyl radicals	Lecture	
4	Raman Spectra, introduction, Rayleigh scattering, quantum theory, Raman effect, Raman scattering	4	Explain Rayleigh scattering, quantum theory and Raman effect	Lecture	
5	Conditions for Raman spectra, selection rule, mutual exclusion principle, Raman spectra of CO ₂ and HCN - differences between Raman and IR spectra	3	Know the conditions of Raman spectra		

Course Instructor: Dr. S. Ajith Sinthuja HOD: Dr. M. Anitha Malbi

Semester - V

Elective III: BIO CHEMISTRY

Course code: CC2054

Hours per week	Credits	Total hours	Marks
4	3	60	100

Objectives:

- To understand the biological action of carbohydrates
- To know the functions of lipids, amino acids, proteins and nucleic acids

Course Outcome

COs	Upon completion of course students will be	PSO	Cognitive
	able to	Addressed	Level
CO - 1	understand the function and metabolism of	PSO - 1	U
	biomolecules		
CO - 2	recall the importance of biomolecules	PSO - 2	R
CO - 3	compare DNA and RNA	PSO - 5	An
CO - 4	elucidate the structure of different	PSO - 2	A
	biomolecules		
CO - 5	illustrate the industrial and medical	PSO - 8	U
	applications of enzymes		

Total Hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topic Topic	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation	
I	Carbohydrate						
	1	Carbohydrates -definition and classification. Glycosides physiological significance. Amino sugars - importance	3	Understand the classification and importance of carbohydrates	Lecture	Evaluation through Multiple choice questions,	
	2	Chemistry of poly saccharides - starch, glycogen, cellulose, inuline, hemi-celluloses, chitin, pectin and lignin	3	Know the structure and functions of polysaccharides	Lecture and group discussion	short test, quiz Formative assessment I	
	3	Glycosaminoglycans - hyaluronic acid, chondroitin sulphate, keratin sulphate, heparin and dermatan sulphate	3	Explain the structure and functions of glycosamino glycans	Lecture with power point presentation		
	4	Blood group substances. Carbohydrate metabolism - Embden - Meyerhof pathway- TCA cycle	3	Illustrate carbohydrate metabolism	Lecture with power point presentation		

II	Lipids					
	1	Lipids - definition and classification. Types of fatty acids - saturated, unsaturated, unusual and essential fatty acids	2	Classify lipids and fatty acids	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Triacylglycerols - chemistry. Characterization - saponification number, iodine number, acid number, RM value and acetyl value	4	Determine the characteristics of lipids	Lecture	
	3	Chemistry and functions of phospholipids - lecithin and cephalin. Sphingolipids - sphingomycin.	3	Understand the functions of phospholipids, sphingolipids and sphingomycin	Lecture with tutorials	
	4	Glycolipids - cerebroside, ganglioside Cholesterol - spot tests and structure. Biochemical functions of cholesterol	3	Explain the structure and functions of glycolipids and cholesterol	Lecture	
III	Amino ac	cids and Proteins		-	1	1
	1	Amino acids and proteins - structure, classification and biochemical importance - one method each to identify 'C' terminal and N terminal amino acids	3	Know the classification, structure and the importance of amino acids and proteins	Lecture with videos	Evaluation through Multiple choice questions, short test,
	2	Secondary, tertiary and quaternary structures	3	Analyze the structures of proteins	Lecture	quiz Formative assessment II
	3	Abbreviated names - structure and importance of simple peptide - glutathione, carnosine, anserine, vasopressin and oxytocin	3	Explain the structure and the importance of peptides	Lecture	
	4	Peptide antibiotics - Geramicidin, bacitracin and actinomycin. Transamination - deamination - urea cycle	3	Describe the properties of peptide antibiotics and urea cycle	Lecture	

IV	Nucleic Acids					
	1	Components of nucleic acid - organic nitrogeneous bases - Purines - pyrimidines - sugars - deoxyribose - ribose	3	Describe the components of nucleic acid	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,
	2	Nucelosides - ribonucleoside- deoxyribonucleoside. Nucleotides- ribonucleotide- deoxyribonucleotide- cyclic nucleotides	3	Differentiate nucleosides and nucleotides	Lecture	quiz Formative assessment II
	3	DNA - Structure and functions - RNA - types (m-RNA, t-RNA and r- RNA). Nucleases- Endonucleases - DNase - RNase- Exonucleases	3	Compare the structure and functions of DNA, RNA and nucleases	Lecture with videos	
	4	Cyclic nucleotides - functions of cyclic AMP - and cyclic GMP - Nucleoproteins - nucleohistones - nucleoprotamines	3	Explain cyclic nucleotides, nucleoproteins, nucleohistones and nucleoprotamine	Lecture	
V	Enzymes					
	1	Enzymes - characteristics - classification, enzyme specificity. Factors affecting enzyme reaction	4	Understand the classification and characteristics of enzymes	Lecture	Evaluation through Multiple choice questions,
	2	Michaelis-Menten equation - derivation - inhibition of enzyme action - competitive, non - competitive and uncompetitive coenzymes	4	Explain Michaelis- Menten equation and inhibition of enzymes	Lecture with power point presentation	short test, quiz Formative assessment I
	3	Mechanism of NAD ⁺ and PLP. Immobilisation of enzymes - industrial and medical application of enzymes	4	Mechanism and applications of enzymes	Lecture	

Course Instructor: Dr. Sheeba Daniel HOD: Dr. M. Anitha Malbi