Name of the course : Modules and Vector Spaces

Course code : PM2021

Number of hours per week	Credits	Total number of hours	Marks
6	5	90	100

Objective:

To understand the concept of Modules and the advanced forms of Matrices related to Linear Transformations.

Course Outcome

CO	Upon completion of this course the students will be able to :	PSOs addressed	CL
CO -1	recall the definitions and properties of Vector Spaces and Subspaces	PSO - 2	R
CO -2	analyze the concepts Linear Independence, Dependence and Basis	PSO - 2	An
CO -3	lapply the definition and properties of Linear transformation and Matrices of Linear transformation	PSO - 3	Ap
CO -4	gain knowledge about characteristic polynomial, eigen vectors, eigen values and eigen spaces as well as the geometric and the algebraic multiplicities of an eigen value	PSO - 1	U
CO -5	learn and apply Jordan form and triangular form for computations	PSO - 4	U

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I	Module					
	1	Basic definitions and examples	4	Recall the definitions and basic concepts of fields and modules	Lecture with illustration	Evaluation through:

| 2 | Quotient
 modules and
 module
 homomorphism | 4 | Express the
 fundamental
 concepts of field
 theory, module
 theory and theory of
 quotient modules | Lecture
 with
 illustration | Unit Test |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 3 | Generation of
 Modules | 4 | Recall the
 definitions and basic
 concepts of module
 theory. Understand
 the theorems in
 modules. | Lecture |

	4	Dual Spaces	3	Understand the theorems in dual spaces.	Lecture	
III	Linear Transformations					
	1	Algebra of Linear Transformation, Regular, Singular, Range, Rank	3	Recall the definition of vector space homomorphism. Understand the concept of Regular, Singular, Range and Rank of Linear Transformations.	Lecture with illustration	Unit Test Quiz
	2	Characteristic Root, Characteristic vector, Matrices	5	Gain knowledge about Characteristic root and Characteristic vector. Apply the definition and properties of Linear transformation and Matrices of Linear transformation	Lecture with illustration	Problem Solving Online Assignment on range
	3	Canonical Forms: Triangular Form, Similar, Invariant subspace	4	Learn and apply triangular form for computations	Lecture	Formative
	4	Canonical Forms: Nilpotent Transformation, Index of nilpotence	4	Recall the definitions and basic concepts of Linear Transformations. Understand the theorems in nilpotent Linear Transformations.	Lecture	
IV		Forms				

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 1 \& Jordan form \& 4 \& Learn and apply Jordan form for computations. \& Lecture \& Unit Test \\
\hline \& 2 \& \begin{tabular}{l}
Rational \\
Canonical \\
Form, \\
Companion matrix, \\
Elementary divisor, Characteristic polynomial
\end{tabular} \& 4 \& Gain knowledge about Companion matrix, Elementary divisor and Characteristic polynomial. \& Lecture \& Class Test

Quiz

\hline \& 3 \& Trace \& 4 \& Understand the properties of trace and Jacobson Lemma. \& Lecture \& | Seminar on |
| :--- |
| Canonical |
| Forms |

\hline \& 4 \& Transpose, Symmetric matrix, Adjoint \& 3 \& Understand the properties of Transpose, Symmetric matrix and Adjoint. \& Lecture \& Formative assessment II

\hline \multirow[t]{2}{*}{V} \& \multicolumn{6}{|l|}{Determinants and Quadratic forms}

\hline \& 1 \& Determinants, Secular equation \& 3 \& Find determinant of a triangular matrix. Understand Cramer's Rule. \& Lecture with illustration \& Unit Test

\hline \& 2 \& Hermitian, Unitary \& 4 \& Recall the properties of real and complex numbers and apply these concepts in Linear transformation. Develop the knowledge of Hermitian and Unitary Linear transformation. \& | Lecture |
| :--- |
| with |
| illustration | \& | Quiz |
| :--- |
| Problem |
| Solving |

\hline
\end{tabular}

3	Normal Transformation	3	Recall the properties of real and complex numbers and apply these concepts in Normal transformation.	Lecture		Seminar on Quadratic forms
	4	Real Quadratic forms, Congruent	4	Learn and apply Quadratic form for computations.	Lecture	

Course Instructor(Aided): Dr.T.Sheeba Helen
Course Instructor(S.F): Dr.C.Jenila

HOD(Aided) :Dr.V.M.Arul Flower Mary
HOD(S.F) :Mrs.J. Anne Mary Leema

Semester

 : II: Analysis II
Name of the Course
Subject code
: PM2022

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives: 1.To make the students understand the advanced concepts of Analysis.
2. To pursue research in Analysis related subjects.

Course Outcome

CO	Upon completion of this course the students will be able to :	PSOs addressed	CL

CO -1	recall the definition of continuity, boundedness and some results on uniform convergence	PSO-1	R
$\mathbf{C O}-\mathbf{- 2}$	recognise the difference between pointwise and uniform convergence of a sequence of functions and Riemann Stieltjes integrals.	PSO-2	An
$\mathbf{C O}-\mathbf{3}$	understand the close relation between equicontinuity and uniform convergence of sequence of continuous function and rectifiable curves	PSO-3	U
$\mathbf{C O}-\mathbf{4}$	learnParseval's theorem, Stone Weierstrass theorem and know about its physical significance in terms of the power of the Fourier components.	PSO-4	U
$\mathbf{C O}-\mathbf{5}$	utilize the definition of differentiation and partial derivative of function of several variables to solve problems	PSO-3	Ap

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	Riemann Stieltjes Integral					
	1	Definition and existence of Riemann Stieltjes integrals	3	To understand the definition existence of Riemann Stieltjes integrals	Lecture with Illustration	Evaluation through test
	2	Theorems related to Riemann Stieltjes integrals	3	To understand the theorems related to Riemann Stieltjes integrals	Lecture	Short Test
	3	Properties of Riemann Stieltjes integrals	3	To understand the properties of Riemann Stieltjes integrals	Lecture with	Slip Test

	4	Fundamental theorem of Calculus and related problems	3	To understand and apply this theorem in various problems	Lecture with Illustration	Quiz
	5	Rectifiable curves and problems	3	To understand rectifiable curves and able to do the problems related to it.	Lecture with Illustration	Formative Assessment Test
II	Sequences and series of functions					
	1	Definition and examples of convergence sequence	3	Recall the definition understand the examples of convergence sequence	Lecture with Illustration	Test
	2	Definition and theorems based on uniform convergence and continuity	5	To distinguish between convergence and uniform convergence	Lecture	Open book assignment
	3	Theorems based on uniform convergence and differentiation	4	To understand the relation between the uniform convergence and differentiation	Lecture	Q\&A
	4	Problems based on sequences and series of functions	4	To analyze and solve the problems	Group Discussion	Formative Assessment Test
III	Equicontinuous families of function					
	1	Definition and theorems based on equicontinuous families of functions	5	To understand the definition and theorems based on equicontinuous families of functions	Lecture with Illustration	Quiz
	2	Definition of uniformly closed algebra and uniformly closure	4	To understand the concept of uniformly closed algebra in various theorems	Lecture with Illustration	Slip Test

	3	Stone Weierstrass theorem	2	To learn Stone Weierstrass theorem	Lecture	Test
	4	Problems on equicontinuous families of functions	3	To apply the concept of equicontinuousand solve problems	Group Discussion	Brain Stroming
IV	Some special functions					
	1	Definition, Theorems and examples of analytic function and power series	4	To learn the concept of power series	Lecture with Illustration	Quiz
	2	The algebraic completeness of the complex field	3	To get the idea of algebraic completeness of the complex field	Lecture and group discussion	Test
	3	Definition and theorems related to Fourier Series	3	To learn the definition and theorems related to Fourier Series	Lecture with Illustration	Quiz and Test
	4	Problems related to Fourier Series and Dirichlet Kernel	2	To understand the significance of Fourier series and apply it in problems	Lecture with Illustration	Formative Assessment Test
	5	Localisation Theorem and Parseval's theorem	2	To learn the concept of trigonometric series	Lecture	Short Test
V	Differentiation					
	1	Introduction of differentiation, Definition of total and partial derivative and examples	4	To identify total derivative problems	Lecture with Illustration	Quiz
	2	Theorems and examples based on Partial derivatives	4	To apply the concept of Partial derivatives	Lecture with Illustration	Short Test

3	Definition of continuously differentiable and related theorems	3	To utilize the concept of continuously differentiable	Lecture with	Open Book Assignment	
	4	Contraction principle and related theorems	2	To interpret the concept of contraction principle	Lecture with Illustration	Assignment
	5	The inverse function theorem and problems	3	To develop the proof technique and solve problems.	Lecture with Illustration	Formative Assessment Test

Course Instructor(Aided): Dr. K. Jeya Daisy
HOD(Aided) :Dr. V. M. Arul Flower Mary
Course Instructor(S.F): Ms. C.JoselinJenisha
HOD(S.F) :Ms.J. Anne Mary Leema

Semester

: II

Major Core VII

Name of the Course : Partial Differential Equations
Course Code : PM2023

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

1. To formulate and solve different forms of partial differential equations.
2. Solve the related application oriented problems.

Course Outcome

CO	Upon completion of this course the student will be able to:	PSOs addressed	CL
CO-1	recall the definitions of complete integral, particular integral and singular integrals.	PSO-2	R
CO-2	learn some methods to solve the problems of non- linear first order partial differential equations. homogeneous and non homogeneous linear partial differential equations with constant coefficients and solve related problems.	PSO-1	U

CO-3	analyze the classification of partial differential equations in three independent variables - cauchy's problem for a second order partial differential equations.	PSO-3	An
CO-4	solve the boundary value problem for the heat equations and the wave equation.	PSO-4	Ap
CO-5	apply the concepts and methods in physical processes like heat transfer and electrostatics.	PSO-5	Ap

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	Non -linear partial differential equations of first order					
	1	Explanation of terms, compactible system of first order equations, Examples related to compactible system	3	To Recall the definitions of complete integral, particular integral and singular integral	Lecture	Quiz
	2	Charpit's Method and problems, Problems related to charpit's method	4	ToAnalyzeCharpit's Method and to solve the problems.	Lecture	Assignment
	3	Problems related to charpit's method	2	To Learn Charpit's Method methods to solve the problems	Lecture	Test
	4	Solving problems using charpit's method	3	To Learn Charpit's Method methods to solve the problems	Lecture with group discussion	Test
	5	Problems related to charpit's method	3	To Learn Charpit's Method methods to solve the problems	Lecture	Assignment
II	Homogeneous linear partial differential equation with constant coefficient					
	1	Homogeneous and non- homogeneous linear equation with constant coefficient,	2	To Analyze homogeneous linear partial differential	Lecture	Test

		Solution of finding homogeneous equation with constant coefficient, Theorem I, II		equations with constant coefficients		
	2	Method of finding complementary function, Working rule for finding complementary function, Alternative working rule for finding complementary function	2	To Learn some methods to solve the problems of homogeneous linear partial differential equations with constant coefficients	Lecture	Test
	3	Some examples for finding Complementary function	3	To find Complementary function	Lecture	Test
	4	General method and working rule for finding the particular integral of homogeneous equation and some example	3	To find particular integral of homogeneous equation	Lecture	Test
	5	Examples to find the particular integral	3	To find particular integral	Lecture	Test
III	Non - homogeneous linear partial differential equations with constant coefficient					
	1	Definition, Reducible and irreducible linear differential operators, Reducible and irreducible linear partial differential equations with constant coefficient, Determination of	2	Analyze nonhomogeneous linear partial differential equations with constant coefficients and to solve the problems	Lecture with group discussion	Quiz

		complementary function				
	2	General solution and particular integral of non-homogeneous equation and some examples of type 1	3	To solve problems related to nonhomogeneous equations of type 1	Lecture	Assignment
	3	Some examples of type 2	3	To solve problems related to nonhomogeneous equations of type 2	Lecture	Assignment
	4	Some problems related to type 3	3	To solve problems related to nonhomogeneous equations of type 3	Lecture	Formative Assessment
	5	Examples related to type 4, Miscellaneous examples for the determination of particular integral	4	To solve problems related to nonhomogeneous equations of type 4	Lecture	Assignment
IV	Classification of P.D.E. Reduction to Canonical (or normal) forms.					
	1	Classification of Partial Differential equations of second order - Classification of P.D.E. in three independent variables	2	To classify Partial Differential equations of second order \& of P.D.E. in three independent variables	Lecture	Test
	2	Cauchy's problem for a second order P.D.E. Characteristic equation and Characteristic curves of the second order P.D.E.	2	To solveCauchy's problem for a second order P.D.E.	Lecture	Test
	3	Laplace transformation. Reduction to	4	To reduce hyperbolic equation to its Canonical forms.	Lecture	Assignment

		Canonical (or normal) forms.(Hyperbolic type)				
	4	Laplace transformation. Reduction to Canonical (or normal) forms.(Parabolic type)	4	To reduce Parabolic equation to its Canonical forms.	Lecture	Test
	5	Laplace transformation. Reduction to Canonical (or normal) forms.(Elliptic type)	3	To reduce elliptic equation to its Canonical forms.	Lecture	Test
V	Boundary Value Problem					
	1	A Boundary value problem, Solution by Separation of variables, Solution of one dimensional wave equation, D'Alembert's solution, Solution of two dimensional wave equation	3	To Solve the boundary value problems for the wave equations	Lecture	Quiz
	2	Vibration of a circular membrane, Examples related to vibration of a circular membrane	4	To Solve the boundary value problems related to vibration of a circular membrane	Lecture	Test
	3	Solution of one dimensional heat equation, Problems related to solution of one dimensional heat equation	4	To Solve the boundary value problems for the heat equations	Lecture	Formative Assessment

4	Solution of two dimensional Laplace's equation	3	To find the Solution of two dimensional Laplace's equation	Lecture	Test	
	5	Solution of two dimensional heat equation	3	To Apply the concepts and methods in physical processes like heat transfer and electrostatics	Lecture	Assignment

Course Instructor(Aided): Ms.J.C.Mahizha
Course Instructor(S.F): Ms. V. Princy Kala

HOD(Aided) :Dr. V. M. Arul Flower Mary
HOD(S.F) :Ms. J. Anne Mary Leema

Semester : II

Name of the Course : Graph Theory
Course Code : PM2024

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

1. To introduce the important notions of graph theory.
2. Develop the skill of solving application oriented problems.

Course Outcome

CO	Upon completion of this course the students will be able to :	PSO addressed	CL
$\mathbf{C O}-\mathbf{1}$	identify cut vertices and understand various versions of connectedness of a graph.	PSO-1	An
$\mathbf{C O - 2}$	understand the concept of Digraphs and characterize Eulerian Digraphs.	PSO-4	U,C
$\mathbf{C O - 3}$	recall the definitions of Matchings and design proof for characterization of graphs containing a 1-factor.	PSO-1	R

CO-4	solve problems involving coloring and learn necessary conditions for planar graphs.	PSO-2,3	Ap
CO - 5	learn the basic definitions of domination and review the concept of distance in a graph.	PSO-4	U

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	Connectivity	Lefinitions and Examples, Theorems based on Cut vertices, Theorems based on Cut vertices	4	Recall the basic definitions and fundamental concepts of graph theory	Lecture with illustration	Test
	1	Cut vertices -	Blocks - Definition and Example, Theorem based on nonseparable, Properties of blocks in a nontrivial connected graph, Connectivity - Definitions and Examples	3	Identify blocks and understand various versions of connectedness of a graph	Lecture

		Geodetic Sets - Definitions and Examples, Theorem based on Geodetic Sets				
II	Digraphs					
1	Strong Digraphs - Definitions and Examples, The First Theorem of Digraph Theory, Theorems related to Digraphs	3	To understand the definition of Strong Digraphs and prove theorems related to Digraphs	Lecture	Test	
2	Theorems related to Eulerian, Theorem related to Strong orientation	3	To prove theorems related to Eulerian and Strong orientation	Lecture	Formative	
			Tournaments - Definitions and Examples, Theorem related to Tournaments	3	To practice various Theorems related to Tournaments	Lecture

2	The Marriage Theorem, Theorem based on perfect matching, Gallai identities	3	To practice various Theorems	Lecture with illustration	Test
3	Factorization - Definitions and Examples, Tutte's Theorem, Petersen's Theorem	3	To understand the concept Factorization with examples and theorems	Lecture with group discussion	Test
4	Theorem based on 1-factor, Theorem based on 2- factorable, Hamiltonian Factorization, Theorem based on Hamiltonian Factorization	3	To compare the concepts 1-factor and 2- factorable, Hamiltonian and Factorization	Lecture	Assignment
IV			Theorem based on Kirkman triple system, Theorem based on Hamiltonian cycles and 1-factor, Decompositions and Graceful Labelings- Definitions and examples, Theorems related to Graceful labeling	3	To understand the definitions of Hamiltonian cycles, Decompositions and Graceful Labelings.
Planarity and Coloring	Planar Graphs Planar Graphs - Definitions and Examples, The Euler Identity, Consequence of Euler Identity,	3	Cite examples of planar and nonplanar graphs	Lecture with illustration	Quiz

		Theorems related to Planar Graphs			
2	Necessary condition for a graph to be planar, Kuratowski’s Theorem, Vertex Coloring - Definitions and Examples, The Four Color Theorem	3	Learn necessary conditions for planar graphs	Lecture	Test
3	Theorems and Examples related to chromatic number, An upper bound for the chromatic number of a graph in terms of its maximum degree, Brook's Theorem, Theorem based on triangle - free graph	3	To practice various Theorems	Lecture	Test
4	Theorem based on triangle - free graph, Edge Coloring- Definitions and Examples, Vizing's Theorem, Theorems related to edge chromatic number	3	Understand the concept of Edge Coloring and edge chromatic number and it's corollary	Lecture The Five Color Theorem, The Coloring Theorem	Test

1	Distance - The lenter of a graph, Definitions and examples	3	To identify the center of a graph	Lecture	Assignment	
2	Theorems based on center of a graph, Distant Vertices, Periphery of the graph.	3	To practice various Theorems	Lecture with illustration	Assignment	
3	Theorems based on eccentricity, Theorems based on boundary vertex .Definition of interior vertex and related theorem .	3	To practice various Theorems	Lecture	Test	
4	The domination number of a graph- Definitions and Examples. Theorems related to domination number of a graph. Bounds for domination number.	3	To understand the concepts of domination and to practice various theorems	with illustration	Lecture	Assignment
5	Stratification. Definition of stratified graph. Definition of F domination number and F coloring. Theorems related to Fdomination number and F coloring	3	To understand the facts of Stratification and to practice various Theorems	Lecture with group discussion	Assignment	

Course Instructor(Aided): Dr.V.Sujin Flower
HOD(Aided) :Dr. V. M. Arul Flower Mary
Course Instructor(S.F): Dr.J.C.Eveline
HOD(S.F) :Ms. J. Anne Mary Leema

Semester
: II

Elective II

Name of the Course : Classical Dynamics
Course Code : PM2025

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

1. To gain deep insight into concepts of Dynamics.
2. To do significant contemporary research.

Course Outcome

$\mathbf{C O}$	Uponcompletion ofthiscoursethestudents Willbeableto:	PSO addressed	CL
$\mathrm{CO}-1$	recall the concepts of Newton's laws of motion, momentum, acceleration, motion of a particle.	PSO-4	R
$\mathrm{CO}-2$	understanding the generalized co-ordinates of the Mechanical system.	PSO-1	U
$\mathrm{CO}-3$	apply D'Alembert's Principle to solve the problems involving System of particles.	PSO-2	Ap
CO-4	Solve the Newton's equations for simple configuration using Various methods.	PSO-1	C
CO-5	transforming the Lagrangian equations to Hamiltonian equations.	PSO-2	U
CO-6	define the canonical transformations and Lagrange and Poisson brackets.	PSO-4	R

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/
I	The Mechanical System	Evaluation				
	1	Introduction on the Mechanical System, equations	3	Understanding the generalized co-ordinates,	Lecture	Short Test

	of motion, generalized coordinates , degrees of freedom, configuration space		degrees of freedom, configuration space of the Mechanical system.		
2	Holonomic constraints, Nonholonomic constraints, Unilateral constraints and examples	3	To define Holonomic constraints, Nonholonomic constraints, Unilateral constraints with illustration	Lecture and group discussion	Test
3	Virtual displacement and virtual work, Principle of virtual work, D' Alembert's Principle,	3	To identify virtual displacement and virtual work, Principle of virtual work, D' Alembert's Principle,	Lecture	Test
4	Generalized force and examples, Potential energy, work and kinetic energy, Conservation of energy	3	Define Generalized force with examples, Potential energy, work and kinetic energy, Conservation of energy	Lecture	Test
5	Equilibrium and stability, angular momentum, generalized momentum and examples.	3	To study generalized momentum, angular momentum and examples.	Lecture	Test

II	Derivation of Lagrange's equations					
	1	Problems using Lagrange's equation, Form of the equations of motion, Nonholonomic systems.	3	To solve problems using Lagrange's equation, Form of the equations of motion and Non holonomic systems.	Lecture	Test
	2	Spherical pendulum, Double pendulum, Lagrange Multiplier and constraint forces	3	To define Spherical pendulum, Double pendulum, Lagrange Multiplier and constraint forces	Lecture and discussion	Test
	3	Particle in whirling tube, A particle with moving support,	3	To understand particle in whirling tube, and the particle with moving support,	Lecture	Formative Assessment
	4	Rheonomic constrained system, Ignorable coordinates, Example based on the Kepler Problem	3	To define rheonomic constrained system, Ignorable coordinates and example based on the Kepler Problem	Lecture	Test
	5	Routhian Function, Conservative systems, Natural systems, Liouville'ssystem	3	To understand Routhian Function, Conservative systems, Natural systems	Lecture	Test

					and Liouville's system	
III	Hamilton's Principle	3	To define stationary values of a function, Constrained Stationary values and stationary value of a definite integral.	Lecture and discussion	Test	
	1	Stationary values of afunction, Constrained Stationary values, Stationary value of a definite integral.		3	To solve the Brachistochrone problem and Geodesic path Case of n independent variables	Lecture

\(\left.$$
\begin{array}{|c|c|l|l|l|l|}\hline & & & \begin{array}{l}\text { of least action, } \\
\text { Problems based on } \\
\text { other Variational } \\
\text { Principles }\end{array} & \begin{array}{l}\text { Principle } \\
\text { Principle of } \\
\text { least action and } \\
\text { Problems based } \\
\text { on other } \\
\text { Variational } \\
\text { Principles }\end{array}
$$ \&

\hline IV \& Hamilton's Principal function \& 3 \& \begin{array}{l}To understand

the foundation

of Hamilton's

Principle and

differential

forms.\end{array} \& Lecture\end{array}\right\}\)| Test |
| :--- |

		Ignorable coordinates				
V	Canonical Transformations					
	1	Introduction to Differential forms and generating functions, Canonical Transformations Principle form of generating functions	3	To understand Differential forms generating functions, Canonical Transformations and Principle form of generating functions	Lecture	Test
	2	Further comments on the HamiltonJacobi method, Examples on Canonical Transformations, Some simple transformations	3	To identify the HamiltonJacobi method with Examples on Canonical Transformations and some simple transformations	Lecture	Test
	3	Homogenous canonical transformations, Point transformations, Momentum transformations	3	To understand Homogenous canonical transformations, Point transformations, Momentum transformations	Lecture	Test
	4	- Examples based on Special transformations,	3	To identify examples based on Special transformations	Lecture	Test
	5	Introduction to Lagrange and Poisson brackets, Problems based on	3	To understand Lagrange and Poisson brackets,	Lecture	Formative Assessment

| | Lagrange and
 Poisson brackets,
 The bilinear
 Covariant | Problems based
 on Lagrange
 and Poisson
 brackets and
 the bilinear
 Covariant | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Course Instructor(Aided): Ms. J. Befija Minnie HOD(Aided) :Dr. V. M. Arul Flower Mary
Course Instructor(S.F): Ms. V.G. Michael Florance HOD(S.F) :Ms. J. Anne Mary Leema

Semester	$:$ IV
Name of the Course	$:$ Functional Analysis
Course code	$:$ PM2042

Course code : PM2042

Major Core XIII

No. of Hours per Week	Credit	Total No. of Hours	Marks
6	5	90	100

Objectives: 1. To study the three structure theorems of Functional Analysis and to introduce Hilbert Spaces and Operator theory
2. To enable the students to pursue research.

Course Outcome

$\mathbf{C O}$	Upon completion of this course thestudents will be able to :	PSOs addressed	CL
$\mathrm{CO}-1$	learn and understand the definition of linear space, , normed linear space, Banach Space and their examples	PSO - 1	R
$\mathrm{CO}-2$	explain the concept of different properties of Banach Spaces, Hahn Banach theorem	PSO -2	U
$\mathrm{CO}-3$	compare different types of operators and their properties, Natural imbedding	PSO - 2	Ap
$\mathrm{CO}-4$	explain the ideas needed for open mapping theorem , Open Mapping theorem	PSO - 1	C
$\mathrm{CO}-5$	construct the idea of projections , the spectrum of an operator and develop problem solving skills, Matrices, Determinants	PSO - 1	Ap

Total contact hours:90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	Banach Spaces					
1.	Definition and, examples of a normed linear space and a Banach Space, Small preliminary results and theorem on Normed linear space.	3	To understand the concept of normed linear space and Banach space	Lecture	Question and Answer	

	2.	Properties of a Closed unit sphere, Holder's Inequality and Minkowski's Inequality.	3	To understand the Properties of a Closed unit sphere and Holder's Inequality, Minkowski's Inequality	Lecture with illustration s	Group Discussion
	3.	Equivalent conditions theorem on continuous linear transformations, $\mathrm{B}\left(\mathrm{N}, \mathrm{N}^{1}\right)$ is a Banach space, Functionals and it's properties.	4	To understand the concept of Functionals and it's properties and Equivalent conditions theorem on continuous linear transformations	Lecture	Test
	4.	Definition of an Operator and small results on operators, Side result of Hahn Banach theorem and Hahn Banach theorem, Theorem based on functional in N^{*}, Problems based on Normed linear spaces	5	To understand the concept of an Operator and Hahn Banach theorem	Lecture with illustration	Test and Assignment
II	Conjugate space					
	1.	Definitions of second conjugate space, induced functional, weak topology, weak* topology, Strong topology,	4	To understand the definition of conjugate space, weak* topology, strong topology.	Lecture	Test
	2.	Theorem on isometric isomorphism of Open mapping theorem and Open mapping theorem	4	To apply the definition and Lemma to prove the Open mapping theorem theorem.	Lecture	Q\&A
	3.	Definition of Projection and Theorem on Projection, Closed Graph Theorem,	4	To understand the concepts of Projection and to practice theorems related to this concepts.	Lecture with illustration	Formative Assessment Test
	4.	The conjugate of an operator, the Uniform , Boundedness theorem and theorem on	3	Applying theorem on conjugate of an operator	Lecture	Assignment

		isometric isomorphism				
III	Hilbert Space					
	1.	Definition and examples, Properties of a Hilbert Space, Schwarz Inequality, Parallelogram law Theorem on Convex subset of a Hilbert Space	3	To understand the Definition of a Hilbert Space and Schwarz Inequality, Parallelogram law, Theorem on Convex subset of a Hilbert Space	Lecture with illustration	Quiz
	2.	Theorem on Orthogonal Complements and theorem on closed linear subspaces	3	To apply the laws to prove the theorem	Lecture with illustration	Test
	3.	Definition and examples of orthonormal set and Bessel's Inequality, Theorems on Orthonormal Sets	5	To understand the definition and examples of orthonormal set and apply the Bessel's Inequality on Theorems	Lecture with group discussion	Brain storming
	4.	Gram -Schmidt Orthogonalization Process Theorem on Conjugate Space H*	4	To understand the concept of Schmidt Orthogonalization Process	Lecture with illustration	Assignment, Test
IV	Adjoin	operator				
	1.	Definition and small results, Theorem on the properties of an adjoint operator	3	Acquire the knowledge about properties of an adjoint operator	Lecture with illustration	Quiz, Group discussion
	2.	Theorem-The set of all self adjoint operators is a real Banach space, Theorems on self adjoint operators	3	Applying theorems on self adjoint operators	Lecture	Q\&A
	3.	Properties on Normal and Unitary Operators, Theorems on Normal and Unitary Operators,	3	Acquire the knowledge about Normal and Unitary Operators	Lecture	Slip Test
	4.	ProjectionsDefinition and preliminaries,	3	To understand the definition and examples of projections and apply	Lecture with illustration	Brain Storming

		Theorems on Projections and Theorems on invariant subspace		the concept of invariant subspace on theorems		
	5.	Spectral theory, Definition of Spectrum of an operator and spectral theorem	3	To understand the concept of spectral theory and spectral theorem.	Lecture	Formative Assessment Test
V	General Preliminaries on Banach Algebras					
	1.	The definition and some examples of Banach algebra		To understand the definition and examples of Banach algebra	Lecture with illustration	Quiz
	2.	Theorems on Regular and Singular elements	4	To understand the regular and singular elements on Theorems	Lecture with illustration	Test
	3.	The definition and theorems on spectrum	4	To know the definition and theorems on spectrum	Lecture	Slip Test, Quiz
	4.	The formula and Theorems on Spectral radius	4	To understand the definition and theorems on Spectral radius	Lecture with illustration	Assignment

Course Instructor(Aided): Dr. V. M. Arul Flower Mary
Course Instructor(S.F): Dr. S.Kavitha

HOD(Aided) :Dr. V. M. Arul Flower Mary
HOD(S.F) :Ms. J. Anne Mary Leema

Semester : IV

Major Core XIV

Name of the course : Operations Research
Course code : PM2043

Number of hours/ Week	Credits	Total number of hours	Marks
6	5	90	100

Objectives: 1. To learn optimizing objective functions.
2. To solve life oriented decision making problems.

Course Outcome

CO	Upon completion of this course thestudents will be able to :	$\begin{gathered} \text { PSO } \\ \text { addressed } \end{gathered}$	CL
CO-1	explain the fundamental concept of DP model, Inventory model and Queuing model	PSO-2	U
CO-2	relate the concepts of Arrow (Network)diagram representations, in critical path calculations and construction of the Time chart	PSO-3	U
CO-3	distinguish deterministic model and single item	PSO-3	E
CO-4	interpret Poisson and Exponential distributions and apply these concepts in Queuing models	PSO-4	Ap
CO-5	solve life oriented decision making problems by optimizing the objective function	PSO-1	C

Total contact hours: 90 (Including lectures, seminar and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation	
I	1	Elements of DP model	Elements of the DP Model, The Capital Budgeting Example	4	Recall the definitions and basic concepts of linear programming.	Lecture with illustration	Short Test
	2	More on the definition of the state	3	Express the fundamental	Lecture with illustration	assessment I	

				concepts of dynamic programming		Test
	3	Examples of DP models and computation	3	Understand the significance and application of Reliability problem and compute it	Lecture discussion	
	4	Solution of linear programming by dynamic programming	2	Formulate and solve LPP by dynamic programming	Lecture with illustration	
	5	Game theory	3	Express the fundamental concepts of Game theory	Lecture discussion	Assignment
II		twork) Diagram				
	1	Introduction Arrow (Network) ,Diagram Representations	3	Recall the definitions and basic concepts Arrow (Network) ,Diagram Representations	Lecture with illustration	Short Test Formative
	2	Critical Path Calculations, Problem based on critical Path Calculations, Determination of floats	4	Understand the significance and application of Critical Path Calculations, Problem based on critical Path Calculations, Determination of floats	Lecture with PPT illustration	assessment I, Seminar on Arrow (Network) Diagram Quiz
	3	Construction of the Time Chart	4	Understand the construction of the	Lecture with PPT illustration	

		and Resource Leveling, Problems based on Time Chart and Resource Leveling		Time Chart and Resource Leveling, Problems based on Time Chart		
	4	Probability and Cost Considerations in Project Scheduling .	2	Understand the properties of Probability and Cost Considerations in Project Scheduling	Lecture with discussion	
III	Generalized Inventory model					
	1	Introduction, Generalised Inventory model, Types of Inventory Models	4	Understand the theory of Inventory model	Lecture with illustration	Short Test Formative assessment II
	2	Deterministic Models, Single Item Static Model, Problems based on Single Item Static Model	4	Understand the significance and application of Single Item Static Model	Lecture with illustration	Seminar on Generalised Inventory model
	3	Single Item Static ,Model with Price Breaks, Problems based on Single Item Static Model	3	Understand the theory of Single Item Static Model with Price Breaks	Lecture with illustration	

		with Price Breaks				
	4	Multiple - Item static Model with Storage Limitations, Problems based on Multiple Item static Model with Storage Limitations	2	Understand the theory of Multiple Item static Model with Storage Limitations	Lecture with PPT illustration	
	5	Single - Item static Model with Storage Limitations.	2	Understand the theory of Single Item static Model with Storage Limitations and apply it in problems	Lecture with discussion	
IV	Queuing Model					
	1	Basic Elements of the Queuing Model, Roles of Poisson Distributions, Roles of Exponential Distributions	3	Understand the theory of Queuing Model	Lecture with PPT illustration	Short Test Formative assessment II
	2	Arrival process, Examples of arrival process	2	Recall the definitions and basic concepts of Poisson Distributions and Exponential Distributions	Lecture with illustration	

| 3 | Departure
 process,
 Queue with
 Combined
 Arrivals and
 Departure | 3 | Understand the
 theory of Queue
 with Combined
 Arrivals and
 Departure | Lecture
 with
 illustration | Quiz |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	2	Problems based on(M/M/C) : (GD/ ∞ / ∞), (M/M/ ∞) : (GD/ ∞ / ∞) Self service Model	4	Develop the knowledge of solving problems based on (M/M/C) : (GD/ ∞ / ∞), (M/M/ ∞) : (GD/ $\infty /$ ∞) model	Lecture with illustration	Assignment based on the queueing models
	3	(M/M/R) : (GD/K/K) R < K - Machine Service, Problems based on(M/M/R) : (GD/K/K) R < K - Machine Service	4	Develop the knowledge of solving problems based on (M/M/R) : (GD/K/K) R < K - Machine Service model	Lecture with illustration	
	4	Tandem or series queues	3	Develop the knowledge of Tandem or series queues	Lecture with illustration	

Course Instructor(Aided): Dr. L. Jesmalar
HOD(Aided) :Dr. V. M. Arul Flower Mary
Course Instructor(S.F): Ms. C. JoselinJenisha
HOD(S.F) :Ms. J. Anne Mary Leema

Semester

 : IVMajor Core XV
Name of the course : Algorithmic Graph Theory
Course code : PM2044

Number of hours/ Week	Credits	Total number of hours	Marks
6	4	90	100

Objectives:

1. To instill knowledge about algorithms.
2. To write innovative algorithms for graph theoretical problems.

Course Outcome

CO	Upon completion of this course the students will be able to :	PSO addressed	CL
CO -1	understand basic algorithms and write algorithms for simple computing	PSO -1	U
CO -2	analyze the efficiency of the algorithm	PSO -2	An
CO -3	understand and analyze algorithmic techniques to study basic parameters and properties of graphs	PSO -2	R
CO -4	use effectively techniques from graph theory, to solve practical problems in networking and communication	PSO - 3	Ap

Total contact hours: 90 (Including lectures, seminar and tests)

Unit	Sectio n	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I	1	The Role of Algorithms in Computing and Getting Started				
	L					
	Role of algorithms in computing- Algorithms, Data structures, Technique, Hard problems, Parallelism	4	Recall the definitions and understand the basic concepts of algorithms	Lecture with illustration	Evaluation through:	
	Algorithms as a technology- Efficiency, Algorithms and other technologies	2	Analyze the efficiency of algorithms. Use algorithm as a technology	Lecture with illustration	Formative assessment I	Short Test

	3	Insertion sort and its algorithm, Pseudocode conventions	3	Understand the algorithm of Insertion Sort. Express the fundamental concepts of pseudocode	Lecture with PPT illustration	
	4	Analyzing Algorithms-Worst-case and average-case analysis,	3	Express the fundamental concepts of algorithms, Demonstrate the use of algorithms in worst case and average case analysis	Lecture with illustration	
	5	Designing Algorithms -The divide-andconquer approach and its algorithm, Analysis of merge Sort	3	Understand the divide-and-conquer approach and its algorithm. Analyze the Merge Sort Algorithm	Lecture with illustration	
II	Elementary Graph Algorithms					
	1	Representation of graphs adjacency list representation, adjacency matrix representation	3	Recall the definitions and basic concepts of graph theory. Express the fundamental concepts of adjacency matrix representation	Lecture with illustration	Short Test Formative assessment I, II
	2	Definitions and Breadth first Search algorithms, Shortest paths and related Lemmas,	3	Recall the definitions and basic concepts of graph theory. Understand the algorithm of BFS	Lecture with PPT illustration	

		Corollary and correctness of Breadth first Search theorem				
	3	Breadth-first trees, related Lemma, Definitions and Depth first search algorithms	3	Recall the definitions and basic concepts of graph theory, Understand the algorithm of DFS	Lecture with PPT illustration	
	4	Parenthesis theorem, Corollary on nesting of descendant's intervals, Whitepath theorem	3	Understand the properties of DFS, Distinguish between BFS and DFS	Lecture with illustration	
	5	Topological Sort, Strongly Connected Components and related Lemmas and Theorems	4	Understand the algorithms of Topological Sort and Strongly Connected Components	Lecture with illustration	
III	Growing a minimum spanning tree and The algorithms of Kruskal and Prim					
	1	Theorem, Corollary related to Growing a minimum spanning tree	3	Understand the theory of spanning tree	Lecture with illustration	Short Test Formative assessment II
	2	Kruskal's algorithm	3	Recall the definitions and basic concepts of graph theory. Understand the theory of Kruskal's algorithm	Lecture with illustration	Assignment on minimum spanning tree

	3	Prim's algorithm, The execution of Prim's algorithm on the graph	4	Understand the theory of Prim's algorithm	Lecture with illustration	
	4	Problems based on minimum spanning tree	3	Recall the definitions and basic concepts of algorithms	Lecture with PPT illustration	
IV	The Bellman - Ford algorithm and Dijkstra's algorithm					
	1	Lemma and Corollary based on correctness of the BellmanFord algorithm	3	Understand the theory of BellmanFord algorithm	Lecture with PPT illustration	Short Test Formative assessment III
	2	Theorem and definition related to Single-source shortest paths in directed acyclic graphs	3	Recall the definitions and basic concepts of graph theory	Lecture with illustration	
	3	Dijkstra's algorithm, The execution of Dijkstra's algorithm	3	Understand the theory of Dijkstra'salgorithm	Lecture with illustration	
	4	Corollary and analysis of Dijkstra's algorithm	4	Understand the execution of Dijkstra's algorithm	Lecture with illustration	
	5	Difference Constraints and Shortest PathsSystems of Difference Constraints, Constraint	3	Understand the concept of Difference Constraints and Shortest Paths	Lecture with illustration	

	graphs, Solving Systems of Difference Constraints				
V	Shortest paths and Matrix multiplication, The Floyd-Warshall algorithm				
	18Computing the shortest-path weights bottom up algorithm	3	Recall the definitions and basic concepts of graph theory	Lecture with illustration	
	22 Algorithm for matrix multiplication, Improving the running time and technique of repeated squaring	3	Develop the knowledge of shortest paths and establish new relationship in matrix multiplication	Lecture with illustration	Formative assessment III Seminar on shortest paths
	3 3The structure of a shortest path, A recursive solution to the all-pairs shortest paths problem	3	Develop the knowledge of shortest paths and establish new relationship in matrix multiplication	Lecture with illustration	
	48Computing the shortest-path weights bottom up algorithm, Transitive closure of a directed graph algorithm	4	Develop the knowledge of shortest paths and establish new relationship in matrix multiplication	Lecture with PPT illustration	
	5 Johnson's Algorithm for Sparse Graphs- Preserving shortest paths by	2	Understand the theory of Johnson's Algorithm for Sparse Graphs	Lecture with illustration	

		reweighting and related Lemma				

Course Instructor(Aided): Dr. J. Befija Minnie HOD(Aided) :Dr. V. M. Arul Flower Mary Course Instructor(S.F): Mrs.J.Anne Mary LeemaHOD(S.F) :Ms. J. Anne Mary Leema

Semester

 : IV
Elective IV (a)

Name of the Course : Combinatorics

Course Code : PM2045

No. of Hours per Week	Credit	Total No. of Hours	Marks
6	4	90	100

Objectives: 1. To do an advanced study of permutations and combinations.
2. Solve related real life problems.

Course Outcome

CO	Upon completion of this course the students will be able to :	$\begin{gathered} \text { PSO } \\ \text { addressed } \end{gathered}$	CL
CO-1	discuss the basic concepts in permutation and combination, Recurrence Relations, Generating functions, The Principle of Inclusion and Exclusion	PSO-1	U
CO-2	distinguish between permutation and combination, distribution of distinct and non-distinct objects	PSO-2	An
CO-3	correlate recurrence relation and generating function	PSO-2	An
CO-4	solve problems by the technique of generating functions, combinations, recurrence relations, the principle of inclusion and exclusion	PSO-3	Ap
CO-5	interpret the principles of inclusion and exclusion, equivalence classes and functions	PSO-4	$\overline{\mathrm{An}}$ E

Total contact hours: 90 (Including assignments and tests)

	3.	Enumerators for Permutations.	4	To understand the Enumerators for Permutations and use them to solve problems	Lecture, Illustration, Problem Solving	Formative assessment-I
		Distribution of distinct objects into nondistinct cells	1	To derive some results on the distribution of distinct objects into nondistinct cells	Lecture, Illustration, Problem Solving	
		Partitions of integers	1	To understand the concept and derive the partition of integers	Lecture, Illustration, Problem Solving	
		The Ferrers graph	1	To derive some results using Ferrers graph	Lecture, Illustration, Problem Solving	
III	1.	Recurrence Relations	5	To understand the recurrence relations	Lecture, Group discussion, Problem Solving	Multiple choice questions
	2.	Linear Recurrence Relations with Constant Coefficients	5	To understand the linear recurrence relations with constant coefficients and use them to solve problems	Lecture, Illustration, Problem Solving	Unit test Group Discussion
	3.	Solution by the Technique of Generating Functions	5	To solve problems by the technique of generating functions	Lecture, Problem Solving	Formative assessment- II
IV	1.	The Principle of Inclusion and Exclusion	1	To understandthe principle of inclusion and exclusion	Lecture, Group discussion	Formative assessment- II

	2.	The General Formula	1	To understandthe general formula	Lecture, Discussion	Seminar on permutations with restrictions on
r.	Derangements	5	To dearrange objects and to solve related problems	Lecture, Illustration, relative posblem Solving	positions	

Course Instructor(Aided): Dr. S. Sujitha
V. M. Arul Flower MaryCourse Instructor(S.F) : Ms.
R.N.Rajalekshmi

HoD(Aided) :Dr

HoD(SF)
:Ms. J. Anne Mary Leema

