DEPARTMENT OF PHYSICS

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

Teaching Plan

Semester: I

Course Name: MECHANICS Course code: PC2011

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Objective: To impart knowledge on basic aspects of dynamics, conservation laws, kinematics, collisions and elasticity.

Course Outcomes

COs	Upon completion of this course, students will be able to	PSO addressed	CL
CO – 1	understand and define the laws involved in mechanics	PSO1	U
CO – 2	apply conservation laws in collision experiments	PSO2	Ap
CO – 3	interpret the principles of gravitation and moment of inertia through theory and experiments	PSO3	Ар
CO – 4	analyze the fundamentals of center of mass and rocket motion	PSO2	An
CO – 5	apply pressure-velocity relation in fluid flow in the field of fluid dynamics	PSO3	Ар

Modules

Credits: 4 Total contact hours: 60 (Including assignments and tests)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
			hours	outcome		Evaluation
Ι			Laws	of Motion		
	1	Laws of	2	To understand	Lecture	Evaluation
		conservation of		the concept of	Discussion	through
		energy, linear		conservation	with PPT	short test
		momentum and		of energy.	illustration	
		angular momentum				Multiple
		– work energy				choice
		theorem				questions
	2	work done by	2	To be able to	Lecture	
		gravitational force –		derive the	discussion	
		work done by spring		workdone by	with	Formative
		force – potential		gravitational	illustration	assessment I
		energy –		and spring		
		conservative and non		force and		
		conservative forces –		distinguish		
		potential energy		conservative		
		curve		and non		
				conservative		
	2		2	Torces	T /	
	3	Collision – Elastic	3	To know the	Lecture	
		and inelastic		principles of	discussion	
		collision(Fundament		collision		
		ai laws of impact) –				
		import coefficient				
		impact – coefficient				
		of restitution		1		

	4	Impact of a smooth	3	To distinguish	Lecture	
		sphere on a fixed		between	discussion	
		plane – Direct		direct impact		
		impact between two		and oblique		
		smooth spheres –		impact		
		Oblique impact		between two		
		between two smooth		smooth		
		spheres –		spheres		
		Calculation of final				
		velocities of the				
		spheres – Loss of				
		K.E due to impact				
II			Dynamics	of Rigid Body		
	1	Moment of inertia –	2	To understand	Lecture	Short test
		Theorems of		the concept		
		perpendicular and		moment of	Illustration	Quiz
		parallel axes		inertia		
		_				
	2	M.I of a circular	3	To categorize	Lecture	Assignment
		ring, disc, solid		moment of	discussion	
		sphere, hollow		inertia of		Formative
		sphere and cylinder		different		assessment
		about all axes		objects.		
	3	Compound	4	To be able to	Lecture	
		pendulum – theory –		find the		
		equivalent simple		acceleration	Illustration	
		pendulum –		due to gravity		
		reversibility of		at a place		
		centers of oscillation				
		and suspension –				
		determination of g				
		and k				
III			Gra	vitation		
	1	Newton's law of	2	To recall the	Lecture	
		gravitation –		concept of	with PPT	
		Kepler's laws of		collision and	Illustration	Former
		gravitation – G by		to recognize		Formative
		Boy's method –		the impact of		assessment II
		Mass and density of		smooth		
		earth		spheres.		
	2	Acceleration due to	3	To understand	Question-	
		gravity – Variation		the variation	answer	
		of g with altitude,		of g with	session	
		depth and rotation of		altitude, depth		
		earth – Value of g at		and rotation of	Lecture	
		poles and equator		earth		

	3	Gravitational field –	3	To understand	Lecture	
		Gravitational		the concept	with PPT	
		potential –		gravitational	Illustration	
		Gravitational		potential		
		potential due to		1		
		spherical shell –				
		Gravitational				
		potential due to a				
		solid sphere (inside				
		and outside)				
IV			Central H	Force Motion		
	1	Angular velocity,	3	To acquire	Lecture	
		angular momentum		knowledge on		
		and K.E of rotation –		angular	Discussion	Formative
		Torque and angular		velocity and		assessment II
		acceleration –		angular		
		Relation between		momentum.		
		them – Expression				
		for acceleration of a				
		body rolling down				
		an inclined plane				
		without slipping				
	2	Center of mass –	6	To understand		
		Velocity and		the concept	Lecture	
		acceleration of		centre of mass		
		centre of mass –			Discussion	
		Determination of				
		motion of individual				
		particle – System of				
		variable mass. Rocket				
		motion-				
		Satellite				
V		S	tatics and	Hydrodynamics	T	
	1	Friction-laws of	3	To have	Lecture	Short test
		friction–Angle of		practical	with PPT	_ .
		friction–Cone of		knowledge		Formative
		friction – Centre of		on angle of		assessment
		gravity – Solid and		friction and		III
		hollow tetrahedron-		cone of		
		solid and hollow		friction		
		hemisphere				

2	Centre of pressure-	3	То	Brain
	vertical rectangular		understand	storming
	lamina – vertical		the concept	session.
	triangular lamina		rectangular	
			and	Lecture
			triangular	
			lamina.	Illustration
3	Hydrodynamics –	3	To be able to	Lecture
	Equation of		understand	with PPT
	continuity-Pitot's		the principles	
	tube and		in	Illustration
	Venturimeter –		hydrodynami	
	Euler's equation of		cs.	
	unidirectional flow –			
	Torricelli's theorem			
	– Bernoulli's			
	theorem and its			
	applications			

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Dr.LeslyFathima & Sr.Sebastianmal

Semester: I Course Name: Allied Physics I Course code: AP2011

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Objectives

To understand the concept of strength of materials, viscous properties of liquids, heat transformation from one place to another, converting heat to do mechanical work and basic properties of light such as interference and diffraction.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	Understand the fundamental concepts of Physics.	PSO-1	U
CO – 2	Analyse the concepts and study the applications of Thermodynamics, material properties heat and optics.	PSO-2	An
CO – 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ap
CO – 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	R

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι		Properties of M	latter			
	1	Young's modulus – Rigidity modulus – Bulk modulus – Poisson's ratio (definition alone) Bending of beams – Expression for bending moment	2	To understand the basic concepts of Young's modulus and its definition To study the Bending of beams and define Expression for bending moment	Illustration and lecture Illustration and theoretical derivation	Evaluation through: quiz, short questions Multiple choice, questions,
	2	Determination of Young' modulus – uniform and non uniform bending. Expression for Couple per unit twist	2	To determine uniform and non- uniform bending and study couple per unit twist	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas Problem
	3	Work done in twisting a wire – Torsional oscillations of a body– Rigidity modulus of a wire and M.I. of a disc by torsion pendulum	3	To understand working of torsion pendulum	Lecture and theoretical derivation	solving Formative assessment
II		Viscosity	-			
	1	Viscosity – Viscous force – Co- efficient of viscosity – Units and dimensions	3	To understand the basic concepts of viscosity and study its units	Illustration, Theoretical formulation Problem Solving	Evaluation through: quiz, short test
	2	Poiseuille's formula for co- efficient of viscosity of a liquid – Determination of co- efficient of viscosity using burette and comparison of Viscosities.	3	To determine Poiseuille's formula and determine the co- efficient	Lecture , Theoretical formulation Practical demonstration	Assignment on applications. Problem
	3	Bernoulli's theorem – Statemen and proof – Venturimeter – Pitot tube.	2	To understand the concept of venturimeter and Pitot tube.	Lecture , Illustration, Theoritical formulation Practical	Solving Formative assessment
III		Conduction, Convection	and Radiati	on		
	1	Specific heat capacity of solids and liquids – Dulong and Pettit's law	2	To understand the basic concepts of specific heat capacity	Illustration and lecture	Evaluation through: quiz, short questions

	2	Newton's law of cooling -	2	To use the law of	Illustration and	
	2	Specific heat capacity of a liquid	_	Newtons law of	theoretical	
		by cooling		cooling to find	derivation	Multiple
				specific capacity	uon unon	choice,
				of liquid		questions,
	3	Thermal conduction –Coefficient	1	To understand the	Illustration,	•
		of thermal conductivity by Lee's		basic concepts of	theoretical	
		disc method.		conduction mode	derivation and	
				of heat transfer	Demonstration	Deriving
				through .		theoretical
		~	1	experiment		Tormulas
	4	Convection process – Lapse rate	1	To define	Illustration and	— .
		– Greenhouse effect		convection mode	lecture	Formative
				of heat transfer		assessment
				and study its		
	5	Black body radiation – Planck's	2	To deduce laws	Illustration	
	U	radiation law – Rayleigh Jean's		related to heat	theoretical	
		law Wien's displacement law –		transfer through	derivation and	
		Stofen's law of rediction		radiation	Demonstration	
137		Thormodynau	mias			
1 V		The mouyna	incs			
	1	Zeroth and First Law of	2	To understand the	Lecture,	Evaluation
		thermodynamics – Second law of		basic concepts of	Demonstration,	through:
		thermodynamics		laws of	theoretical	quiz, short
	2		2	thermodynamics	formulation	questions
	2	Carnot's engine and Carnot's	5	To analyse the	Lecture,	Multiple
		cycle – Efficiency of a Carnot s		Various aspects of	bemonstration,	choice,
		engine		Carnot engine	formulation	Questions,
	3	Entropy – Change in entropy in	3	To understand the	Lecture	theoretical
	5	reversible and irreversible	C	concept of	Demonstration	formulas
		process. Change in entropy of a		entropy and its	theoretical	Formative
		process – Change III entropy of a		applications	formulation	assessment
		perfect gas – Change in entropy		11		
		when ice is converted into steam.				
V		Optics				
	1	Interference – Conditions for	3	To understand the	Illustration,	Evaluation
		interference maxima and minima		basic concepts of	I neoretical	through:
		– Air wedge – Thickness of a		nuerierence	Demonstration,	quiz, Deriving
		thin wire – Newton's rings –		its application		theoretical
		Determination of wavelength				formulas
		using Newton's rings.				101110100
	2	Diffraction – Difference between	2	To understand the	Lecture,	
		diffraction and interference –		basic concepts of	Demonstration,	

	Theory of transmission grating		diffraction	Theoretical	Assignment
	 Normal incidence 		phenomena and	formulation	on
			its application		applications
3	Optical activity – Biot's laws	3	To understand the	Lecture,	
	—		basic concepts of	Demonstration,	Formative
	Specific rotatory power				
	—				
	Determination of		optical activity	Theoretical	assessment
	specific				
	rotatory power using Laurent's		phenomena and	formulation	
	half shadepolarimeter.		its application		

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Ms.Aji Udahya

Semester I Non Major Elective Course - I Course Name: Physics in Everyday Life - I Course Code: PNM201

No. of hours per week	No of credits	Total no of hours	Marks
2	2	30	100

Objectives

- 1. To introduce the basic concepts in physics and their applications in everyday life.
- 2. To understand the physics concept applied in day to day life situations.

Course Outcomes

СО	Upon completion of this course, students will be able to:	PSO's	CL
		addresed	
CO – 1	understand their knowledge of basic scientific principles	PSO1	U
	and fundamental concepts in physics.		
CO – 2	recall the various phenomena of sound waves applied in	PSO2	R
	day today life		
CO – 3	understand the basic laws of physics and different forces	PSO1	Ap
	involved in nature.		
CO – 4	explain the Physics concepts behind sports	PSO3	E
CO – 5	categorize different characteristic nature of light and its	PSO1	C
	properties like refraction, reflection and diffraction.		

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture	Learning	Pedago	Assessment/
			hours	outcome	gy	Evaluation
Ι		lynamics				
	1	Introduction- Elasticity- Elastic behaviour of materials- Elastic energy- Elastic and Plastic Deformation- Polymers and elastomers- Application of Elastic behaviour of materials	1	To understand the fundamental concepts in elastic behaviour of materials	Lecture, PPT	Quiz, test, Formative assessment (I)
	2	Surface Tension -Concept behind Surface Tension- Examples of surface Tension , Capillary action- Experiment- Examples of capillary action	2	To apply Surface tension effects in day today lie situation.	Lecture, Demonstra tion	
	3	Viscosity - definition - Applications of Viscosity.	1	To understand the concept viscosity	Lecture	

II			S	ound		
	1	Introduction- frequency spectrum of Sound waves - The Human voice-How does the ear hears?-	1	To understand the basic properties of sound	Lecture, Demons- tration	
	2	Amazing Abilities of Sound Basic characteristics of sound-	1	To be able to understand the basic characteristics of sound	Lecture,	_ Quiz test,
	3	Reflection of Sound-echo- Interference -Application of reflection of sound wave	1	To understand the fundamental concept of reflection	Lecture	Formative assessment
	4	Ultra sound: Properties and applications of ultrasound-Applications of sound in human life.	1	To understand the applications of ultrasonic	Lecture, PPT	
III		·	Me	chanics		
	1	Introduction- terms used in mechanics- Centripetal and centrifugal forces-	1	To understand Centripetal and centrifugal forces	Lecture	Assignments,

		Contact and non contact forces				
	2	Friction and its types- Newton's laws of motion-	2	To understand friction and its	Lecture, PPT	
		gravity		types		Formative assessment
	3	Mass and weight- Mechanics in everyday life.	1	To understand the relation between mass and weight and apply the mechanics in day to day life	Lecture, PPT	
IV		Bior	nechanic	s in Sports		
	1	Forces and torques in Bio Mechanics- Centre of gravity	1	To understand the forces, normal reaction, friction		
	2	Physics of walking – Physics of cycling – Physics of long jump	1		Lecture, PPT	
	3	Physics of swimming, volleyball and basketball	2	To understand the forces, normal reaction, friction,	Lecture, PPT	
V			Renewa	ble Energy		

1	Solar power – Applications - Wind power and applications - Applications - Hydroelectric power and its uses	2	Understand the natural power	Lecture, PPT	
2	Biogas plant and its advantages -	1	To use the biogas resources in day	Lecture, PPT	Quiz, Assignments
3	Advantages and disadvantages of renewable energy sources.	1	To understand the pros and cons of these resources	Lecture, PPT	

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructor: S.J.Jenepha Mary

Semester: III Course Name: Heat and Thermodynamics Course Code: PC2031

Hours /Week	Credits	Total Hours	Marks
4	4	60	100

Objectives

- 1. To understand the phenomena connected with various units of measurement of temperature, knowing the concept of specific heat capacities of matter and transmission ofheat.
- 2. To introduce the concept of lowering the temperature, liquefying gases and process of making heat to do mechanicalwork.

	Course Outcomes		
COs	Upon completion of this course, students will	PSO	CL
	be able to:	addressed	
CO-1	understand experimental methods to determine	PSO - 4	U
	the transmission of heat.		
	analyze the work and heat interactions		
CO-2	associated with a prescribed process path and to perform a analysis	PSO - 1	An
	of a flow system		
	understand the basic concepts of thermodynamics like system,		
CO-3	properties, equilibrium, pressure, specificvolume,	PSO - 4	U
	temperature and the laws of thermodynamics		

CO-4	evaluate entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process fromsuch calculations.	PSO - 3	An
CO-5	analyze Maxwell's thermo dynamical relations and their applications	PSO - 5	Е

Teaching Plan

Total contact hours: 60 (Including lectures, assignments and Tests)

Unit	Module	Topics	Lectur e hours	Learning outcome	Pedagog y	Assessment/ Evaluation
Ι		Thermome	try and C	alorimetry		
	1	Platinum resistance thermometer - Calendar and Griffith's bridge	1	Describe the theory behind different thermomet ers	Lectur e discus sion PPT	Multiple Choice Questions
	2	Thermoelectric effect – Seebeck effect – Thermoelectric thermometers- International temperature scale – Thermistor-	2	Able to explain thermoelecti c effects	Lecture demons tration PPT	Quiz,
	3	Specific heat capacity of Solids – Regnault's method of mixtures(solid) – specific heat capacity of liquids – Callendar and Barnes method.	3	Able to determin e the specific heat capacity of solids and liquids	Lecture demons trati on PPT	Formative Assessment I

4	Specific heat capacity of gases – Cp and Cv – Meyer's relation – Cv by Joly's differential steam calorimeter method – Cp by Regnault's method.	3	Able to determine the specific heat capacity of gasses.	PPT Lectur e discus sion	Assignment
---	---	---	---	--------------------------------------	------------

II		Low Temperature Physics						
	1	Joule - Kelvin effect - Liquefaction of Air-Linde's Process –liquefaction of hydrogen - liquefaction of helium-Kammerling - Onne's method	3	Describi ng the process of liquefacti on of gases by various methods	Lectur e discus sion PPT	Formative Assessment I &II		
	2	Helium I and II - Lambda point - production of low temperatures - adiabatic demagnetization	3	Explain about the production of low temperatur es	Lecture demons trati on PPT	Multiple choice questions		
	3	Practical applications of low temperature - refrigerators and air- conditioning machines - super fluidity - application of super fluidity.	3	Discuss about fluidity, low temperature and applications based on it	Group discussio n, PPT	Quiz		
III	Transı	mission of Heat						
	1	Conduction – coefficient of thermal conductivity – Rectilinear flow of heat along a bar	2	Explain the conduction process and rectilinear heat flow.	Lecture discussio n, PPT	Multiple choice questions		
	2	convection – lapse rate – Stability of the atmosphere – Newton's law of cooling – determination of specific heat capacity of liquid	3	Discuss the convection process of heat transfer.	Lecture discussi on & Demon strat ion, PPT	Formative Assessment I &II		

	3	Radiation - black body – Kirchhoff's law – Stefan – Boltzmann law- solar constant – water flowpyroheliometer. Energy distribution in black body spectrum - Wien's law – Rayleigh Jean's law– Planck's law	2	Describe the process of radiation and laws associated with it.	PPT Lecture discussi on Group discussio n, PPT	Short Test Quiz Assignment
IV		Kinetic	Theory	of Gases		
	1	Kinetic Theory of gases- assumptions - Molecular collisions – mean free path – expression for mean free path	2	Able to explain the motion of gas molecules	Lecture discussio n, PPT	Multiple choice questions
	2	Transport phenomenon – Brownian motion and its features - expression for viscosity, Diffusion and thermal conductivity of gas.	4	Describe the movement of molecules into different layers thus understanding the transport of gas	Lecture discussi on & Demon strat ion, PPT	Formative Assessment I
	3	Experimental verification -Vander Waals' equation of state - Determination of Vander Waals' constant - Relation between Vander Waals' constant and critical constants.	3	Explain the correction in Ideal gas equation and finding the constants of correction and their relations	Lecture demons tration PPT	Short Quiz
V		Thermodynamics		1	I <u> </u>	

1	Zeroth and first law of thermodynamics – reversible and irreversible processes – isothermal process-adiabatic process-gas equation during adiabatic process - work done during adiabatic and isothermal process	3	Discuss the zeroth law and first law of thermodyna modynamics	Lecture discussio n, PPT	Multiple Choice Questions
2	second law of thermodynamics – Carnot's engine – its efficiency. Entropy – change of entropy in reversible and irreversible processes – temperature – entropy diagrams – physical significance of entropy - change of entropy when ice converted into steam	2	Discuss the law of thermodyna modynamics and entropy concept	Lecture discussio n, PPT	Quiz,
3	third law of thermodynamics – Extensive and Intensive thermodynamic variables – distinction between them Maxwell thermodynamical relations – derivation and application - Clausius - Clapeyron equation and specific heat relation	4	Analyze and study the applications maxwells relation	Group discussio n, PPT	Formative Assessment II

Course Instructor: Dr.M.Abila Jeba Queen

Semester

Course Name : Non Conventional Energy Sources -Elective – I(a)

III

Course Code : PC2032

No. of hours per week	No. of credits	Total No. of hours	Marks
4	4	60	100

Learning Objectives

- 1. To provide an understanding of the present energy crisis and various available energy sources.
- 2. To make the students to understand the present day crisis of need for conserving energy and their alternatives.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	Apply the solar energy in various sectors. (industry, agriculture and domestic purposes)	PSO-3	Ар
CO- 2	Explain the basic principles of wind energy conversion, various Biomass conversion Processes and its classification.	PSO- 1	U
CO- 3	Discuss the geothermal energy resources and chemical energy resources. (fuel cells)	PSO-2	An
CO- 4	Solve the present and future energy crisis.	PSO-8	С

Modules

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Introduc	tion to Energy Sources		·		
	1	World's reserve of Commercial energy sources and their availability	3	To understand the energy resources available in Word	Illustration and lecture	Evaluati on through: quiz, short questions
	2	India's production and reserves	2	To understand the availability of energy resources in India	Illustration and lecture	
	3	Conventional and non- conventional sources of energy, comparison	2	To compare Conventional and non- conventional	Illustration and lecture	Formative assessment

				sources of		
				energy		
	4	Coal- Oil and natural gas –	2	To know the	Illustration and	
		applications - merits and		merits and	lecture	
		demerits.		demerits of		
				fossil fuels		
II	Solar Tł	hermal Energy				
	1	Solar constant -Solar spectrum	0.5	To understand	Illustration,	Evaluation
		1		the phenomena	demonstration	through: quiz,
				of solar	and lecture	
				activity		Multiple
				-		choice,
						question
						s,
						Formative
						assessment
	2	Solar radiations outside earth's	2.5	To understand	Illustration,	
		atmosphere –at the earth		the basic	demonstration	
		surface- on tilted surfaces		concepts of	and lecture	
				solar radiation		
	2	Solar Padiation geometry	0.5	To understand	Illustration	
	5	Solar Radiation geometry	0.5	the different	lecture and	
				terms with	Demonstration	
				solar radiation	Demonstration	
				geometry		
	4	Basic Principles of Liquid flat	1	To understand	lecture and	
		plate collector		the principles	Demonstration	
		1		of solar		
				collector		
	5	Materials for flat plate collector	1.5	To explain the	Group	Multiple
		-Construction and working		construction	Discussion	choice,
				and working of		question
				Flat plate		s,
				collector		
	6	Solar distillation- Solar drying-	3	To design the	.	Exhibiting
		Solar cooker (box type)-Solar		various	Lecture with	Models,
		water heating systems –		Pollution free	ppt, Group	Formative
		Swimming pool heating.		energy	Discussion	assessment
				resources		
	Photovo	Itaic Systems				

	1	Introduction-Photovoltaic principle-Basic Silicon Solar cell- Power output and conversion efficiency	3	To understand the basic principle of Solar cell and study its efficiency	Lecture with ppt, Group Discussion	Evaluation through: quiz, Assignments Multiple choice questions Descriptive answers
						Formative assessment
	2	Limitation to photovoltaic efficiency-Basic photovoltaic system for power generation- Advantages and disadvantages	3	Able to utilize the solar energy for generating power	Lecture discussion	
	3	Types of solar cells	1	Able to discuss about the various types of solar cell	Lecture discussion	
	4	Application of solar photovoltaic systems - PV Powered fan – PV powered area - lighting system – A Hybrid System.	3	Apply the solar energy in various sectors	Lecture discussion	
IV	Biomass	Energy				
	1	Introduction-Biomass classification- Photosynthesis - Biomass conversion technologies-Bio-gas generation-Factors affecting bio-digestion	3			Evaluation through: quiz Assignments
				To understand the fundamentals of Biomass conversion processes& devices	Lecture discussion	Short questions Descriptive answers

						Formative
						assessment
	2	Working of biogas plant- floating and fixed dome type plant -advantages and disadvantage	3	To bring awareness from a technical point of view of Bio gas plants	Lecture, Illustration, Group discussion	
	3	Bio-gas from plant wastes	1	To understand and apply the concept of production of bio-gas from plant wastes	Lecture, Illustration, Group discussion	
	4	Methods for obtaining energy from biomass. Advantage & disadvantages of biomass as energy source	2	To discuss about the generation of biogas from biomass	Lecture discussion	
V	Wind Er	nergy and Other Energy Sources				
	1	Wind Energy Conversion- Classification and description of wind machines, wind energy collectors-Energy storage	3	To understand the basic concepts of WECS system	Illustration, lecture, Demonstration	Evaluation through: quiz, Assignments on applications Formative assessment
	2	Energy from Oceans and Chemical energy resources- Ocean thermal energy conversion-tidal power, advantages and limitations of tidal power generation-Energy and power from waves- wave energy conversion devices	3	To understandthe basic conceptsof OTEC and Wave energy	Lecture, Demonstration,	
	3	Fuel cells- and application of fuel cells- batteries- advantages of battery for bulk energy storage- Hydrogen as alternative fuel for motor vehicles.	3	To understandthe basic conceptsof Chemical energy	Lecture, Demonstration,	
	4					

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. R. Krishna Priya& Ms. P. AjiUdhaya

Semester III

Course Name : Allied Physics I for Chemistry

Course code : AP2031

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Learning Objectives

- 1. To understand the concept of strength of materials, viscous properties of Liquids, heat transformation from one place to another, converting heat to do mechanical work.
- 2. To understand basic properties of light such as interference and diffraction.

Course Outcome

COs	Upon completion of this course students will be able to:	PSO addressed	CL
CO-1	Understand to know, various modulus involved in the materials, flow of liquids due to viscous forces, transmission of heat due to process of conduction, convection and radiation and various laws involved in heat transformation, various thermodynamic laws and.	PSO-1	U
CO -2	Analyze the concepts and study the concept of entropy, and the phenomenon like interference and diffraction, optical activity of liquids and its uses.	PSO -3	An
CO- 3	Apply their depth knowledge of Physics in day today life.	PSO -2	Ар
CO- 4	Develop their knowledge and carry out the practical by applying these concepts	PSO -4	R

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι		Properties of N				

	1	Young's modulus – Rigidity modulus – Bulk modulus – Poisson's ratio (definition alone)	2	To understand the basic conceptsof Young's modulus and itsdefinition	Illustration and lecture	Evaluation through: quiz, short questions
		Bending of beams – Expression for bending moment	1	To study the Bending of beams and define Expressionfor bending moment	Illustration and theoretical derivation	Multiple choice, questions ,
	2	Determination of Young' modulus – uniform and non uniform bending. Expression for Couple per unit twist	3	To determine uniform and non- uniform bending and study couple per unit twist	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas Problem
	3	Work done in twisting a wire – Torsional oscillations of a body– Rigidity modulus of a wire and M.I. of a disc by torsion pendulum	3	To understand working oftorsion pendulum	Lecture and theoretical derivation	Formative assessment
II		Conduction in s	solids	r		
	1	Thermal conductivity – Lee's disc method – Relation between thermal and electrical conductivities - Widemann – Franz law	3	To understand the basic concepts of conduction phenomena and derive related laws	Illustration, theoretical derivation and lecture	Evaluation through: quiz, short questions
	2	Convection: Newton's law of cooling – Determination of specific heat capacity of liquid	3	To understand the basic concepts of convection phenomena and derive related laws	Illustration and theoretical derivation	Multiple choice, questions,
	3	Radiation: Distribution of energy i the spectrum of black body Results.	n 3	To understand the basic concepts of radiation phenomena and derive related	Illustration, theoretical derivation and Demonstration	Deriving theoretical formulas Formative
				laws		assessment

ш	1	Viscosity – Viscous force – Co-	3	To understand the	Illustration	Evaluation
	1	efficient of viscosity – Units and	-	basic concepts of	Theoretical	through:
		dimensions		viscosity and	formulation	quiz, short
				study its units	Problem	questions
				2	Solving	-
	2	Poiseuille's formula for co-	3	To determine	Lecture,	
		efficient of viscosity of a liquid –		Poiseuille's	Theoretical	
		Determination of co- efficient of		formula and	formulation	Multiple
		viscosity using burette and		determine the co-	Practical	choice,
-	2	comparison of Viscosities.	2	efficient	demonstration	questions,
	3	Bernoulli's theorem – Statemen	3	To understand the	Lecture,	Deriving
		and proof – Venturimeter –		venturimeter and	Theoritical	theoretical
		Pitot tube.		Pitottube.	formulation	formulas
					Practical	Formative
						assessment
IV		Thermodynai	nics			
	1	Zeroth and First Law of	2	To understand the	Lecture,	Evaluation
		thermodynamics – Second lawof		basic concepts of	Demonstration,	through:
		thermodynamics		laws of	theoretical	quiz, short
				thermodynamics	formulation	questions
	2	Carnot's engine and Carnot's	3	To analyse the	Lecture,	Multiple
		cycle – Efficiency of a Carnot's		various aspects of	Demonstration,	choice,
		engine		Carnot engine	theoretical	questions,
-	2	Entropy Change in antropy in	3	To understand the	Iormulation	theoretical
	3	entropy – Change in entropy in	5	concept of	Demonstration	formulas
		reversible and inteversible		entropy and its	theoretical	Formative
		process – Change in entropy of a		applications	formulation	assessment
		perfect gas – Change in entropy		TT		
X 7		when ice is converted into steam.				
V	1	Optics	2	TT 1 (1.4	TIL 4 4	
	1	interference – Conditions for	5	hasic concepts of	Theoretical	Evaluation through:
		A in sea de a Thistory of a		interference	formulation	auiz
		– Air wedge – Thickness of a		phenomena and	Demonstration	Deriving
		thin wire – Newton's rings –		itsapplication	2 • • • • • • • • • • • • • • • • • • •	theoretical
		Determination of wavelength				formulas
		using Newton's rings.				
	2	Diffraction – Difference between	3	To understand the	Lecture,	
		unnaction and interference –		basic conceptsol	Demonstration,	

	Theory of transmission grating –		diffraction	Theoretical	Assignment
	Normal incidence		phenomena and	formulation	on
			its application		applications
3	Optical activity – Biot's laws–	3	To understand the	Lecture,	
	Specific rotatory power –		basic conceptsof	Demonstration,	Formative
	Determination of specific		optical activity	Theoretical	assessment
	rotatory power using Laurent's		phenomena and	formulation	
	half shadepolarimeter.		its application		

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply; C - Create.

Course Instructors: Ms. S. Virgin Jeba

48

DEPARTMENT OF PHYSICS

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

III BSc Physics

Teaching Plan

Semester V

Major Core -- V

Name of the Course : Classical and Statistical Mechanics

Subject code : PC2051

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To understand the mechanics of systems of particles and their equations of motion
- 2. To study the concept of statistics of molecules.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand the basic mechanical concepts related to system of particles	PSO-1	U
СО-2	apply various mechanical principles to find solution for physical problem	PSO-4	Ар
CO- 3	solve the equations of motion using Hamiltonian formalism	PSO-6	С
CO- 4	explain the fundamental postulates of statistical mechanics and Maxwell Boltzmann statistics	PSO-1	R
CO- 5	understand and develop a scientific knowledge in quantum statistics	PSO-7	U

ModulesCredits: 5Total contact hours: 90 (Including assignments and tests)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
			hours	outcome		Evaluation
Ι	Mechani	ics of a System of Parti	cles			
	1	External and internal forces, center of mass	4	To be able to differentiate external and internal forces	Lecture Discussion with PPT illustration	Evaluation through Online quiz Class test Formative assessment I
	2	Conservation of linear momentum- Conservation of angular momentum- Conservation of energy- work- energy theorem-	4	To acquire knowledge on conservation of momentum and Energy	Lecture discussion SLO	
	3	Conservative forces- examples- Constraints-Types of constraints- Examples- Degree of freedom-	4	To understand the different types of constraints	Lecture discussion	
	4.	Generalized coordinates (transformation equations) – Generalized Velocities- Generalized Momentum.	3	To acquire knowledge on Generalized coordinates	Lecture discussion, PPT	
II		ian Formulations	4	T 1 (1	T	G1
	2	Principle of virtual work, D'Alembert's principle	4	To know the principle of virtual work	Lecture Discussion with PPT Illustration	Quiz
	2	Lagrange's equation	4	10 understand	Lecture	Assignment

		of motion for		the concept	discussion	
		conservative and non		Lagrange's		Formative
		conservative systems		equation of		assessment I
				motion		
	3	Simple applications-	3	To be able to	Lecture	
		simple pendulum-		derive		
		Atwood's machine-		Lagrange's	Illustration	
		compound pendulum		equation of		
				motion in		
				simple		
	4	TT 11. 1 1 1 1	4	systems		
	4	Hamilton's principle-	4	To acquire		
		Deduction of		knowledge on		
		Lagrange's equation		Hamilton's		
		Of Inotion from Hemilton's principle		principle		
		Deduction of				
		- Deduction of Hamilton's principle				
		from D'Alembert's				
		principle				
III	Hamilto	nian Formulations				
	1	Phase space- The	5	To acquire	Lecture	
		Hamiltonian		knowledge on	with PPT	Evaluation
		function H-		Hamiltonian	Illustration	through
		Hamilton's		function		Online quiz
		Concentral constian				
		Canonical equation				Assignment
		of motion				
						Formative
	2	Physical significance	5	To be able to	Question-	assessment II
		of H-Deduction of		deduce	answer	
		Canonical equation		Canonical	session	
		from a variational		equation from	T /	
		principle		a variational	Lecture	
	2	Applications	5	To be oble to	Lastura	
	5	Harmonic Oscillator-	5		discussion	
		Planetary motion-		derive	with	
		Compound		Hamilton's	illustration	
		pendulum		Canonical	SLO	
		r		equation of	~	
				motion		
				in simple		
				systems		
IV	Classica	l Statistics		Γ	ſ	
	1	Micro and macro	5	To understand	Lecture	Evaluation

	2	states- The mu-space and gamma space- fundamental postulates of statistical mechanics Ensembles- different types- Thermodynamical probability - entropy	5	the concept Micro and macro states To acquire knowledge on Ensembles	Discussion Lecture Discussion	through Online quiz Formative assessment II
	3	and probability Boltzmann's theorem- Maxwell- Boltzmann statistics- Maxwell- Boltzmann energy distributive law- Maxwell- Boltzmann velocity distributive law.	5	To acquire knowledge Maxwell- Boltzmann velocity distributive law	Brain storming session. Lecture Illustration	
V	Quantun	n Statistics				
	1	Davial annuant of	5	To have clear	Lecture	Short test
	1	Quantum statistics- Bose- Einstein and Fermi- Dirac statistics-	5	idea about Quantum statistics	with PPT	Formative assessment III
	2	Quantum statistics- Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose– Einstein statistics	5	To have clear idea about Quantum statistics To be able to derive Planck's radiation formula from Bose Einstein statistics	Brain storming session. Lecture Illustration	Formative assessment III

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An-Analyze;

Course instructors: Dr.A.Lesly Fathima, Dr.S.Sonia and Dr.S.J Jenepha MaryHead of the Department: Dr. C. Nirmala Louis

Holy Cross College (Autonomous), Nagercoil-629004 B.Sc Physics V

Semester

Name of the Course: Analog Electronics: Major Core -VI

Subject Code : PC2052

No. of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Learning Objectives

- 1. To impart in depth knowledge about Semiconductors, diodes, Transistors, Operational Amplifiers, oscillators etc
- 2. To enable the students to understand the aspects of analog electronics in a lucid and comprehensive manner.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand the fundamental principles of semiconductors including P-N junctions and zener diode	PSO-1	U
CO-2	illustrate network theorems like Thevenin's theorem, Norton's theorem etc.,	PSO-2	U
CO-3	Analyzethe operation of transistor, amplifier, oscillator and multivibrator	PSO-3	Ε
CO-4	demonstrate practical skills in the simulation, construction and testing of simple electrical and electronic circuits.	PSO-6	Ap

Modules

Credits: 5 Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Linear o	circuit analysis and semicon	ductor di	odes		
	1	Constant voltage source - constant current source - Maximum power transfer theorem - Thevenin's theorem - procedure for finding Thevenin Equivalent circuit	4	To apply the usage of constant voltage source and current source in Thevenin's circuit	Lecture Discussion and Problem Solving	Evaluati on through: quiz, short questions
	2	PN junction theory - V-I characteristics of a PN junction diode - Half wave rectifier - Bridge rectifier - Efficiency	4	To understand the fundamental principles of PN junction. To calculate the efficiency of rectifier circuits	Lecture Discussion and Problem Solving	Formative assessment
	3	filters - Shunt capacitor filter – pi filter - Zener diode - equivalent circuit - voltage regulator	3	To understand the various filter circuits. To study about the usage of filter circuits on voltage regulator	Lecture Discussion and Problem Solving	
	4	LED - V-I characteristics – advantages - applications - photo diode - characteristics applications.	4	To understand the principle and working of LED and photodiode	Discussion and lecture	
II	Transis	tor Amplifier	1	1		
	1	Transistor - Different modes of	3	To understand	Demonstration	

		operations-CB mode &CE		the different	and lecture	Evaluation
		mode		modes of		through: quiz,
				transistor		
				operations		Multiple
	2	Two port representation of a	3	To apply the h	demonstration	choice,
		transistor- h parameter - AC		parameters in	and lecture –	question
		equivalent circuit using h		analyzing the	cum-	s,
		parameters- analysis of		amplifiers	discussion,	
		amplifiers using h parameters			Problem	
		(CE only)			Solving	E di
	3	RC coupled amplifier -	3	To understand	Lecture-cum-	Formative
		transformer coupled amplifier		RC coupled	Discussion and	assessment
				and	Demonstration	
				transformer		
				amplifier		
	4	Power amplifier	2	To understand	Lecture- cum-	
				the principles	discussion	
				and working of	uibeussion	
				Power		
				amplifier		
-	5	Classification of amplifiers -	2	To compare	Group	Multiple
		Class A, Class B and Class C		Class A, Class	Discussion and	choice,
				B and Class C	lecture	question
				amplifiers		s,
	6	Push pull amplifier – Emitter	2	To understand		Formative
	0	follower	-	Push pull		assessment
				amplifier and	Lecture, Group	
				emitter	Discussion	
				follower		
III	Oscillat	ors and Multivibrator				
	1	Principle -effect negative	3	To understand	Lecture-cum-	Evaluation
		feedback-and Barkhaussen		aboutfeedback	discussion,	through: quiz,
		criterion		principle of	Problem	
				oscillators	solving	Assignments
	2	Phase shift and Wien Bridge	4	To derive the	-	
		oscillators using transistors –		expression of	Lecture	
		Expression for frequency		trequency of	discussion,	M141
				phase shift and	Problem	Multiple
				wein Bridge	solving	cnoice
	2		Α	OSCILLATORS.	Daman ((questions
	5	Monostable and	4	10 discuss	Demonstration,	
		, ivionostable		adout Astable	Lecture-cum-	Descriptive
1				allu	uiscussion	Descriptive

				MonostableMul		answers
				tivibrators		
	4	Bistable multi vibrators using	4	To discuss	Demonstration.	
		transistors - Schmitt trigger.		about	Lecture-cum-	Formative
				bistableMultivi	discussion	assessment
TX7	G • 1			brator		
10	Special	Semiconductor Devices				
	1	Clipping and clamping circuits	3	To understand		Evaluation
				about clipping	Lecture-cum-	through: quiz
				and clamping	discussion	
	2		2	circuits	T /	Assignments
	2	Differentiating circuit -	3	To construct the	Lecture,	
		Integrating circuit		and integrator	Demonstration,	Short
				circuits	discussion	questions
	3	Field effect Transistor FET-	3	To understand		questions
	C	MOSFET	C	about FET	Lecture-cum-	Descriptive
				transistor	discussion	answers
	4	UJT-SCR -characteristics - FET	3	To discuss	Lecture-cum-	Formative
		as a VVR		about the	discussion	assessment
				characteristics		
				of FET		
	5	UJT relaxation oscillator-SCR	3	The understand	Lecture-cum-	
		as a switch and rectifier		about the	discussion	
				principles of		
				oscillator		
V	Onerati	onal Amnlifier		oscillator		
•	1	Operational Amplifier	4	Tounderstand	Lecture_cum_	Evaluation
	1	characteristics-parameters-	т	the basic	discussion	through aniz
		applications- Inverting		concepts of	Demonstration	unough. quiz,
		amplifier - Non inverting		operational		Assignments
		amplifier		Amplifier,		on
		_		inverting and		operational
				non-inverting		amplifier
	2	Voltage follower- Adder -	4	To construct	Lecture-cum-	problems
		Subtractor - Integrator –		the	discussion,	
		Differentiator		differentiator	Demonstration	
				and integrator		Formative
				IC 741		assessment
	3	Solving simultaneous	<u> </u>	To solve the	Lecture-cum-	
	5	equations-comparator -square	Ŧ	simultaneous	discussion	
		wave generator		equations using	Demonstration	
		C C		Op-amp.		

4	Wien bridge oscillator -Schmitt	3	To construct the	Lecture-cum-
	trigger		Schmitt trigger	discussion,
			using IC741	Demonstration

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Evaluate-E; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. R. Krishna Priya & Dr. M. Priya Dharshini

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

BSc Physics

Semester V

Major Core VII: Solid State Physics

Course Code: PC2053

Hours/Week	Credits	Total hours	Marks
5	5	75	100

Learning Objectives

- 1. To impart knowledge on the structure of crystals and the different types of materials.
- 2. To develop a scientific attitude at micro and nano scales of materials

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	illustrate various types of bonding present in solids with example.	PSO - 1	U
CO - 2	explain the various crystal parameters and structures.	PSO - 3	Ε
CO - 3	discuss the various theories involved in magnetic materials. (dia, para, ferro, ferri and antiferro magnetism)	PSO - 3	С
CO - 4	describe polarization processes and analyze the information contained in the temperature and frequency dependence of dielectric materials.	PSO - 1	С
CO - 5	analyze the structure and physical properties of semiconductors.	PSO - 5	An
CO - 6	describe and discuss the theory of superconductivity and superconducting materials.	PSO - 2	С

Modules

Credits: 5

Total contact hours: 75 (Including assignments and tests)

Unit	Section	Topics	Lectur hours	e Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Bonding	in Solids				
	1	Types of bonds in crystals - Ionic, covalent, Metallic, Vande waal's and Hydrogen Bonding	er 3	To understand the fundamental principles of types of bonds in	Lecture and Discussion	Evaluati on through:
		Ionic, covalent, Metallic, Vande waal's and Hydrogen Bonding	er	fundamental principles of types of bonds in crystals	Discussion	on throu

	2	Bond energy of sodium chloride molecule - variation of inter atomic force with inter atomic spacingCohesive energy - cohesive energy of ionic solids - application to sodium chloride	3	To analyze the variation of inter atomic force with inter atomic spacing To understand the cohesive energy	Lecture and Discussion Lecture Discussion and Problem	quiz, short questions Formative
	4	crystal Evaluation of Madelung constant for sodium chloride	3	To derive the Madelung constant for sodium chloride	Solving Discussion and lecture	assessment
II	Crysta	l Structure and Crystal Diffraction				
	1	Crystal Lattice -Primitive and unit cell-seven classes of crystal- Bravais Lattice- Miller Indices	3	To understand the seven classes of crystal	Demonstratio n and lecture	Evaluation through: quiz,
	2	Crystal Diffraction – Bragg's Law	3	To apply the Bragg's Law	demonstratio n and lecture –cum- discussion, Problem Solving	Multiple choice, questions,
	3	Experimental methods-Laue method, powder method and rotating crystal method	3	To understand the experimental methods	Lecture-cum- Discussion and Demonstratio n	Formative assessment
	4	Reciprocal lattice- Intensity and structure factor.	3	To analyze the reciprocal lattice	Lecture- cum- discussion	
III	Magne	tic Properties				
	1	Spontaneous Magnetization – Weiss Theory – Temperature dependenceof Magnetization	3	To understand the Weiss Theory of Magnetization	Lecture-cum- discussion, Problem solving	Evaluation through: quiz, Assignments
	2	Classical Theory of Diamagnetism	3	To discuss the classical Theory of Diamagnetism	Lecture discussion, Problem	Multiple

					solving	choice
	3	Weiss theory of Para magnetism – Ferromagnetic domains – Bloch wall	3	To understand the basics of Ferromagnetic domains	Demonstratio n, Lecture- cum- discussion	questions
	4	Basic ideas of anti- ferromagnetism – Ferri magnetisms – Ferrites in computer Memories.	3	To discuss about the ferrites and its applications	Demonstratio n, Lecture- cum- discussion	Formative
IV	Dielect	tric Properties				
	1	Band theory of solids – classification of insulators, Semiconductors, conductors	3	To understand the band theory of solids	Lecture-cum- discussion	Evaluation through: quiz Assignments
	2	Intrinsic and extrinsic semiconductor	3	To understand and derive the Intrinsic and extrinsic semiconductor	Lecture, Demonstratio n, Group discussion	questions Descriptive answers Formative
	3	Carrier concentration for electron - Barrier Potential Calculation	2	To understand the carrier concentration for electron	Lecture-cum- discussion	assessment
	4	Rectifier Equation Dielectrics - Polarization – frequency and temperature effects on polarization	2	To discuss about the Accelerators	Lecture-cum- discussion	
	5	Dielectric loss-Clausius Mosotti relation- determination of dielectric constants.	2	The understand about the principles of betatron and synchrotrons	Lecture-cum- discussion	
V	Super	Conductivity				
		Introduction - General Properties of Superconductors - effect of magnetic field	3	To understand the basic concepts of Superconductors	Lecture-cum- discussion, Demonstratio n	Evaluation through: quiz, Assignments
						Formative
	2	Meissner effect-effect of current- thermal properties- entropy-specific heat -energy gap - isotope effect	3	To discuss Meissner effect	Lecture-cum- discussion, Demonstratio n	assessment
	3	London equations - AC & DC Josephson effects -	3	To understand the London equations	Lecture-cum- discussion,	

	applications-			Demonstratio	
				n	
4	Type–I and Type–II	3	To discuss the	Lecture-cum-	
	Superconductors - Explanation		Type–I and Type–	discussion,	
	for the Occurrence of Super		II Superconductors	Demonstratio	
	Conductivity - BCS theory -		and application of	n	
	Application of Superconductors		Superconductors		
	- High TCsuperconductors.		•		

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply;

An-Analyze; C - Create.

Course Instructors: Dr. C.Nirmala Louis & Dr. V.Shally