No. of hours per week	No. of credits	Total No. of hours	Marks
6	4	90	100

Objectives

1. To have in depth knowledge in classical mechanics.
2. To enable students to develop skills in formulating and solving physics problems.
3. To study the kinematics of the rigid body through Euler equation.
4. To get knowledge in central force field and relativity.

CO	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	understand the basic mechanical concepts related to single and system of particles.	PSO - 1	U
CO - 2	apply various mechanical principles to find solution for physical problems.	PSO - 4	Ap
CO - 3	solve the equations of motion using Lagrangian, Hamilton and Hamilton-Jacobi equations.	PSO - 6	C
$\mathrm{CO}-4$	explain the origin of coriolis and centrifugal terms in the equation of motion in a rotating frame.	PSO - 1	R
$\mathrm{CO}-5$	understand and develop a scientific knowledge in central force problems and relativity	PSO - 7	U

Teaching Plan

Total contact hours: 90 (Including lectures, assignments and Tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I	Lagrangian Formulation					
	1	Lagrangian formulation: System of particles Constraints and degrees of freedom-	4	To understand the basic concepts of system of particles and	Illustration, Theoretical formulation, Lecture discussion	Evaluation through:

	4	Action Angle variable Application to Kepler problem in action angle variables. Eigen value equation Normal coordinates Normal frequencies of vibration Free Vibrations of linear tri atomic molecule.	4 4 4	characteristic function and explain the Action Angle variable To analyze the application to Kepler problem in action angle variables; To solve Eigen value equation. the Normal coordinates and Normal frequencies of vibration and to derive the normal frequencies of free vibrations of linear tri atomic molecule.	Illustration, theoretical formulation , Lecture discussion Illustration, PPT, theoretical formulation	Problem solving Formative assessment Deriving theoretical formulas Short test
IV	Kinematics of Rigid Body					
	1	Independent coordinates of rigid body - Orthogonal transformatio n - Properties of transformatio n matrix	4	To understand the concept of Independent coordinates of rigid body. To derive the Orthogonal transformatio n and Properties of transformatio n matrix	Illustration, theoretical formulation , Lecture discussion	Evaluation through: multiple choice questions Quiz, short questions
	2	Euler angle and Euler's theorem Infinitesimal	3	To derive Euler angle and Euler's theorem. To	Illustration, PPT, theoretical formulation	Problem solving

		rotation Coriolis force		understand the concept of Infinitesimal rotation and Coriolis force.		Formative assessment
	3	Angular momentum and kinetic energy of motion about a point Moment of inertia tensor - Euler's equations of motion	4	To derive the relation between the angular momentum and kinetic energy of motion about a point. To derive the Moment of inertia tensor and Euler's equations of motion.	Illustration, theoretical formulation , Lecture discussion	Deriving theoretical formulas Short test
	4	Force free motion of a symmetrical top - Heavy symmetrical top with one point fixed	4	To analyze the torque free motion of a symmetrical top and to discuss the heavy symmetrical top with one point fixed.	Illustration, PPT, theoretical formulation	
V		ce Problem an		Relativity		
	1	Reduction to the equivalent one body problemCentre of mass- Equation of motion and first integralclassification of orbits	3	To derive the reduced mass of the equivalent one body problem. To understand the concept of Centre of mass, Equation of motion and first integral. To discuss	Illustration, theoretical formulation , Lecture discussion	Evaluation through: multiple choice questions Quiz, short questions

				the classification of orbits based on the eccentricity.		Problem solving
	2	Kepler problem: Inverse- Square law of force Scattering in a central force field Transformati on of scattering to laboratory coordinates.	4	To derive the Kepler problem: InverseSquare law of force. To understand the concept of Scattering in a central force field. To transfer the scattering to laboratory coordinates.	Illustration, theoretical formulation , Lecture discussion	Formative assessment Deriving theoretical formulas
	3	Virial theorem Lorentz transformatio n Relativistic Mechanics Relativistic Lagrangian and Hamiltonian for a particle	4	To understand the Virial theorem. To derive the Lorentz transformatio n. To understand the concepts of Relativistic Mechanics and to derive the Relativistic Lagrangian and Hamiltonian for a particle.	Illustration, PPT, theoretical formulation , Lecture discussion	Short test
	4	Mass in Relativity - Mass and energy - Space-time diagram - Momentum vectors	4	To understand the concept of mass in relativity. To discuss the relation between	Illustration, PPT, theoretical formulation , Lecture discussion	

			Mass and energy; To analyze Space-time diagram and to derive the Momentum vectors.		

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.
Course Instructors: Dr.M.Priya Dharshini and Ms.S.Virgin Jeba

Semester I

Course Name: Mathematical Physics

Course Code: PP2012

No. of hours per week	No. of credits	Total No. of hours	Marks
6	4	90	100

Objectives

1. To emphasize the use of mathematical tools like evaluation of definite integrals
in the field of classical and quantum mechanics.
2. To demonstrate competence with a wide variety of mathematical techniques to enhance problem solving skills.

CO	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	apply the various theorems in complex analysis to evaluate definite integrals.	PSO -4	E
CO - 2	determine the series solutions and the recurrence relations (Bessel, Legendre and Hermite differential equations) and solve problems associated with them.	PSO -3	E
CO - 3	discuss the basic principles and methods used for the analysis of partial differential equations and apply the techniques to related problems.	PSO -4	C
CO - 4	discuss the concepts of Fourier, Laplace and inverse Laplace transform, tensors, group theory and their properties.	PSO -5	C
CO -5	develop expertise in mathematical techniques required in physics and to enhance problem solving skills.	PSO -6	An

Modules

Credit: 4
Total Hours:90 (Incl. Seminar \& Test)

Unit	Modul es	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment /Evaluation
I	Complex Analysis					
	1	Functions of Complex variableAnalytic functions - Cauchy Riemann equations in cartesian and polar forms - Harmonic functions - Cauchy's integral theorem	4	To be able to identify the analytic functions by using the Cauchy's Riemann equations	PPT, Theoretical formulation and Problem solving	Evaluation through: Online quiz, through Google Classroom
	2	Cauchy's integral formula Taylor's Series - Laurent series	3	To be able to evaluate the integrals using Cauchy's formula and able to apply the series in computational science and approximation	Analysis and Problem solving	on Problem solving Short questions Descriptive answers
	3	Cauchy's residue theorem Singular points of an Analytic function - Evaluation ofresidues - application to evaluation of definite integrals	4	To be able to apply the Cauchy's Residue theorem to evaluate the definite integrals of analytic functions	Analysis and Problem solving	Formative assessment
	4	Integration around a unit circle -Jordan's Lemma.	3	To be able to apply the Jordan's lemma to evaluate contour integrals	Analysis and Problem solving	
II	Polynomials					
	1	Legendre differential equation and Legendre functions Generating functions	4	To acquire basic understanding of the partial differential equations and learn some	Analysis and Problem solving	Evaluation through: Online quiz, through Google Classroom

				equations in different dimensions under certain boundary conditions		
IV	Tensors, Fourier and Laplace transforms					
	1	Contravarient and Covarient Tensors - Addition and Subtraction - Outer product inner product of tensors	3	To be able to solve mathematical problems involving tensors	Analysis and Problem solving	Evaluation through: Online quiz, through Google Classroom
	2	Contraction of a tensor Symmetric and anti-symmetric tensors - The Kronecker delta	3	To be equipped to use tensor algebra as a tool in the field of applied sciences	Analysis and Problem solving	Assignments on Problem solving
	3	Fourier transform- properties of Fourier transform - Fourier transform of a derivative	4	To be able to understand and apply the concept of Fourier transform to waveforms and spectra.	Analysis and Problem solving	Short questions Descriptive answers
	4	Laplace transform- properties of Laplace transform- Inverse Laplace Transform.	4	To be able to use the Laplace transform equations for solving boundary value problems by directly changing the ordinary differential equations into algebraic equations.	Analysis and Problem solving	Formative assessment
V	Group theory					
	1	Group postulates - Abelian group - Cyclic group - Group multiplication table - Rearrangement theorem Subgroups	3	To understand the mathematics of group theory	Descriptive lecture, Analysis and Problem solving	Evaluation through: Online quiz, through Google Classroom
	2	Isomorphism and Homomorphism - Symmetry elements and symmetry operations	4	To understand the symmetry and point group of molecules	Descriptive lecture, Analysis and Problem solving	Classroom Assignments on Problem solving

	3	Reducible and irreducible representations	3	To generate a representation and to reduce it to its irreducible representation	Descriptive lecture Analysis and Problem solving	Short questions
	4	The great orthogonality theorem - Character table for C_{2} \& $\mathrm{C}_{3} \mathrm{~V}$ point groups.	4	To determine the irreducibility of a reducible representation	Descriptive lecture Analysis and Problem solving	Descriptive answers

PO- Program outcome; LO - Learning outcome;
Cognitive Level R - Remember; U - Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Semester: I

Course Name: QUANTUM MECHANICS -I

Course code: PP2013

No. of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Objective

To help the students to acquire understanding of the fundamental concepts and mathematical tools necessary to solve the wave equations.

CO	Upon completion of this course, students will be able to:	PSO addressed	CL
CO -1	summarize the concept of wave function and the postulates of quantum mechanics.	PSO-1	U
CO -2	formulate time dependent and time independent equation and solve them for simple potentials.	$\mathrm{PSO}-4$	C
CO -3	evaluate the eigen values and eigen function spin and total angular momenta and determine the matrices.	PSO-4	E
CO -4	analyze the principles of quantum theory, equation of motion, scattering theory and angular momentum.	PSO-4	An

Modules

Credit:5

Total Hours:90 (Incl. Seminar \& Test)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I	Foundations of Wave Mechanics					

		Wave packet - Time dependent Schrödinger equation Interpretation of the wave function	4	To understand basic concepts of quantum mechanics by deriving group velocity, phase velocity and time dependent Schrodinger equation	PPT, Illustration and theoretical derivation	Evaluation through: Online quiz, Problem solving short questions Descriptive answers Formativ e assessme nt
		Admissibility conditions on the wave function - Hermitian operator - Postulates of quantum mechanics	4	To be able tounderstand the wave function and postulates of quantum mechanics	Illustration, Theoretical formulation Problem Solving	
		Simultaneous measurability of observables - General uncertainty relation Ehrenfest's theorem	4	To analyze observables and their properties	PPT, Theoretical formulation and Problem solving	
II	Eigen States and Many Electron Atoms					
	1	Square-well Potential with Rigid Walls- Square Potential Barrier -Alpha Emision- Time independent Schrodinger equation	3	To understand the basic concepts and features related to Square-well Potential	PPT Illustration, lecture, and Problem solving	Evaluation through: Online quiz, short questions Descriptive answers Problem solving Formative assessment
	2	Time dependent Schrödinger equation - Stationary states Eigen functions and eigen values	3	To relate time independent and time dependent Schrodinger equation	Descriptive lecturecompara tive study	
	3	Kronig Penny square well periodic potentialIndistinguishable ParticlesParticle Exchange Operator	3	Toformulate Kronig Penny square well periodic potential and operators	PPT, Theoretical formulation and Problem solving	

| 4 | $\begin{array}{l}\text { Symmetric and Antisymmetric } \\ \text { Wave Functions Pauli } \\ \text { Principle - Inclusion of spin }\end{array}$ | $\begin{array}{l}\text { III }\end{array}$ | | $\begin{array}{l}\text { To understand } \\ \text { Symmetric and } \\ \text { Antisymmetric } \\ \text { Wave } \\ \text { Functions }\end{array}$ | $\begin{array}{l}\text { Illustration, } \\ \text { Theoretical } \\ \text { formulation } \\ \text { and Problem } \\ \text { solving }\end{array}$ |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- |$]$

PO- Program outcome; LO - Learning outcome; Cognitive Level R - Remember; U -
Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create
Staff -in -charge :Ms.Sonia \& Ms.Aji Udhaya

Semester I

Course code: Numerical Methods

Course code: PP2016

No. of hours per week	No. of credits	Total No. of hours	Mar ks
6	4	90	100

Objective

To understand various numerical methods used to solve the physical problems.

CO	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	understand the various interpolation methods and finite difference concepts	PSO-1	U
CO-2	analyze the numerical solutions of linear and non linear equations	PSO-4	An
CO-3	utilize various numerical methods for differentiation and integration	PSO-4	Ap
CO-4	discuss the concepts of ordinary differential equations	PSO-5	C

Modules

Credit: 4

Unit	Sect ion	Topics	Lect ure hour s	Learning outcome	Pedagogy	Assessme nt/Evalua tion
I	Interpolation	4	To understand the basic concepts of interpolation	PPT, Illustration and theoretical derivation	Evaluation through: Online quiz,	
	1.	Introduction, Polynomial Forms, Linear interpolation.	4	To be able to solve the problems of Lagrange and Newton Interpolation	Illustration, Theoretical formulation Problem Solving	Problem solving
	2.	Lagrange Interpolation Polynomial, Newton Interpolation Polynomial		short		

	3.	Divided difference table, Interpolation with equidistance points, Spline interpolation	4	Tosolve theproblems\quad ofDivideddifference table,Interpolationwithequidistancepoints,\quad Splineinterpolation	PPT, Theoretical formulation and Problem solving	questions Descripti ve answers Formative assessmen t
II	Roots Of Nonlinear Equations					
	1	15 Hours Introduction, Methods of Solution, Iterative Methods, Starting and Stopping an Iterative Process, evaluation of Polynomials	3	To understand the basic concepts of Iterative Methods	PPT Illustration, lecture, and Problem solving	Evaluation through: Online quiz, short questions
	2	Bisection method, False Position Method, Newton- Raphson Method	3	To solve various methods like Bisection, False Position and Newton-Raphson Method	Descriptive lecture solving problems	ve answers Problem solving
	3	Secant Method, Fixed Point Method	3	To find the roots using Secant and Fixed Point Method	PPT, Theoretical formulation and Problem solving	Formative assessmen t
	4	Determining All Possible Roots.	3	To determine all Possible roots for the Polynomial equation	Illustration, Theoretical formulation and Problem solving	
III	Solutions of Linear Equations					

	1	15 Hours Need and Scope, Existence of Solutions, Solution by Elimination,	3	To understand the basics of elimination method	Illustration, Theoretical formulation and Problem solving	Evaluation through: Online quiz, short questions
	2	Basic Gauss Elimination Method, Gauss Elimination with Pivoting, Gauss- Jordan Method	2	To solve the problems of Gauss Elimination, Gauss Elimination with Pivoting and GaussJordan Method	PPT, Illustration, Theoretical formulation and Problem solving	Descripti ve answers Assignme
	3	Triangular Factorization Methods, Round-off Errors and Refinement, Ill- Conditioned Systems,	3	To understand the Triangular Factorization Methods and Round-off Errors	Illustration, Theoretical formulation and Problem solving	Assignme nt on applicatio ns Formative assessmen t
	4	Matrix Inversion Method, Jacobi Iteration Method, Gauss Seidel Method.	4	To solve the problems of Matrix Inversion Method, Jacobi Iteration Method and Gauss Seidel Method.	Illustration, Theoretical formulation comparative study and Problem solving	
IV	Numerical Differentiation and Integration					
	1	Numerical Differentiaton: Need and Scope, differentiatig continuous functions,	4	To understand the basic concepts of Numerical Differentiation	Theoretical formulation and Problem solving	Evaluation through: Online quiz, short questions
	2	Differentiating tabulated functions, Difference tables, Numerical Integration.	4	To solve problems for Difference tables and study the basics of Numerical Integration.	Theoretical formulation and Problem solving	Descripti ve answers Problem solving

	3	Trapezoidal Rule, Simpson's $1 / 3$ Rule, Simpson's 3/8 Rule, Higher Order Rules.	4	To solve problems using Trapezoidal Rule, Simpson's $1 / 3$ Rule and Simpson's 3/8 Rule	PPT Illustration, lecture, and Problem solving	Formative assessmen t
V	Numerical Solutions of Ordinary Differential Equations					
	1	15 Hours Need and Scope, Tailor Series Method - Improving accuracy,	3	To understand the basic concepts and features of Tailor Series	PPT Illustration, And problem solving	Evaluation through: Online quiz,
	2	Picard's method, Euler's Method - accuracy of Euler's method, .	3	To solve differential Equations using Picard's, Euler's Method, Euler's method,	problem solving	questions Descripti
	3	Heun's Method - Error analysis, Polygon Method,	3	To apply the concept of Heun's Method, Error analysis, Polygon Method to solve the equations	PPT Illustration, And problem solving	answers Problem Solving
	4	Runge-Kutta Methods- Determination of weights, Fourth order Runge-Kutta methods.	3	To apply RungeKutta Methods to solve the problems	PPT Illustration, And problem solving	Formative assessmen t

PO- Program outcome; LO - Learning outcome; Cognitive Level R Remember; U - Understand; Ap- Apply, An- Analyze; E-Evaluate; CCreate

Staff-in charge: Ms.Shally \& Ms.Lesly

Semester II

Course Name: Electromagnetic Theory

Course code: PP2021

No.of hours per week	No. of credits	Total No .of hours	Marks
6	4	90	100

Objectives

1. To provide knowledge on the propagation of electromagnetic radiation
2.To develop theoreticalknowledge,skillsonsolvinganalyticalproblemsinelectromagnetism.

CO	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	Summarize the fundamental laws of electrodynamics based On Maxwell's equations.	PSO-1	U
CO -2	Enumerate the concept of energy in electrostatic and Magnetostatic fields.	PSO-2	K
CO -3	Illustrate the electrical properties of materials; solve the Wave equation as plane waves in source.	PSO-5	Ap
CO -4	Analyze the wav epolarization and reflection/transmission of Plane waves in homogenous media.	PSO-4	An

Teaching Plan
Credits: 4
Total Hours: 90 (Incl. Seminar
\&Test)

Unit	$\begin{gathered} \text { Modu } \\ \text { le } \end{gathered}$	Topics	Lectur hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I	Electrostatics					
	1	Coulomb's law; the electric field - line, flux and Gauss's Law in differential form - theelectrostatic potential; conductors and insulators	4	Understand the concepts Electrostatic field and basicequations	PPT, Descripti ve lecture	Evaluation through: quiz, Problem

	2	Gauss's law - application of Gauss's law -curl of E - Poisson's equation; Laplace's equation	3	To understand the divergence and curl of E and its applications	Illustrati on, Descripti ve lecture	Descriptive answers
	3	work and energy in electrostatics energy of a point charge distribution energy of continuous charge distribution - inducedcharges capacitors.	4	Understand the basic concept of energy of a point charge and continuous charge distribution	Videos, group discussion	short questions
	4	Potentials: Laplace equation in one dimension and two dimensions -Dielectrics -induceddipolesGauss'sLawinthepresence ofdielectrics.	4	Solve solution of Laplace's equation in one and two dimension and understand the electric fields conductors and dielectrics	Semin ar, Lectur e	Formative assessment (I CIA)
II	Magnetostatics					
	1	Lorentz force - magnetic fields magnetic forces - currents - Biot-Savart Law - divergenceand curl of B	4	Understand the concept of magnetic fields, Biotsavart's law for a	PPT Illustrati on, Descripti ve	Evaluation through: quiz,
				line current	lecture	short questions Descriptive answers
	2	Ampere's Law $-\quad$ Electromagnetic induction - comparison of magnetostaticsand electrostatics -	4	To acquire knowledge on ampere's law magnd magetic vector potential	Lecture ,Videos	
	3	Magnetic vector potentialMagnetization: effect of magnetic field onatomicorbit-	4	To understand the effect of magnetic field on atomic orbit	Descripti ve lecture	Problem solving
	4	Ampere'sLawin magnetizedmaterialsferromagnetism.	3	Understand the ampere's law in magnetized materials	Descripti ve lecture, seminar	Formative assessment (I\&II CIA)

III	ElectromotiveForce					
	1	Ohm's Law - electromotive force motional emf - Faraday's Law -	4	Understand	t Illustrati on, Descripti ve lecture	Evaluation through: quiz,
	2	induced electric field -inductanceenergyinmagneticfield	3			short questions
	3	Maxwell'sequationinfreespacean dlinearisotrophicmediacontinuityequation Poyntingtheorem.	4	Solve the Maxwell's equations and pointing theorem	Descripti ve lecture	Descriptive answers Formative
	4	Waves in one dimension wave equation sinusoidalwaves reflectionandtransmissionPolarization.	4	Solve the wave equation. Reflection, transmission and polarization	Group Discussi on, Lecture, seminar	(I CIA)
IV	ElectromagneticWaves					
	1	The wave equation for E and B Monochromatic Plan waves - energy and momentum inelectromagnetic waves-	5	Understand the Wave equation, energy for E and B. Explain electromagnetic waves in matter	PPT Illustrati on, Descripti ve lecture.	Evaluation through quiz, Descriptive
	2	electromagnetic waves in matters -TE waves in rectangular waveguides - the co-axial transmission line	5	Explain in brief the reflection and transmission at normal incidence and oblique incidence	Lectur e, Group discussi on	answers short questions Assignment
	3	Potentials: potentials and fields scalar and vectorpotentials Gauge transformation - Coulomb Gauge and Lorentz Gauge Lorentz force lawinpotentialform.	5	Understand the concept of Coulomb gauge and Lorentz gauge	Lectu re, semin ar	Formative assessment (II CIA)

V	Application ofElectromagneticWaves					
	1	Boundary conditions at the surface of discontinuity - Reflection and refraction of E.M wavesat the interface of non Conducting media	4	Understand the concept of four vectors, Minkowski force	PPT Illustrati on, Descripti ve lecture	Evaluation through: quiz, short questions
	2	Kinematic and dynamic properties Fresnel'sequation - Electric field vector 'E' parallel to the plane of incidence and perpendicular to theplane of incidence	4	To acquire knowledge on the Maxwell's equations in four vector form.	Descripti ve lecture	Descriptive answers Problem solving
	3	Reflection and transmission coefficients at the interface between twonon-Conductingmedia	4	To acquire theLagrangianand Hamiltonian force equations	Descripti ve lecture, Seminar, Assignmen t	Formative assessment (II CIA)
	4	Brewster'slawanddegreeofpolariz ation-Totalinternalreflection.	3	Understand the brewster's law and degree polarization	Illustrati on, Descripti ve lecture	

PO- Program outcome; LO - Learning outcome; Cognitive Level U - Understand; Ap- Apply, An- Analyze; KKnowledge

Course Instructor :Ms. S. Virgin Jeba
Semester: III
Course Name: Electronics
Course code: PP2031

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

1. To impart in depth knowledge about Semiconductors, diodes, Transistors, Operational Amplifiers, Memories and converters etc
2. To provide knowledge in the basic structure and working concepts of electronic devices.
3. To acquire application skills involving digital integrated circuit.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	Understand the basic operation, and features related to diodes, transistor, op-amps, converter and interpret their applications	PSO-1	U

CO 2	Explain about the internal circuitry and logic behind semiconductor memory devices.	PSO-2	U
CO 3	Assess the working of diodes, transistor, op-amps and converters.	PSO-3	E
CO 4	Design various filter circuits.	PSO-6	C
CO 5	Interpret the Internal Architecture of memory devices	PSO-4	An

Modules
Total contact hours: 90 (Including lectures, assignment and tests)

Unit	Section	Topics	Lecture Hours	Learning outcomes	Pedagogy	Assessment/Evaluation
I	SemiconductorDiodes					
	1	Introduction to Semiconductor - Intrinsic Semiconductor - Extrinsic Semiconductor	4	Define the basis of Semicondu ctor	PPT, Illustration and theoretical derivation, Circuit designing	Evaluation through: Online quiz, Problem solving short questions Descriptive answers
	2	P-type- N-Type - PN Junction diode-Crystal Diode	4	Apply various junction diodes and Crystal Diode	Derivation and group discussion, Circuit designing	Formative assessment I

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 3
4 \& \begin{tabular}{l}
Zener diodeLED - \\
Varactor Diode -Tunnel diode \\
Photo diode schottky diode - Impatt diodeCharacteristics and Applications.
\end{tabular} \& 4

3 \& | Derivation of current voltage relations |
| :--- |
| ApplyChara cteristics and |
| Application s. | \& PPT, Illustration, Theoretical formulation Circuit designing Derivation and group discussion Circuit designing \&

\hline II \& \multicolumn{6}{|l|}{Transistor Biasing and opto Electronic Devices}

\hline \& 1 \& Thevenin's and Norton's theorems \& 4 \& Solve Thevenin's and Norton's theorems \& | PPT, |
| :--- |
| Derivation discussion Circuit designing | \& | Evaluation through: Online quiz, |
| :--- |
| Problem solving |

\hline \& 2 \& Transistor action- PNPNPN transistors - Transistor biasing and stabilization \& 4 \& Define and derive equations \& Derivation and group discussion problem solving Circuit designing \& Descriptive answers Formative assessment I

\hline
\end{tabular}

| | $\mathbf{3}$ | Need for
 biasing- DC
 load line-
 operating point-
 Bias stability- | $\mathbf{3}$ | Statement
 and proof
 of operating
 point | Illustration,
 Theoretical
 formulation
 Circuit
 designing |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

	$\begin{gathered} \text { I and I to V } \\ \text { converter - Op- } \\ \text { amp stages } \\ \hline \end{gathered}$				Descriptive answers Formative assessment I/II
2	Equivalent circuits - Sample and Hold circuits. Applications of Op-Amp: Inverting, Noninverting Amplifierscircuits	3	Define and derive Inverting ad Noninverting Amplifiers	Illustration, Theoretical formulation Circuit designing	
3	Adder- Subtractor- Differentiator- Integrator- Electronic analog Computation solving simultaneous and differential equation - . Schmitt Trigger - Triangular wave generator -Sine wave generator	4	Define and Derive Adder-SubtractorDifferentiator - Integrator	Derivation and group discussion, PPT Circuit designing	

	4	Active filters: Low, High and Band pass first and second order Butterworth filters - wide and narrow band reject filters.	4	Define, deriveand apply Active filters	PPT, Illustration, Theoretical formulation Circuit designing	
IV	Semiconductor Memories					
	1	Classification of memories and sequential memory - Static Shift Register and Dynamic Shift Register	4	Discuss different types ofmemories and sequential memory	Derivation discussion Circuit designing	Evaluation through: Online quiz, Problem solving short questions Descriptive answers

$\mathbf{2}$	ROM, PROM and EPROM principle and operation Read \& Write memory - Static RAM, dynamic RAM, Content Addressable Memory	$\mathbf{3}$	Define and derive principle and operation	Derivation and group discussion, PPT	Formative assessment II	
$\mathbf{3}$	Content Addressable Memory - principle, block diagram and operation. Programmable Logic Array (PLA) - Operation, Internal Architecture	$\mathbf{4}$	Define and Derive different types of Content Addressable Memory	Derivation and group discussion Circuit designing		

	$\mathbf{1}$	Sampling theorem-Time division multiplexing - Quantization-	$\mathbf{3}$	Analyse Fundamental Sampling theorem	Discussion PPT Circuit designing	Evaluation through: Online quiz,
Problem solving						
short questions						

	$\mathbf{4}$	Voltage to Frequency conversion and Voltage to Time conversion .	$\mathbf{4}$	Define, deriveand apply Voltage to Frequency conversion	Derivation and group discussion,
PPT Circuit designing					

PO- Program outcome; LO - Learning outcome; Cognitive Level R - Remember; U - Understand; ApApply, An- Analyze; E-Evaluate; C- Create

Staff-in charge: Ms.C.Nirmala Louis \& Ms.Jenepha Mary

Semester III

Course Name : Condensed Matter Physics - II

Course code: PP2023

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

1. To develop analytical thinking to understand the phenomenon that decide various properties of solids thereby equip students to pursue higher learningconfidently.

Course Outcome

CO	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	Understand the theory of dielectrics and analyze the dielectric properties of materials.	PSO - 1	An
CO - 2	Explain various types of magnetic phenomenon and their properties and applications.	PSO - 4	E

CO -3	Elaborate the properties and applications of superconductors.	PSO -4	C
$\mathrm{CO}-4$	Apply the obtained concepts to challenges in condensed matter physics	PSO -6	Ap

Modules
Total contact hours: 90 (Including lectures, assignment and tests)

Unit	Secti on	Topics	$\begin{gathered} \hline \text { Lectur } \\ \text { e } \\ \text { Hours } \\ \hline \end{gathered}$	Learning outcomes	Pedagogy	Assessment/Evaluat ion
I	Theory of Dielectrics:					
	1	Dipole moment Polarization The electric field of a dipole Local electric field at an atom Clausius Mosottiequation Dielectric constants and its measurements	4	To acquire knowledge on polarization and Dielectric constants	cture Discussion with PPT illustration	
	2	Polarizability The Classical theory of electronic polarizability Ionic polarizabilities Orientational polarizabilities The polarizability catastrophe	4	To be able to understand the ofelectronic polarizability Ionic polarizabilities	cture disc ussi on wit h illu stra tion , De riva tion and gro up disc ussi on	$\begin{aligned} & \text { valuation } \\ & \text { through: } \\ & \text { Online } \\ & \text { quiz, } \\ & \text { lass test, } \\ & \text { Formative } \\ & \text { assessment I } \end{aligned}$
	3	Dipole orientation in solids - Dipole relaxation and dielectric losses Debye Relaxation time Relaxation in solids	4	To be able to find out the Debye Relaxation time	PPTIllustration	

	4	Complex dielectric constants and the loss angle - Frequency and temperature effects on Polarization Dielectric breakdown and dielectric loss	3	To understand the different Dielectric breakdown and dielectric loss.	Derivation and group discussion	
II	Theory of Ferroelectrics and Piezo Electrics					
	1	Ferroelectric Crystals - Classifications of Ferroelectric crystals - Dipole theory offerroelectricity Landau Theory of the phase transition	4	To be able to classify Ferroelectric crystals	Lecture discussion with illustration	Evaluation through: Online quiz, Short questions, Descriptive answers, Formative assessment I
	2	Second order Transition - First Order Transition - Ferroelectric Transition - One- Dimensional Model of the Soft Mode of Ferroelectric Transitions	4	To understand the difference between first order transition and second order transition	Derivation and group discussion problem solving Circuit designing	
	3	Antiferroelectricity - Ferroelectric domains - Ferroelectric domain wall motion - Piezoelectricity	3	To acquire knowledge on Piezoelectricitya nd Ferroelectric domain wall motion	LectureIllustrat ion,	
	4	Phenomenological Approach to Piezoelectric Effects - Piezoelectric Parameters and Their Measurements -	4	To understand the concept of Piezoelectric Parameters and Their Measurements	Lecture Discussion	
		Piezoelectric Materials				
III	Magnetic properties of Materials:					

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 1

2 \& Terms and definitions used in magnetism Classification of magnetic materials - Atomic theory of magnetism - The quantum numbers \& 4 \& To have clear idea about Classification of magnetic materials \& Illustration, discussion \& \multirow[t]{4}{*}{| Evaluation through: Online quiz, |
| :--- |
| Short questions, Descriptive answers, Formative assessment I/II |}

\hline \& 2 \& | The origin of permanent magnetic moments |
| :--- |
| - Langevin's classical theory of diamagnetism Sources of paramagnetism Langevin's classical theory of paramagnetism Quantum theory of paramagnetism | \& 3 \& To acquire knowledge ondiamagnetism and paramagnetism \& Derivation and group discussion \&

\hline \& 3 \& Paramagnetism of freeelectrons Ferromagnetism The Weiss molecular field Temperature dependence of Spontaneous magnetization \& 4 \& To understand the concept of Paramagnetism of freeelectrons and Spontaneous magnetization \& Derivation and group discussion, PPT Illustration \&

\hline \& 4 \& | The physical origin of Weiss Molecular field - |
| :--- |
| Ferromagnetic domains - Domain theory - |
| Antiferromagnetis m-Ferrimagnetism - Structure ofFerrite | \& 4 \& To be able to determine the Antiferromagnet ismand Ferrimagnetism \& Derivation And Lecture Illustration \&

\hline IV \& \multicolumn{6}{|l|}{Superconductivity:}

\hline
\end{tabular}

| $\mathbf{1}$ | Occurrence of
 super conductivity
 - Destruction of
 super conductivity
 by magnetic fields
 - Meissner Effect
 Type I and Type II
 Super conductors | $\mathbf{4}$ | To know the
 principlesof
 super
 conductivity and
 Meissner Effect | Derivation and
 discussion | Evaluation
 through: Online
 quiz, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | short questions,
 Descriptive
 answers, | | |

	confinement - Qualitative and Quantitative description - Density of states of nanostructures		idea aboutDensity of states of nanostructures	group discussion	Formative assessment II

	$\mathbf{3}$	Excitons in Nano semiconductors - Carbon in nanotechnology - Buckminsterfullere ne - Carbon nanotubes	$\mathbf{4}$	To be able to determine theBuckminsterf ullerene and Carbon nanotubes	Lecture Illustration
	$\mathbf{4}$	Nano diamond - BN nano tubes - Nanoelectronics - Single electron transistor - Molecular machine - Nanobiometrics	$\mathbf{4}$	To acquire knowledge on Single electron transistor and Nanobiometrics	Lecture discussion with illustration

PO- Program outcome; LO - Learning outcome; Cognitive Level R - Remember; U - Understand; ApApply, An- Analyze; E-Evaluate; C- Create
Course instructors: Dr. A. Lesly Fathima and Dr. (Sr). S. Sebastiammal

SEMESTER III
Course Name: MICROPROCESSORS AND MICROCONTROLLER
Course Code: PP2034

Hours/Week	Credits	Total Hours	Marks
$\mathbf{6}$	$\mathbf{4}$	$\mathbf{9 0}$	$\mathbf{1 0 0}$

Learning Objectives

1. To provide an extensive knowledge about the architecture and assembly language programming of microprocessors 8085 \& 8086 and microcontroller 8051.
2. To gain hands on experience in interfacing of 8085 microprocessor.

Course Outcome

COs	Upon completion of this course, students will be able to	PSOs addressed	CL

CO-1	Identify/ Explain the operation of various components of the microprocessor 8085 and microprocessor 8086	PSO-1	A
CO-2	Relate and explain the various addressing modes and the instruction set of 8085 microprocessor	PSO-1	R
CO-3	Develop skill in writing simple programs for 8085 microprocessor	PSO-2	C
CO-4	Explain the architecture of 8051 microcontroller	PSO-1	U
$\mathbf{C O - 5}$	Understand the various interrupts of 8085 microprocessor	PSO-2	\mathbf{U}

Modules

Credits: 4

Total contact hours: 90 (Including assignments and tests)

Unit	Section	Topics		Learning outcome	Pedagogy	Assessment/ Evaluation
I	Microprocessors 8085 Architecture					
	1	Intel 8085 microprocessor : Introduction Pin configurationArchitecture and its operations	4	To understand the principle of microprocessor, architecture and its operation	Lecture Discussion with PPT illustration	Evaluation through: shorttest Class Test Multiple choice
	2	Machine cycles of 8085- Interfacing of memory and I/O devices	4	To understand the concept of machine cycles and interfacing	Lecture discussion	questions Quiz Formative assessment I
	3	Instruction classification: number of bytes, nature of operations-	4	To know the classification of instructions according to their byte size and its nature of operation	Lecture discussion	
	4	Instruction formatVectored and nonvectored interrupts	3	To distinguish between vectored and non-vectored interrupts	Lecture discussion	

II	8085 Assembly Language Programming						
	1		Instruction set: Data transfer operations Arithmetic operations	4	To understand the use of data transfer and arithmetic instructions	Lecture Illustration PPT	Evaluation through:

2		Logical operations- Branching and machine control operations -	4	To categorize the logical, branching and machine control operations and know its use while writing assembly language program	Lecture discussion	PPT

| 3 | Memory addressing: 8-
 bit data from even and
 odd address bank, 16-
 bit data from even and
 odd address bank-
 Addressing modes | 4 | To acquire
 knowledge on
 memory
 addressing
 and
 addressing
 modes | Lecture
 with PPT
 Illustration | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 4 | Interrupts: Hardware
 interrupts - Software
 interrupts - Interrupt
 priorities- Simple
 programs. | 4 | To understand
 the concept of
 interrupts and
 difference
 between
 hardware and
 software
 interrupts | Lecture
 PPT | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IV | Microcontroller 8051 Architecture and Programming | | | | |

| 3 | Instruction set: Data
 transfer instructions -
 Arithmetic instructions
 - Logical instructions- | 4 | To be able to
 understand the
 data transfer,
 arithmetic and
 logical
 instructions to
 write
 assembly
 language
 program | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | Branching instructions-
 Single bit instructions.
 Addressing modes-
 Simple programs using
 8051 instruction set. | To know the
 addressing
 modes of
 8051 and
 simple
 programmes
 using
 instruction set | | |

	1	Basic concepts of programmable device - 8255 Programmable Peripheral Interface (PPI)	5	To have practical knowledge on angle of friction and cone of friction	Lecture with PPT	Evaluation through: Short test Class test Open book test
	2	interface of ADC and DAC-8257 Direct Memory Access (DMA) controller	5	To understand the concept rectangular and triangular lamina.	Lecture Illustration	Quiz Assignment Formative assessment III
	3	Basic concepts of serial I/O and data communication interface of Universal Synchronous Asynchronous Receiver Transmitter (USART)	5	To be able to understand the basic concepts of serial input and output and data communicatio n	Lecture with PPT Illustrat ion	

