Semester I Course Name: Classical Mechanics Course Code: PP2011

No. of hours per week	No. of credits	Total No. of hours	Marks
6	4	90	100

Objectives

- 1. To have in depth knowledge in classical mechanics.
- 2. To enable students to develop skills in formulating and solving physics problems.
- 3. To study the kinematics of the rigid body through Euler equation.
- 4. To get knowledge in central force field and relativity.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	understand the basic mechanical concepts related to single and system of particles.	PSO - 1	U
CO - 2	apply various mechanical principles to find solution for physical problems.	PSO - 4	Ар
CO - 3	solve the equations of motion using Lagrangian, Hamilton and Hamilton-Jacobi equations.	PSO - 6	С
CO - 4	explain the origin of coriolis and centrifugal terms in the equation of motion in a rotating frame.	PSO - 1	R
CO - 5	understand and develop a scientific knowledge in central force problems and relativity	PSO - 7	U

Teaching Plan

Total contact hours: 90 (Including lectures, assignments and Tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Lagrangian	Formulation				
	1	Lagrangian formulation: System of particles - Constraints and degrees of freedom-	4	To understand the basic concepts of system of particles and	Illustration, Theoretical formulation, Lecture discussion	Evaluation through:

	2	Generalized coordinates, Force and Energy Conservation laws - Conservations of linear and angular momenta - Symmetric properties - Homogeneity	4	generalized coordinates To be able to understand the concept of conservation laws, homogeneity and isotropy	Theoretical formulation, Illustration, Lecture discussion	multiple choice questions Quiz, short questions Problem solving
	3	and isotropy D'Alemberts principle of virtual work - Lagrange's equation of motion - non holonomic	3	To formulate Lagrange's equation of motion using D'Alembert' s principle	Theoretical formulation, Illustration, Lecture discussion, PPT	Formative assessment
	4	systems velocity dependent potential - Dissipative force - Newtonian and Lagrangian Formalism	4	To understand the Newtonian and Lagrangian formalism	Illustration, Theoretical formulation, Lecture discussion	Deriving theoretical formulas Short test
II	Hamilton's	Equation and Ca	nonical Trar	sformation		
	1	Calculus of variation - Principle of least action - Hamilton's principle - Hamilton's function	4	To formulate Hamilton's function using Hamilton's principle	Illustration, PPT, theoretical formulation	Evaluation through: multiple choice questions
	2	Lagrange's equation from Hamilton's principle - Hamilton's	3	To derive Lagrange's equation from	Illustration, PPT, theoretical formulation	Quiz, short questions

		1.	Γ		Γ	
		principle for non		Hamilton's principle		
		holonomic		rimerpre		Problem
		system				solving
	3	Variational	4	То	Lecture	U
		principle - Hamilton's		understand	discussion,	
		equations		the concept of variational	Illustration, PPT,	
		from		principle and	theoretical	
		variational		derive	formulation	Formative
		principle -		Hamilton's		assessment
		Legendre		equation		
		transformatio		from		
		n and		variational		
		Hamilton's		principle		
		equation of motion				
	4	Canonical	4	То	Illustration,	Deriving
		transformatio	4	understand	Lecture	theoretical
		ns-		the concept		formulas
		Hamilton's		of canonical	theoretical	
		canonical		transformatio	formulation	
				n and poisson		
		equations -		bracket		Short test
		Generating functions-				
		Examples - Poisson				
		brackets and				
		its				
		properties.				
III	Hamilton-J	lacobi Theory a	nd Small Os	scillations		
	1	Hamilton-	4	To derive the	Illustration,	Evaluation
		Jacobi		Hamilton-	theoretical formulation	through:
		equation for		Jacobi	, Lecture	
		Hamilton's		equation for	discussion	
		principal function -		Hamilton's		multiple
		Example:		principal function and		choice
		Harmonic		to solve the		questions
		oscillator		Harmonic		
		problem		oscillator		
				problem.		Quiz, short
	2	Hamilton's	3	To formulate	Illustration,	questions
		characteristic		the	PPT, theoretical	
		function -		Hamilton's	formulation	

	3	Action - Angle variable Application	4	characteristic function and explain the Action - Angle variable To analyze	Illustration,	Problem solving
		to Kepler problem in action angle variables. Eigen value equation	4	the application to Kepler problem in action angle variables; To solve Eigen value equation.	theoretical formulation , Lecture discussion	Formative assessment
	4	Normal coordinates - Normal frequencies of vibration – Free	4	To discuss the Normal coordinates and Normal frequencies of vibration	Illustration, PPT, theoretical formulation	Deriving theoretical formulas
		Vibrations of linear tri atomic molecule.		and to derive the normal frequencies of free vibrations of linear tri atomic molecule.		Short te st
IV	Kinematics	s of Rigid Body		molecule.		
	1	Independent coordinates of rigid body - Orthogonal transformatio n - Properties of transformatio n matrix	4	To understand the concept of Independent coordinates of rigid body. To derive the Orthogonal transformatio n and Properties of transformatio n matrix	Illustration, theoretical formulation , Lecture discussion	Evaluation through: multiple choice questions Quiz, short questions
	2	Euler angle and Euler's theorem - Infinitesimal	3	ToderiveEulerangleandEuler'stheorem.To	Illustration, PPT, theoretical formulation	Problem solving

	1					I
		rotation - Coriolis force		understand the concept		
		Contons force		the concept of		
				Infinitesimal		
				rotation and		
				Coriolis		Formative
				force.		assessment
	3	Angular	4	To derive the	Illustration,	
	5	momentum	•	relation	theoretical	
		and kinetic		between the	formulation	
		energy of		angular	, Lecture	
		motion about		momentum	discussion	
		a point -		and kinetic		Doriving
		Moment of		energy of		Deriving theoretical
		inertia tensor		motion about		formulas
		- Euler's		a point.		Tormulas
		equations of		To derive		
		motion		the Moment		
				of inertia		
				tensor and		Short test
				Euler's		
				equations of		
				motion.		
	4	Force free	4	To analyze	Illustration,	
		motion of a		the torque	PPT,	
		symmetrical		free motion	theoretical	
		top - Heavy		of a	formulation	
		symmetrical		symmetrical		
		top with one		top and to		
		point fixed		discuss the		
				heavy		
				symmetrical		
				top with one		
				point fixed.		
V	Central For	rce Problem and	-	-		
	1	Reduction to	3	To derive the	Illustration,	Evaluation
		the equivalent		reduced mass	theoretical	through:
		one body		of the	formulation	
		problem-		equivalent	, Lecture	
		Centre of		one body	discussion	multiple
		mass-		problem. To		choice
		Equation of		understand		questions
		motion and		the concept of Centre of		
		first integral- classification				
		of orbits		mass, Equation of		Quiz, short
		of orbits		Equation of motion and		questions
				first integral.		1
				To discuss		

			the		
			classification of orbits based on the eccentricity.		Problem solving
2	Kepler problem: Inverse- Square law of force - Scattering in a central force field - Transformati on of scattering to laboratory coordinates.	4	To derive the Kepler problem: Inverse- Square law of force. To understand the concept of Scattering in a central force field. To transfer the scattering to laboratory coordinates.	Illustration, theoretical formulation , Lecture discussion	Formative assessment Deriving theoretical formulas
3	Virial theorem – Lorentz transformatio n – Relativistic Mechanics – Relativistic Lagrangian and Hamiltonian for a particle	4	To understand the Virial theorem. To derive the Lorentz transformatio n. To understand the concepts of Relativistic Mechanics and to derive the Relativistic Lagrangian and Hamiltonian for a particle.	Illustration, PPT, theoretical formulation , Lecture discussion	Short test
4	Mass in Relativity - Mass and energy – Space-time diagram – Momentum vectors	4	To understand the concept of mass in relativity. To discuss the relation between		

	Mass and energy; To analyze Space-time	
	diagram and to derive the Momentum vectors.	

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Dr.M.Priya Dharshini and Ms.S.Virgin Jeba

Semester I

Course Name: Mathematical Physics Course Code: PP2012

No. of hours per week	No. of credits	Total No. of hours	Marks
6	4	90	100

Objectives

1. To emphasize the use of mathematical tools like evaluation of definite integrals in the field of classical and quantum mechanics.

2. To demonstrate competence with a wide variety of mathematical techniques to enhance problem solving skills.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	apply the various theorems in complex analysis to evaluate definite integrals.	PSO - 4	Е
CO - 2	determine the series solutions and the recurrence relations (Bessel, Legendre and Hermite differential equations) and solve problems associated with them.	PSO - 3	Е
CO - 3	discuss the basic principles and methods used for the analysis of partial differential equations and apply the techniques to related problems.	PSO - 4	С
CO - 4	discuss the concepts of Fourier, Laplace and inverse Laplace transform, tensors, group theory and their properties.	PSO - 5	С
CO - 5	develop expertise in mathematical techniques required in physics and to enhance problem solving skills.	PSO - 6	An

edit:4				s:90 (Incl. Semina		
Unit	Modul	Topics	Lecture	Learning	Pedagogy	Assesment
om	es	Topics	hours	outcome		/Evaluation
Ι	Complex	x Analysis				
	1	Functions of Complex variable-	4	To be able to	PPT,	Evaluation
		Analytic functions – Cauchy –		identify the	Theoretical	through:
		Riemann equations in cartesian		analytic	formulation	Online quiz,
		and polar forms – Harmonic		functions by	and Problem	through
		functions - Cauchy's integral		using the	solving	Google
		theorem		Cauchy's	8	Classroom
				Riemann		
				equations		Assignment
	2	Cauchy's integral formula –	3	To be able to	Analysis and	on Problem
	-	Taylor's Series – Laurent series	C	evaluate the	Problem	solving
				integrals	solving	8
				using	501,1118	
				Cauchy's		Short
				formula and		questions
				able to apply		1
				the series in		Descriptive
				computational		answers
				science and		
				approximation		
	3	Cauchy's residue theorem -	4	To be able to	Analysis and	
		Singular points of an Analytic		apply the	Problem	Formative
		function – Evaluation of residues		Cauchy's	solving	assessment
		- application to evaluation of		Residue	C	
		definite integrals		theorem to		
		_		evaluate the		
				definite		
				integrals of		
				analytic		
				functions		
	4	Integration around a unit circle	3	To be able to	Analysis and	
		–Jordan's Lemma.		apply the	Problem	
				Jordan's	solving	
				lemma to		
				evaluate		
				contour		
				integrals		
II	Polynon					
	1	Legendre differential equation	4	To acquire	Analysis and	Evaluation
		and Legendre functions –		basic	Problem	through:
		Generating functions		understanding	solving	Online quiz,
				of the partial		through
				differential		Google
				equations and		Classroom
				learn some		

Modules Total Hours: 90 (Incl. Seminar & Test)

	2	Rodrigue's formula – Orthogonal Properties - recurrence formula	3	methods for solving them.To accomplish operations with differential	Analysis and Problem solving	Assignments on Problem solving
				equations along with the recurrence formulae		Short questions Descriptive
	3	Bessel differential equation – Bessel functions of I kind - recurrence formula and generating functions	4	To execute operations with Bessel differential equations	Analysis, Problem solving and comparative study	answers Formative assessment
	4	Hermite differential equations and Hermite polynomials - Generating functions & recurrence formula.	3	To carry out operations with Hermite differential equations along with the recurrence formulae	Analysis, Problem solving and comparative study	
III	Differen	tial and Partial Differential equa	tions			
	1	Homogeneous linear equations of second order with constant coefficients and their solutions	3	To be able to solve second order Homogenous differential equations	Analysis and Problem solving	Evaluation through: Online quiz, through Google Classroom
	2	Ordinary second order differential with variable coefficients and their solution by power series and Frobenius methods	4	To be able to apply the power series and Frobenius methods to evaluate the solution of second order differential equations	Analysis and Problem solving	Assignments on Problem solving Short questions Descriptive
	3	Solution of Laplace equation in Cartesian coordinates- Solution of heat flow equations	3	To be able to solve boundary value problems occur in steady state temperatures and of hydrodynamics	Analysis and Problem solving	answers Formative assessment
	4	Method of separation of variables – variable linear flow – One and two dimensional heat flow.	4	To be able to solve problems for heat flow	Analysis and Problem solving	

			Γ	1
		equations in		
		different		
		dimensions		
		under certain		
		boundary		
		conditions		
IV Tensors, Fourier and Laplace tra				
1 Contravarient and Covar	ient 3	To be able to	Analysis and	Evaluation
Tensors - Addition and		solve	Problem	through:
Subtraction – Outer proc	luct -	mathematical	solving	Online quiz,
inner product of tensors		problems		through
		involving		Google
		tensors		Classroom
2 Contraction of a te	nsor - 3	To be equipped	Analysis and	
Symmetric and anti-sy	nmetric	to use tensor	Problem	Assignments
tensors – The Kronecker	delta	algebra as a tool	solving	on Problem
		in the field of		solving
		applied sciences		
3 Fourier transform- prop	erties of 4	To be able to	Analysis and	
Fourier transform -	Fourier	understand and	Problem	Short
transform of a derivative	2	apply the	solving	questions
		concept of	C	
		Fourier		Descriptive
		transform to		answers
		waveforms and		
		spectra.		
4 Laplace transform- prop		To be able to	Analysis and	
Laplace transform- Inve		use the Laplace	Problem	Formative
Laplace Transform.		transform	solving	assessment
		equations for	8	
		solving		
		boundary value		
		problems by		
		directly		
		changing the		
		ordinary		
		differential		
		equations into		
		algebraic		
		equations.		
V Group theory		equations.		
1 Group postulates – Abel	ian 3	To understand	Descriptive	Evaluation
group – Cyclic group – C		the mathematics	lecture,	through:
multiplication table –	•	of group theory	Analysis and	Online quiz,
Rearrangement theorem	_		Problem	through
Subgroups			solving	Google
2 Isomorphism and	4	To understand	Descriptive	Classroom
Homomorphism – Symr		the symmetry	lecture,	
elements and symmetry		and point group	Analysis and	Assignments
operations		of molecules	Problem	on Problem
UDUATION				
operations		of molecules	solving	solving

3	Reducible and irreducible representations	3	To generate a representation and to reduce it to its irreducible representation	Descriptive lecture Analysis and Problem solving	Short questions
4	The great orthogonality theorem - Character table for C _{2V} & C _{3V} point groups.	4	To determine the irreducibility of a reducible representation	Descriptive lecture Analysis and Problem solving	Descriptive answers Formative assessment

PO- Program outcome; LO – Learning outcome;

Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Semester: I

Course Name: QUANTUM MECHANICS -I Course code: PP2013

No. of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Objective

To help the students to acquire understanding of the fundamental concepts and mathematical tools necessary to solve the wave equations.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	summarize the concept of wave function and the postulates of quantum mechanics.	PSO-1	U
CO - 2	formulate time dependent and time independent equation and solve them for simple potentials.	PSO-4	С
CO - 3	evaluate the eigen values and eigen function spin and total angular momenta and determine the matrices.	PSO-4	Е
CO - 4	analyze the principles of quantum theory, equation of motion, scattering theory and angular momentum.	PSO-4	An

Modules

Credit:5

Total Hours:90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	I Foundations of Wave Mechanics					

	3	Kronig Penny square well periodic potential- Indistinguishable Particles- Particle Exchange Operator	3	Toformulate Kronig Penny square well periodic potential and operators	PPT, Theoretical formulation and Problem solving	Formative assessment
	2	Time dependent Schrödinger equation – Stationary states - Eigen functions and eigen values	3	To relate time independent and time dependent Schrodinger equation	Descriptive lecturecompara tive study	questions Descriptive answers Problem solving
	1	Square-well Potential with Rigid Walls- Square Potential Barrier –Alpha Emision- Time independent Schrodinger equation	3	To understand the basic concepts and features related to Square-well Potential	PPT Illustration, lecture, and Problem solving	Evaluation through: Online quiz, short
II	Eigen St	Simultaneous measurability of observables – General uncertainty relation – Ehrenfest's theorem ates and Many Electron Atoms	4	To analyze observables and their properties	PPT, Theoretical formulation and Problem solving	
		Admissibility conditions on the wave function – Hermitian operator – Postulates of quantum mechanics	4	To be able tounderstand the wave function and postulates of quantum mechanics	Illustration, Theoretical formulation Problem Solving	
		Wave packet – Time dependent Schrödinger equation – Interpretation of the wave function	4	To understand basic concepts of quantum mechanics by deriving group velocity, phase velocity and time dependent Schrodinger equation	PPT, Illustration and theoretical derivation	Evaluation through: Online quiz, Problem solving short questions Descriptive answers Formativ e assessme nt

	4	Symmetric and Antisymmetric Wave Functions - Pauli Principle – Inclusion of spin	3	To understand Symmetric and Antisymmetric Wave Functions	Illustration, Theoretical formulation and Problem solving	
III	Exactly	Soluble Eigen value Problems	1			
	1	One dimensional linear harmonic oscillator – operator method - Particle moving in a spherically symmetric potential	3	To solve the one- dimensional linear harmonic oscillator problem	Illustration, Theoretical formulation and Problem solving	Evaluation through: Online quiz, short
	2	Spherical harmonics- Radial equation- Rigid rotator- Hydrogen atom- solution of the radial equation	2	To formulate radial equations of hydrogen atom	PPT, Illustration,The oretical formulation and Problem solving	questions Descriptive answers Assignment on applications
	3	Energy eigen values- Radial wave functions- Wave functions of hydrogen-like atom	3	To understand the eigen values and wave functions	Illustration, Theoretical formulation and Problem solving	Formative assessment
	4	Radial Probability density- Three-Dimensional square-well potential.	4	To formulate three- Dimensional square-well potential.	Illustration, Theoretical formulation comparative study and Problem solving	
IV	Matrix 1	Formulation of Quantum Theory	, Equatio	on of Motion & Ar	ıgular Momentur	n
	1	Linear vector space- Dirac's notation-Equation of motions	2	To derive equation of motion using Quantum mechanical concepts	Theoretical formulation	Evaluation through: Online quiz, short
	2	Schrodinger, Heisenberg and Interaction representation.	2	To compare representation of equation of motion	Theoretical formulation	questions Descriptive answers
	3	$\begin{array}{c} Angular \ momentum \ operators \\ - \ Angular \ momentum \\ commutation \ relations - Eigen \\ values \ and \ eigen \ functions \ of \\ L^2 \ and \ L_z \end{array}$	2	To understand the basic concepts and features related to Angular momentum	PPT Illustration, lecture, and Problem solving	Problem solving Formative assessment

	4 5	General angular momentum – Eigen values of J^2 and J_z Angular momentum matrices – Spin angular momentum – Spin vactors for spin (1/2)	2	To relate angular momentum and general angular momentum To formulate angular momentum	Descriptive lecture comparative study Theoretical formulation and Problem	
		Spin vectors for spin-(1/2) System		matrices	solving	
	6	Addition of angular momentum: Clebsch-Gordon coeffiecients	2	To obtain C-G coefficient from angular momentum	Illustration,The oretical formulation and Problem solving	
	7	Stern Gerlach Experiment.	1	To prove concept of spin experimentally	Demonstration	
V	Scatterin	ng theory	1			
	1	Scattering cross-section – Scattering amplitude	1	To understand the basic	PPT Illustration,	
				concepts and features related to scattering	And Descriptive lecture	Evaluation through: Online quiz,
	2	Partial waves – Scattering by a central potential: Asymptotic solution.	3	To understand the concept of partial waves	Descriptive lecture and Theoretical formulation	short questions
	3	Optical theorem- Ramsauer- Townsend effect- Partial wave analysis	2	To apply the concept of partial waves	Descriptive lecture and Theoretical formulation	Descriptive answers
	4	Scattering by an attractive square-well potential – Breit- Wigner Formula - Scattering length - Expression for phase shifts - Integral equation	3	To apply scattering theory to physical problems	Descriptive lecture and Theoretical formulation	Problem Solving
	5	The Born approximation – Scattering by screened coulomb potential – validity of Born approximation	2	To understand Born approximation	Descriptive lecture and Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Staff -- in -- charge : Ms. Sonia & Ms. Aji Udhaya

Semester I

Course code: Numerical Methods

Course code: PP2016

No. of hours per week	No. of credits	Total No. of hours	Mar ks
6	4	90	100

Objective

To understand various numerical methods used to solve the

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO- 1	understand the various interpolation methods and finite difference concepts	PSO - 1	U
CO- 2	analyze the numerical solutions of linear and non linear equations	PSO - 4	An
CO- 3	utilize various numerical methods for differentiation and integration	PSO - 4	Ар
CO -4	discuss the concepts of ordinary differential equations	PSO - 5	С

Modules

Credit:4

Total Hours:90 (Incl. Seminar& Test)

Unit	Sect ion	Topics	Lect ure hour s	Learning outcome	Pedagogy	Assessme nt/Evalua t ion
Ι	Inter	polation		·		
	1.	Introduction, Polynomial Forms, Linear interpolation.	4	To understand the basic concepts of interpolation	PPT, Illustration and theoretical derivation	Evaluation through: Online quiz,
	2.	Lagrange Interpolation Polynomial, Newton Interpolation Polynomial	4	To be able to solve the problems of Lagrange and Newton Interpolation	Illustration, Theoretical formulation Problem Solving	Problem solving short

	3.	Divided difference table, Interpolation with equidistance points, Spline interpolation	4	To solve the problems of Divided difference table, Interpolation with equidistance points, Spline interpolation	PPT, Theoretical formulation and Problem solving	questions Descripti v e answers Formative assessmen t
II	Root	s Of Nonlinear Equations	-		DDT	
	1	15 Hours Introduction, Methods of Solution, Iterative Methods, Starting and Stopping an Iterative Process, evaluation of Polynomials Bisection method, False Position Method, Newton- Raphson Method	3	To understand the basic concepts of Iterative Methods To solve various methods like Bisection, False Position and Newton-Raphson	PPT Illustration, lecture, and Problem solving Descriptive lecture solving problems	Evaluation through: Online quiz, short questions Descripti v e answers Problem solving
	3	Secant Method, Fixed Point Method	3	Method To find the roots using Secant and Fixed Point Method	PPT, Theoretical formulation and Problem solving	Formative assessmen t
	4	Determining All Possible Roots.	3	To determine all Possible roots for the Polynomial equation	Illustration, Theoretical formulation and Problem solving	
III	Solut	ions of Linear Equations				

		1	-		T 11		
	1	15 Hours Need and Scope, Existence of Solutions, Solution by Elimination,	3	To understand the basics of elimination method	Illustration, Theoretical formulation and Problem solving	Evaluation through: Online quiz, short questions	
	2	Basic Gauss Elimination Method, Gauss Elimination with Pivoting, Gauss- Jordan Method	2	To solve the problems of Gauss Elimination, Gauss Elimination with Pivoting and Gauss- Jordan Method	PPT, Illustration, Theoretical formulation and Problem solving	Descripti v e answers Assignme	
	3	Triangular Factorization Methods, Round-off Errors and Refinement, Ill- Conditioned Systems,	3	To understand the Triangular Factorization Methods and Round-off Errors	Illustration, Theoretical formulation and Problem solving	n t on applicatio ns Formative	
	4	Matrix Inversion Method, Jacobi Iteration Method, Gauss Seidel Method.	4	To solve the problems of Matrix Inversion Method, Jacobi Iteration Method and Gauss Seidel Method.	Illustration, Theoretical formulation comparative study and Problem solving	assessmen t	
IV	Num	erical Differentiation and Int	egratio	n		I	
	1	Numerical Differentiaton: Need and Scope, differentiatig continuous functions,	4	To understand the basic concepts of Numerical Differentiation	Theoretical formulation and Problem solving	Evaluation through: Online quiz,	
						short questions Descripti	
	2	Differentiating tabulated functions, Difference tables, Numerical Integration.	4	To solve problems for Difference tables and study the basics of Numerical Integration.	Theoretical formulation and Problem solving	v e answers Problem solving	

	3	Trapezoidal Rule, Simpson's 1/3 Rule, Simpson's 3/8 Rule, Higher Order Rules.	4	To solve problems using Trapezoidal Rule, Simpson's 1/3 Rule and Simpson's 3/8 Rule	PPT Illustration, lecture, and Problem solving	Formative assessmen t
V	Num	erical Solutions of Ordinary	Differe	ntial Equations		
	1	15 Hours Need and Scope, Tailor Series Method – Improving accuracy,	3	To understand the basic concepts and features of Tailor Series	PPT Illustration, And problem solving	Evaluation through: Online quiz, short
	2	Picard's method, Euler's Method – accuracy of Euler's method, .	3	To solve differential Equations using Picard's, Euler's Method , Euler's method,	problem solving	questions Descripti
	3	Heun's Method – Error analysis, Polygon Method,	3	To apply the concept of Heun's Method, Error analysis, Polygon Method to solve the equations	PPT Illustration, And problem solving	answers Problem
	4	Runge-Kutta Methods- Determination of weights, Fourth order Runge-Kutta methods.	3	To apply Runge- Kutta Methods to solve the problems	PPT Illustration, And problem solving	- Solving Formative assessmen t

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C-Create

Staff-in charge: Ms.Shally & Ms.Lesly

Semester II

Course Name: Electromagnetic Theory

Course code: PP2021

No.of hours per week	No. of credits	Total No .of hours	Marks
6	4	90	100

Objectives

1. To provide knowledge on the propagation of electromagnetic

radiation

 $2. To \ develop \ theoretical knowledge, skills on solving analytical problem sinelectrom agnetism.$

СО	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	Summarize the fundamental laws of electrodynamics based On Maxwell's equations.	PSO-1	U
CO -2	Enumerate the concept of energy in electrostatic and Magnetostatic fields.	PSO-2	K
CO -3	Illustrate the electrical properties of materials; solve the Wave equation as plane waves in source.	PSO-5	Ap
CO -4	Analyze the wav epolarization and reflection/transmission of Plane waves in homogenous media.	PSO-4	An

Teaching Plan

Credits: 4 &Test)

Total Hours: 90 (Incl. Seminar

Unit	Modu le	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Electros	tatics				
	1	Coulomb's law; the electric field – line, flux and Gauss's Law in differential form - theelectrostatic potential; conductors and insulators		Understand the concepts Electrostatic field and basicequations	PPT, Descripti ve lecture	Evaluation through: quiz, Problem

	2		2	TT 1	Til-set d'	a a la via a
	2	Gauss's law - application of Gauss's law –curl of E - Poisson's equation; Laplace's equation	3	To understand the divergence and curl of E and its applications	Illustrati on, Descripti ve lecture	solving Descriptive answers
	3	work and energy in electrostatics – energy of a point charge distribution – energy of continuous charge distribution – induced charges – capacitors.	4	Understand the basic concept of energy of a point charge and continuous charge distribution	Videos, group discussion	short questions
	4	Potentials: Laplace equation in one dimension and two dimensions –Dielectrics – induceddipoles– Gauss'sLawinthepresence ofdielectrics.	4	Solve solution of Laplace's equation in one and two dimension and understand the electric fields conductors and dielectrics	Semin ar, Lectur e	Formative assessment (I CIA)
II	Magneto	ostatics				
	1	Lorentz force – magnetic fields – magnetic forces – currents – Biot-Savart Law – divergenceand curl of B	4	Understand the concept of magnetic fields, Biotsavart's law for a	PPT Illustrati on, Descripti ve	Evaluation through: quiz,
				line current	lecture	
	2	Ampere's Law – Electromagnetic induction - comparison of magnetostaticsand electrostatics –		To acquire knowledge on ampere's law and magnetic vector potential	Lecture ,Videos	short questions Descriptive answers
	3	Magnetic vector potential- Magnetization: effect of magnetic field onatomicorbit–	4	To understand the effect of magnetic field on atomic orbit	Descripti ve lecture	Problem solving Formative
	4	Ampere'sLawin magnetizedmaterials– ferromagnetism.	3	Understand the ampere's law in magnetized materials	Descripti ve lecture, seminar	assessment (I&II CIA)

III	Electron	notiveForce				
	1	Ohm's Law – electromotive force – motional emf – Faraday's Law –	4	Understand t	Illustrati on, Descripti ve lecture	Evaluation through: quiz,
	2	induced electric field –inductance– energyinmagneticfield	3			short questions
	3	Maxwell'sequationinfreespacean dlinearisotrophicmedia– continuityequation – Poyntingtheorem.	4	Solve the Maxwell's equations and pointing theorem	Descripti ve lecture	Descriptive answers Formative assessment
	4	Waves in one dimension – wave equation – sinusoidalwaves – reflectionandtransmission– Polarization.	4	Solve the wave equation. Reflection, transmission and polarization	Group Discussi on, Lecture, seminar	(I CIA)
IV	Electron	nagneticWaves				
	1	The wave equation for E and B – Monochromatic Plan waves – energy and momentum inelectromagnetic waves–	5	UnderstandtheWaveequation,energy for E and B.Explaintheelectromagneticwaves in matter	PPT Illustrati on, Descripti ve lecture.	Evaluation through quiz, Descriptive
	2	electromagnetic waves in matters -TE waves in rectangular waveguides – the co-axial transmission line	5	Explain in brief the reflection and transmission at normal incidence and oblique incidence	Lectur e, Group discussi on	answers short questions Assignment
	3	Potentials: potentials and fields – scalar and vectorpotentials – Gauge transformation – Coulomb Gauge and Lorentz Gauge – Lorentz force lawinpotentialform.	5	Understand the concept of Coulomb gauge and Lorentz gauge	Lectu re, semin ar	Formative assessment (II CIA)

V	Applicat	ion of Electromagnetic Waves				
	1	Boundary conditions at the surface of discontinuity – Reflection and refraction of E.M wavesat the interface of non – Conducting media	4	Understand the concept of four vectors, Minkowski force	PPT Illustrati on, Descripti ve lecture	Evaluation through: quiz, short questions
	2 3	Kinematic and dynamic properties – Fresnel'sequation – Electric field vector 'E' parallel to the plane of incidence and perpendicular to theplane of incidence Reflection and transmission co- efficients at the interface between twonon Conductingmedia	4	To acquire knowledge on the Maxwell's equations in four vector form. To acquire knowledge on theLagrangianand	Descripti ve lecture Descripti ve lecture,	Descriptive answers Problem solving Formative assessment
	4	twonon–Conductingmedia Brewster'slawanddegreeofpolariz ation–Totalinternalreflection.	3	Understand the brewster's law and	Seminar, Assignmen t Illustrati on,	(II CIA)
				degree of polarization	Descripti ve lecture	

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze; K-Knowledge

Course Instructor :Ms. S. Virgin Jeba

Semester: III

Course Name: Electronics Course code: PP2031

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To impart in depth knowledge about Semiconductors, diodes, Transistors, Operational Amplifiers, Memories and converters etc
- 2. To provide knowledge in the basic structure and working concepts of electronic devices.
- 3. To acquire application skills involving digital integrated circuit.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	Understand the basic operation, and features related to diodes, transistor, op-amps, converter and interpret their applications	PSO-1	U

CO 2	Explain about the internal circuitry and logic behind	PSO-2	U
	semiconductor memory devices.		
CO 3	Assess the working of diodes, transistor, op-amps and converters.	PSO-3	E
CO 4	Design various filter circuits.	PSO-6	C
CO 5	Interpret the Internal Architecture of memory devices	PSO-4	An

Modules Total contact hours: 90 (Including lectures, assignment and tests)

		Total contact nou	Lecture	Learning	Pedagogy	Assessment/Evaluation
Unit	Section	Topics	Hours	outcomes	8 80	
Ι	Semic	onductorDiode	S			
	1	Introduction to	4	Define the	PPT,	
		Semiconductor		basis of	Illustration	Evaluation through:
		- Intrinsic		Semicondu	and	Online quiz,
		Semiconductor		ctor	theoretical	Problem solving
		- Extrinsic			derivation,	short questions
		Semiconductor			Circuit	Descriptive answers
					designing	
	2	P-type- N-Type	4	Apply	Derivation	Formative
		- PN Junction		various	and group	assessment I
		diode – Crystal		junction	discussion,	
		Diode		diodes and	Circuit	
				Crystal	designing	
				Diode		
	3	Zener diode-	4	Derivation	PPT,	
	U	LED –	•	of current	Illustration,	
		Varactor Diode		voltage	Theoretical	
		-Tunnel diode		relations	formulation	
		1 011101 010 00		1010010	Circuit	
					designing	
	4	Photo diode -	3	ApplyChara	Derivation	
		schottky diode		cteristics	and group	
		– Impatt diode-		and	discussion	
		Characteristics		Application	Circuit	
		and		S.	designing	
		Applications.				
II	Trans	istor Biasing ar	nd opto	Electronic E	Devices	
	1	Thevenin's and	4	Solve	PPT,	
		Norton's		Thevenin's	Derivation	Evaluation
		theorems		and	discussion	through: Online
				Norton's	Circuit	quiz,
				theorems	designing	Problem solving
						short questions
	2	Transistor	4	Define and	Derivation	Descriptive
		action- PNP-		derive	and group	answers
		NPN transistors		equations	discussion	Formative
		 Transistor 			problem	assessment I
		biasing and			solving	
		stabilization	1		Circuit	
					designing	

	3	Noodfor	3	Ctotoment	Illustration	
	3	Need for	3	Statement	Illustration,	
		biasing- DC load line-		and proof	Theoretical	
				of operating	formulation	
		operating point-		point	Circuit	
	4	Bias stability-	4	Trans a set	designing	
	4	Two port	4	Two port	Derivation	
		Network -		Network	and group	
		Hybrid model –		and its	discussion	
		h parameters —		applications	problem	
		JFET – UJT-			solving	
		SCR			Circuit	
	-				designing	
III	Onoro	tional Amplifia	n Annli	actions		
111	-	tional Amplifier				
	1	Operational	4	Analyse	Derivation	Evaluation
		Amplifier-		Operational	discussion	Evaluation
		CMRR-Slew		Amplifier	Circuit	through: Online
		rate -			designing	quiz,
		Instrumentation				Problem solving
		amplifier – V to				short questions
		I and I to V				Descriptive
		converter – Op-				answers
		amp stages				Formative
	2	Equivalent	3	Define and	Illustration,	assessment I/II
		circuits - Sample		derive	Theoretical	
		and Hold		Inverting ad	formulation	
		circuits.		Non-	Circuit	
		Applications of		inverting	designing	
		Op-Amp:		Amplifiers		
		Inverting, Non-		-		
		inverting				
		Amplifiers-				
		circuits				
	3	Adder-	4	Define and	Derivation	
		Subtractor-		Derive Adder-	and group	
		Differentiator-		Subtractor-	discussion,	
		Integrator-		Differentiator	PPT	
		Electronic		- Integrator	Circuit	
		analog		_	designing	
		Computation				
		solving				
		simultaneous				
		and differential				
		equation –.				
		Schmitt Trigger				
	1	– Triangular				
		Thungului				1
		wave generator				
		-				

	4	Active filters:	4	Define,	PPT,	
		Low, High and		deriveand	Illustration,	
		Band pass first		apply Active	Theoretical	
		and second		filters	formulation	
		order			Circuit	
		Butterworth			designing	
		filters – wide			00	
		and narrow band				
		reject filters.				
IV	Semic	onductor Memo	ries			
	1	Classification of	4	Discuss	Derivation	Evaluation
		memories and		different types	discussion	through: Online
		sequential		ofmemories	Circuit	quiz,
		memory – Static		and sequential	designing	Problem solving
		Shift Register		memory	aosigining	short questions
		and Dynamic		j		Descriptive
		Shift Register				answers
		-	-			
	2	ROM, PROM	3	Define and	Derivation	Formative
		and EPROM		derive	and group	assessment II
		principle and		principle and	discussion,	
		operation Read		operation	PPT	
		& Write			Circuit	
		memory - Static			designing	
		RAM, dynamic				
		RAM, Content				
		Addressable				
		Memory				
	3	Content	4	Define and	Derivation	
		Addressable		Derive	and group	
		Memory -		different types	discussion	
		principle, block		of Content	Circuit	
		diagram and		Addressable	designing	
		operation.		Memory		
		Programmable				
		Logic Array				
		(PLA) -				
		Operation,				
		Internal				
		Architecture				
	4	Charge Couple	4	Define,	Derivation	
		Device (CCD) -		deriveand	and group	
		Principle,		apply Charge	discussion	
		Construction,		Couple	Circuit	
		Working and		Device	designing	
		Data transfer				
		mechanism.				
V	A/D aı	nd D/A Convert	er			

1	Sampling theorem-Time division multiplexing – Quantization –	3	Analyse Fundamental Sampling theorem	Discussion PPT Circuit designing	Evaluation through: Online quiz, Problem solving short questions
2	DAC-Weighted resistor method – Binary Ladder network – ADC – successive approximation,	4	Analyse classification DAC	Derivation and group discussion, PPT Circuit designing	Descriptive answers Formative assessment II
3	ADC Dual slope and Counter method	4	Explain ADC Dual slope and Counter method	Derivation and group discussion Circuit designing	
4	Voltage to Frequency conversion and Voltage to Time conversion.	4	Define, deriveand apply Voltage to Frequency conversion	Derivation and group discussion, PPT Circuit designing	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Staff-in charge: Ms.C.Nirmala Louis & Ms.Jenepha Mary Semester III Course Name : Condensed Matter Physics - II Course code: PP2023

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

1. To develop analytical thinking to understand the phenomenon that decide various properties of solids thereby equip students to pursue higher learningconfidently.

Course Outcome

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	Understand the theory of dielectrics and analyze the dielectric properties of materials.	PSO - 1	An
CO - 2	Explain various types of magnetic phenomenon and their properties and applications.	PSO - 4	E

CO - 3	Elaborate the properties and applications of superconductors.	PSO - 4	С
CO - 4	Apply the obtained concepts to challenges in condensed matter physics	PSO - 6	Ар

		Total contact	t hours: 9	0 (Including lectu	ires, assignment a	and tests)
Unit	Secti on	Topics	Lectur e Hours	Learning outcomes	Pedagogy	Assessment/Evaluat ion
Ι	Theorem	ry of Dielectrics:				
	2	Dipole moment - Polarization - The electric field of a dipole - Local electric field at an atom - Clausius - Mosottiequation - Dielectric constants and its measurements Polarizability - The Classical theory of electronic polarizability - Ionic	4	To acquire knowledge on polarization and Dielectric constants To be able to understand the ofelectronic polarizability - Ionic	cture Discussion with PPT illustration cture disc ussi on wit b	
		polarizabilities - Orientational polarizabilities - The polarizability catastrophe		polarizabilities	h illu stra tion ,De riva tion and gro up disc ussi on	valuation through: Online quiz, lass test, Formative assessment I
	3	Dipole orientation in solids - Dipole relaxation and dielectric losses - Debye Relaxation time - Relaxation in	4	To be able to find out the Debye Relaxation time	PPTIllustration	

solids

Modules Total contact hours: 90 (Including lectures, assignment and tests)

	4	Complay	3	To understand	Derivation	
	4	Complex	3			
		dielectric		the different	and group	
		constants and the		Dielectric	discussion	
		loss angle -		breakdown and		
		Frequency and		dielectric loss.		
		temperature				
		effects on				
		Polarization -				
		Dielectric				
		breakdown and				
		dielectric loss				
II	Theo	ry of Ferroelectri	cs and	Piezo Electrics		
	1	Ferroelectric	4	To be able to	Lecture	
		Crystals -		classify	discussion	Evaluation
		Classifications of		Ferroelectric	with	through: Online
		Ferroelectric		crystals	illustration	quiz,
		crystals - Dipole				Short questions,
		theory				Descriptive
		offerroelectricity -				answers,
		Landau Theory of				Formative
		the phase transition				assessment I
	2	Second order	4	To understand	Derivation and	ussessment i
	-	Transition - First		the difference	group	
		Order Transition -		between first	discussion	
		Ferroelectric		order transition	problem	
		Transition - One-		and second	solving	
		Dimensional		order transition	Circuit	
		Model of the Soft			designing	
		Mode of			uesigning	
		Ferroelectric				
		Transitions				
	2		3	T	T to Til to t	
	3	Antiferroelectricity - Ferroelectric	5	To acquire	LectureIllustrat	
		domains -		knowledge on	ion,	
		Ferroelectric		Piezoelectricitya nd Ferroelectric		
		domain wall				
		motion -		domain wall		
				motion		
	4	Piezoelectricity	4	TT 1 (1	T (
	4	Phenomenological	4	To understand	Lecture	
		Approach to		the concept of	Discussion	
		Piezoelectric		Piezoelectric		
		Effects -		Parameters and		
		Piezoelectric		Their		
		Parameters and		Measurements		
		Their				
		Measurements -				
		Piezoelectric				
		Materials				
III	Magi	netic properties of	f Mate	rials:		
L		r r r r r r r r r r				

	1	Terms and	4	To have clear	Illustration,	
		definitions used in magnetism -		idea about Classification of	discussion	Evaluation
		Classification of		magnetic		through: Online
		magnetic materials		materials		quiz,
		- Atomic theory of		materials		Short questions,
		magnetism - The				Descriptive
		quantum numbers				answers,
	2	The origin of	3	To acquire	Derivation and	Formative
	_	permanent		knowledge	group	assessment I/II
		magnetic moments		ondiamagnetism	discussion	
		- Langevin's		and		
		classical theory of		paramagnetism		
		diamagnetism -		1 0		
		Sources of				
		paramagnetism -				
		Langevin's				
		classical theory of				
		paramagnetism -				
		Quantum theory of				
		paramagnetism				
	3	Paramagnetism of	4	To understand	Derivation and	
		freeelectrons -		the concept of	group	
		Ferromagnetism -		Paramagnetism	discussion,PPT	
		The Weiss		of freeelectrons	Illustration	
		molecular field -		and		
		Temperature		Spontaneous		
		dependence of		magnetization		
		Spontaneous				
		magnetization				
	4	The physical origin	4	To be able to	Derivation	
		of Weiss Molecular		determine the	And Lecture	
		field -		Antiferromagnet	Illustration	
		Ferromagnetic		ismand		
		domains - Domain		Ferrimagnetism		
		theory -				
		Antiferromagnetis				
		m - Ferrimagnetism				
		- Structure				
TX7	C	ofFerrite				
IV	Supe	rconductivity:				
	1	Occurrence of	4	To know the	Derivation and	
		super conductivity		principlesof	discussion	
		- Destruction of		super		Evaluation
		super conductivity		conductivity and		through: Online
		by magnetic fields		Meissner Effect		quiz,
		- Meissner Effect -				short questions,
		Type I and Type II				Descriptive
		Super conductors				answers,

	2	Heat Capacity - Energy gap - Microwave and infrared properties - Isotope effect - Thermodynamics of the superconducting transition	3	To understand the differentMicrow ave and infrared properties and Isotope effect	Derivation and PPT	Formative assessment II
	3	London equation - Coherence Length - BCS theory of superconductivity, BCS groundstate- Fluxquantizationin asuperconductionri ng	4	Define and Derive London equation,Cohere nce Length and BCS theory of superconductivit y	Derivation and group discussion	
	4	Durationofpersisten cecurrents- Single particle tunnelling - DC Josephson effect - AC Josephson effect - Macroscopic quantum interference - High temperature super conductors - Applications	4	To Explain theSingle particle tunnelling, DC and AC Josephson effect	Derivation andgroup discussion	
V	1	cs of Nanosolids: Definition of nanoscience and nanotechnology - Preparation of nanomaterials - Surface to volume ratio	3	To acquire knowledge onnanoscience and nanotechnology and Preparation of nanomaterials	Discussion And Illustration with PPT	Evaluation through: Open book test, short questions, Descriptive
	2	Quantum confinement - Qualitative and Quantitative description - Density of states of nanostructures	4	To have clear idea aboutDensity of states of nanostructures	Derivation and group discussion	answers, Formative assessment II

3	Excitons in Nano semiconductors - Carbon in nanotechnology - Buckminsterfullere ne - Carbon nanotubes	4	To be able to determine theBuckminsterf ullerene and Carbon nanotubes	Lecture Illustration
4	Nano diamond - BN nano tubes - Nanoelectronics - Single electron transistor - Molecular machine - Nanobiometrics	4	To acquire knowledge on Single electron transistor and Nanobiometrics	Lecture discussion with illustration

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Course instructors: Dr. A. Lesly Fathima and Dr. (Sr). S. Sebastianmal

SEMESTER III

Course Name: MICROPROCESSORS AND MICROCONTROLLER

Course Code: PP2034

Hours/Week	Credits	Total Hours	Marks
6	4	90	100

Learning Objectives

- To provide an extensive knowledge about the architecture and assembly language programming of microprocessors 8085 & 8086 and microcontroller 8051.
- 2. To gain hands on experience in interfacing of 8085 microprocessor.

Course Outcome

COs	Upon completion of this course, students will be able to	PSOs addressed	CL
CO-1	Identify/ Explain the operation of various components of the microprocessor 8085 and microprocessor 8086	PSO-1	Α
CO-2	Relate and explain the various addressing modes and the instruction set of 8085 microprocessor	PSO-1	R
CO-3	Develop skill in writing simple programs for 8085 microprocessor	PSO-2	С
CO-4	Explain the architecture of 8051 microcontroller	PSO-1	U
CO-5	Understand the various interrupts of 8085 microprocessor	PSO-2	U

Modules Credits:4 Total contact hours: 90 (Including assignments and tests)

Unit	Section	Topics	Lectur	Learning	Pedagogy	Assessment/
			e	outcome		Evaluation
T	Mionon		hours			
Ι	-	processors 8085 Arc			1_	<u> </u>
	1	Intel 8085	4	To understand	Lecture	Evaluation
		microprocessor		the principle of	Discussion	through:
		: Introduction –		microprocessor,	with PPT	shorttest
		Pin		architecture and	illustration	
		configuration-		its operation		Class Test
		Architecture				
		and its				Multiple
	2	operations			T	choice
	2	Machine cycles of 8085- Interfacing of		To understand	Lecture	questions
		memory and I/O	4	the concept of	discussion	
		devices	4	machine cycles and interfacing		Quiz
				and interfacing		
						Formative
						assessment I
	3	Instruction	4	To know the	Lecture	_
	5	classification:	4	classification	discussion	
				of instructions	discussion	
		number of bytes, nature of operations-				
		nature of operations-		according to		
				their byte size		
				and its nature		
	4	Instruction format-	3	of operation	T t	_
	4	Vectored and non-	5	To distinguish	Lecture	
		vectored interrupts		between	discussion	
		vectored interrupts		vectored and		
				non-vectored		
				interrupts		
II	8085 A	ssembly Language	 Program	ming	1	<u> </u>
	1	Instruction set: Data	4	To understand	Lecture	Evaluation
		transfer operations -		the use of data	Locture	
		Arithmetic operations		transfer and	Illustration	through:
		1		u ansi ci anu	Inustration	unougn.

arithmetic instructions

PPT

	2	Logical operations- Branching and machine control operations -	4	To categorize the logical, branching and machine control operations and know its use while writing assembly language program To be able to	Lecture discussion PPT Lecture	Short test Quiz Assignment Formative assessment Class test
	5	Writing assembly language programs: Looping, counting and indexing		know the different addressing modes to access data	Illustration PPT	Open book test
	4	Stack – subroutine- Translation from assembly language to machine language		To understand about stack and subroutine	PPT Descriptive Lecture	
III	Microp	rocessor 8086				
	1	Intel 8086 microprocessor: Introduction – Architecture - Pin	4	To understand the architecture	Lecture with PPT Illustration	Evaluation through:
		configuration		and pin configuratio n of 8086		Class test Quiz
	2		3	configuratio	Question- answer session Lecture	Class test Quiz Multiple choice questions Formative assessment II

	1	Introduction to microcontroller and	3	To acquire knowledge on	Lecture	Evaluation through:
		embedded system- Difference between		microcontroll er and the	Discussion	Class test
		microprocessor and microcontroller		difference between microprocess	PPT	Quiz Short test
				or or microcontroll er		Formative assessment II
	2	8051 microcontroller: Pin configuration, Architecture and Key features. 8051 Data	4	To understand the pin configuration, architecture	Lecture Discussion	
		types and directives			РРТ	
	3	Instruction set: Data transfer instructions -	4	To be able to		
		Arithmetic instructions		understand the data transfer,		
1		– Logical instructions-		arithmetic and		
		<u> </u>		logical		
				logical instructions to		
				logical instructions to write		
				instructions to write assembly		
				instructions to write assembly language		
	4		4	instructions to write assembly language program		
	4	Branching instructions-	4	instructions to write assembly language program To know the		
	4	Branching instructions- Single bit instructions.	4	instructions to write assembly language program To know the addressing		
	4	Branching instructions-	4	instructions to write assembly language program To know the addressing modes of		
	4	Branching instructions- Single bit instructions. Addressing modes-	4	instructions to write assembly language program To know the addressing modes of 8051 and		
	4	Branching instructions- Single bit instructions. Addressing modes- Simple programs using	4	instructions to write assembly language program To know the addressing modes of 8051 and simple		
	4	Branching instructions- Single bit instructions. Addressing modes- Simple programs using	4	instructions to write assembly language program To know the addressing modes of 8051 and		

1	Basic concepts of programmable device - 8255 Programmable Peripheral Interface (PPI)	5	To have practical knowledge on angle of friction and cone of friction	Lecture with PPT	Evaluation through: Short test Class test Open book test
2	interface of ADC and DAC-8257 Direct Memory Access (DMA) controller	5	To understand the concept rectangular and triangular lamina.	Lecture Illustration	Quiz Assignment Formative assessment III
3	Basic concepts of serial I/O and data communication – interface of 8251 Universal Synchronous Asynchronous Receiver Transmitter (USART)		To be able to understand the basic concepts of serial input and output and data communicatio n	Lecture with PPT Illustrat ion	