Semester	: I	Major Core I
Name of the Course	: Algebra I	

Course Code : PM2011

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives: 1.To study abstract Algebraic systems.

2. To know the richness of higher Mathematics in advanced application systems.

Course Outcome

CO No.	Course Outcomes	PSOs	CL
	Upon completion of this course, students will be able to	addressed	
CO -1	understand the fundamental concepts of abstract algebra and give illustrations.	PSO- 1	U
CO -2	analyze and demonstrate examples of various Sylow p- subgroups, automorphisms, conjugate classes, finite abelian groups, characteristic subgroups, rings, ideals, Euclidean domain, Factorization domain.	PSO- 2	An
CO -3	develop proofs for Sylow's theorems, finite abelian groups, direct products, Cauchy's theorem, Cayley's Theorem, automorphisms for groups.	PSO- 2	С
CO -4	develop the way of embedding of rings and design proofs for theorems related to rings, polynomial rings, Division Algorithm, Gauss' lemma and Eisenstein Criterion	PSO- 2	С
CO -5	apply the concepts of Cayley's theorem, Counting principles, Sylow's theorems, Rings and Ideals in the structure of certain groups of small order.	PSO-4	Ар

Unit	Section	Topics	Lecture hours	Learning Outcomes	Pedagogy	Assessment/ evaluation			
I	Automorphisms and conjugate elements								
	1.	Automorphism: Definition& Examples,	3	To understand the concept of automorphism and find	Lecture	Test			

		Automorhism of a finite cyclic group, an infinite cyclic group		automorphisms of finite and infinite cyclic groups		
	2.	Theorems based on automorphism, Inner automorphism	4	To understand the concept of inner automorphism	Lecture	Test
	3.	Problems based on automorphism,Cayl ey's Theorem	3	To understand the Cayley's Theorem	Group Discussion	Quiz
	4.	Conjucacy, Cauchy's theorem , Conjugate Classes	3	To understand the concepts and give illustrations	Seminar	Formative Assessment Test I
II	Sylow's	theorems and Direct p	roducts			
	1.	Sylow's first theorem(Second Proof)	3	To understand the concept and give illustrations	Lecture	Test
	2.	<i>p</i> -Sylow subgroups	3	To understand Sylow'ssubgroups	Lecture	Test
	3.	Second Part of Sylow's theorem, Third Part of Sylow's theorem	3	To develop proofs for theorems based on Sylow P- subgroups	Lecture	Formative Assessment Test I, II
	4.	Direct products: Definition, Examples and Theorems	4	To understand the concept and give illustrations	Seminar	Test
	5.	Theorems based on finite abelian groups	4	To understand the concept and give illustrations	Lecture	Test
III	Rings			•	•	•
	1.	Rings: Definition , Examples and Theorems, Some	3	To understand the concept and practice theorems	Lecture With PPT	Test

		special classes of Rings				
	2.	Characteristic of a Ring,Homomorphis ms: Definition, Examples, Theorems	3	To understand the concept and develop theorems	Group Discussion	Test
	3.	Ideals and Quotient Rings: Definition, Examples, Theorems	4	To understand the concept and analyze the theorems	Lecture	Test
	4.	More Ideals and Quotient Rings: Definition, Examples, Theorems	5	To understand the concept Quotient Rings and demonstrate examples.	Lecture	Formative Assessment Test II
IV	Embedd	ling of Rings				
	1.	The field of Quotients of an integral domain: Definition , Examples and Theorems	3	To understand the concept the field of Quotients of an integral domain and give illustrations	Lecture with illustration	Test
	2.	Embedding of rings: Ring into a Ring with unity, Ring into a Ring with endomorphisms, Integral domain embedded into a field and related theorems	4	To develop the way of embedding of rings and design proofs for theorems related to rings	Lecture	Test
	3.	Euclidean Rings, Unique Factorization theorem	4	To understand the concept and practice theorems related to the concepts.	Group Discussion	Test

V	4. Polynom	A particular Euclidean Ring, Fermat's Theorem nial Rings	4	To learn and interpret the concept and theorem	Seminar	Formative Assessment Test III
	1.	Polynomial Rings: Definition , Examples and Theorems The Division Algorithm	5	To understand the concept and practice theorems related to the concepts	Lecture	Test
	2.	Polynomials over the Rational Field: Definition , Examples and Theorems	4	To understand the concept and practice theorems related to the concepts	Lecture	Formative Assessment Test III
	3.	Gauss' lemma, The Eisenstein Criterion	3	To learn and understand the theorems	Seminar	Assignment
	4.	PolynomialRings over Commutative Rings, Unique Factorization Domains	3	To practice theorems based on this concept	Lecture	Assignment

Course Instructor(Aided): Dr.J. Befija Minnie

Course Instructor(SF): Ms.G.Arockia Amala Sherly

: PM2012

Semester : I

: Analysis I

Name of the Course

Course Code

HOD(Aided): Dr. V. M. Arul Flower Mary

HOD(SF): Mrs. J. Anne Mary Leema

Major Core II

Total No. of hours Marks No. of hours per week Credits 90 100 6 4

Objectives:

- 1. To understand the basic concepts of analysis.
- 2. To formulate a strong foundation for future studies.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO -1	explain the fundamental concepts of analysis and their role in modern mathematics.	PSO-3	U, Ap
CO -2	deal with various examples of metric space, compact sets and completeness in Euclidean space.	PSO- 2	An
CO -3	utilize the techniques for testing the convergence of sequence and series	PSO-1	Ар
CO -4	understand the important theorems such as Intermediate valued theorem, Mean value theorem, Roll's theorem, Taylor and L'Hospital theorem	PSO-3	U
CO -5	apply the concepts of differentiation in problems.	PSO- 4	Ар

Unit	Section	Topics	Lecture hours	Learning Outcomes	Pedagogy	Assessment/ evaluation
Ι	Basic To	pology				
	1	Definitions and examples of metric spaces, Theorems based on metric spaces.	5	To explain the fundamental concepts of analysis and also todeal with various examples of metric space.	Lecture	Test
	2	Definitions of compact spaces and related theorems, Theorems based on compact sets	5	To understand the definition of compact spaceswith examples and theorems	Lecture	Test

	3	Weierstrass theorem, Perfect Sets, The Cantor set	3	To understand the concepts of Perfect Sets and The Cantor set	Lecture	Test
	4	Connected Sets and related problems	2	To understand the definition of Connected Setsandpractice various problems.	Lecture	Formative Assessment Test I
Π	Converg	ent Sequences				
	1	Definitions andtheorems of convergent sequences, Theorems based on convergent sequences	5	To Learn some techniques for testing the convergence of sequence.	Lecture	Test
	2	Theorems based on Subsequence s	2	To understand the concept of Subsequences with theorems	Lecture	Formative Assessment Test I
	3	Definition and theorems based on Cauchy sequences, Upper and lower limits	5	To Understand the definition and theorems based on Cauchy sequences	Lecture	Test
	4	Some special sequences, Problems related to convergent sequences	3	To Understand the problems related to convergent sequences	Lecture	Test

III	Series					
	1	Series, Theorems based on series	3	To Learn some techniques for testing the convergence series and confidence in applying them	Lecture	Test
	2	Series ofnon- negative terms, The number e	4	To find the number e	Lecture	Assignment
	3	The ratio and root tests – example and theorems, Power series	3	To Understand the ratio and root tests	Lecture with PPT	Quiz
	4	Summation of parts, Absolute convergence	2	To apply the techniques for testing the absolute convergence of series	Lecture	Test
	5	Addition and multiplicatio n of series, Rearrangeme nts	3	To find theAddition and multiplication of series	Lecture with group disscussio n	Formative Assessment Test II
IV	Continu	ity				
	1	Definitions and Theorems based on Limits of functions, Continuous functions	4	To explain the fundamental concepts of analysis and their role in modern mathematics	Lecture with PPT	Test

	2	Theorem related to Continuous functions, Continuity and Compactness	3	To Understand the theorem related to Continuous functions	Lecture	Quiz
	3	Corollary, Theorems based on Continuity and Compactness , Examples and Remarks related to compactness	3	To Understand the concepts of Continuity and Compactness	Seminar	Formative Assessment II
	4	Continuity and connectednes s, Discontinuiti es	2	To Understand the definition of Continuity and connectedness	Lecture	Assignment
	5	Monotonic functions, Infinite limits and limits at infinity	3	To Understand the definition of Monotonic functions, Infinite limits and limits at infinity	Lecture	Test
V	Differen	tiation				
	1	The derivative of a real functions - Theorems, Examples	3	To Apply the concepts of differentiation	Lecture	Assignment
	2	Mean value theorems	3	To Understand the important	Lecture	Test

			Mean value theorem		
3	The continuity of derivatives, L'Hospital rule, Derivatives of higher order, Taylor's Theorem	4	To Understand the important theorems such as Taylor and L'Hospital theorem	Lecture with group discussion	Quiz
4	Differentiati on of vector valued functions	3	To Understand the concepts of differentiation	Lecture	Formative Assessment
5	Problems related to differentiatio n	2	To Apply the concepts of differentiation in problems.	Lecture	Assignment

Course Instructor(Aided): Dr. M.K. Angel Jebitha Course Instructor(SF): Ms. V.G. Michael Florance HOD(Aided): Dr. V. M. Arul Flower Mary

HOD(SF): Ms. J. Anne Mary Leema

Semester: IMajor Core IIIName of the Course: Probability and StatisticsCourse Code: PM2013

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	recall the basic probability axioms, conditional probability, random variables and related concepts	PSO-2	R
CO- 2	compute marginal and conditional distributions and check the stochastic independence	PSO-2	U, Ap

CO- 3	recall Binomial, Poisson and normal distributions and learn new distributions such as multinomial, Chi square and Bivariate normal distribution	PSO-4	R,U
CO- 4	learn the transformation technique for finding the p.d.f of functions of random variables and use these techniques to solve related problems	PSO-1,3	U, Ap
CO -5	employ the relevant concepts of analysis to determine limiting distributions of random variables	PSO-5	Ар

Un it	Section	Topics	Lecture hours	e Learning outcomes	Pedagogy	Assessment/ evaluation		
Ι	I Conditional probability and Stochastic independence							
	1	Definitionof Conditional probability and multiplication theorem Problems on Conditional probability Bayre'stheorem		Explain the primary concepts of Conditional probability	Lecture through Google meet.	Evaluation through appreciative inquiry		
	2	Definition and calculation of marginal distributions Definition and calculation of conditional distributions Conditional expectations		To distinguish between marginal distributions and conditional distributions	Lecture through Google meet	Evaluation through online quiz and discussions.		
	3	The correlation coefficient Derivation of linear conditional mean Moment Generating function of joint distribution Stochastic independence of randomVariables and related problems		To understandthe theorems based onStochastic independence of random variables	Lecture through Google meet	online Test and Assignment		
	4	Necessary conditions for stochastic independence. Necessary and sufficient conditions for stochastic independence, Pairwise and mutual stochastic independence, Bernstein's example.		To understandthe necessary and sufficient conditions for stochastic independence	Discussion through Google meet	Online Quiz and Test		
II	Some sp	ecial distributions			•	•		

	1	Derivation of Binomial distribution M.G.F and problems related to Binomial distribution Law of large numbers Negative binomial distribution	4	To understand Law of large numbers Negative binomial distribution	Lecture with Examples	Evaluation through online discussions.
	2	Trinomial and multinomial distributions Derivation of Poisson distribution using Poisson postulates M.G.F and problems related to Poisson distribution Derivation of Gamma distribution using Poisson postulates	4	To know aboutDerivation of Poisson distribution using Poisson postulates	Lecture through Google meet	Evaluation through appreciative inquiry thro google meet
	3	Chi-Square distribution and its M.G.F Problems on Gamma and Chi-Square distributions The Normal distribution	4	To identify Chi-Square distribution and its M.G.F Problems on Gamma and Chi-Square distributions The Normal distribution	Lecture through Google meet	Formative Assessment Online Test
	4	Derivation of standard Normal distribution M.G.F and problems on Normal distribution The Bivariate Normal distribution Necessary and sufficient condition for stochastic independence of variables having Bivariate Normal distribution	4	Relate the Normal distribution and stochastic independence of variables having Bivariate Normal distribution	Discussion Through Google meet	Slip Test through online
III	Distribu	tions of functions of random	variabl	es		
	1	Sampling theory Sample statistics and related problems Transformations of single variables of discrete typeand related problems	4	Explain the primary concepts of Sampling theory Sample statistics	Lecture through Google meet	Evaluation through discussions.
	2	Transformations of single variables of continuous typeand related problems	4	To understand Transformations of single variables and Transformations of two or more variables	Lecture through Google meet	Evaluation through appreciative inquiry

	3	Transformations of two or more variables of discrete typeand related problems Transformations of two or more variables of continuous typeand related problems Derivation of Beta - distribution	3	Explain the derivation of Beta distribution	Lecture through Google meet	Formative Assessment Test online
	4	Derivation of t- distribution Problems based on t - distribution Derivation of F- distribution Problems based on F - distribution	4	To identify the t - distribution and F - distribution	Discussion Through Google meet	Slip Test through online
IV		distributions	2		• •	
	1	Behavior of distributionsfor large values of n Limiting distribution of n th order statistic Limiting distribution of sample mean from a normal distribution	3	Explain the behavior of distributionsfor large values ofn	Lecture through Google meet	Evaluation through discussions.
	2	Stochastic convergence and convergence in probability Necessary and sufficient condition for Stochastic convergence Limiting moment generating function	4	To understand necessary and sufficient condition for Stochastic convergence Limiting moment generating function	Lecture through Google meet	Evaluation through Assignment online
	3	Computation of approximate probability The Central limit theorem	3	To understand The Central limit theorem	Lecture through Google meet	Formative Assessment Test online
	4	Problems based on theCentral limit theorem Theorems on limiting distributions Problems on limiting distributions	4	To calculate Problems based on theCentral limit theorem and Problems on limiting distributions	Lecture through Google meet	Slip Testonline
V	Estimati					
	1	Estimation, Point Estimation	3	Explain the primary concepts of Estimation, Point Estimation	Lecture through Google meet	Evaluation through discussions.

2	Measures of quality of Estimators, Confidence Intervals for Means	4	Finding the 95% confidence interval for µ	Lecture through Google meet	Formative Assessment test
3	Confidence intervals for difference of Means	4	Explain about the maximum likelihood estimators and functions	Lecture through Google meet	Slip Test online
4	Confidence intervals for Variances	4	To understand the variance of unbiased estimators	Lecture through Google meet	online Assignment

Course Instructor(Aided): Ms. J.C. Mahizha	HOD(Aided):: Dr. V. M. Arul Flower Mary
Course Instructor(SF): Dr. S.Kavitha	HOD(SF): Ms. J. Anne Mary Leema

Semester : I

Name of the Course : Ordinary differential equations

Course Code : PM2014

ſ	No. of hours per week	Credits	Total no. of hours	Marks	
	6	4	90	100	

Objectives:

1. To study mathematical methods for solving differential equations

2. Solve dynamical problems of practical interest.

Course Outcome

Major Core IV

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the definitions of degree and order of differential equations and determine whether a system of functions is linearly independent using the Wronskian definition.	PSO - 2	R,U
CO - 2	solve linear ordinary differential equations with constant coefficients by using power series expansion.	PSO - 3	Ap
CO - 3	determine the solutions for a linear system of first order equations.	PSO - 2	U
CO - 4	learnproperties of Legendre polynomials and Properties of Bessel Functions.	PSO - 4	U

CO - 5	analyze the concepts of existence and uniqueness of solutions of the ordinary differential equations.	PSO - 2	An
CO - 6	create differential equations for a large number of real world problems.	PSO - 1	С

Unit	Section	Topics	Lect ure hour s	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Secon	d Order linear Equat	ions		I	
	1	Second order Linear Equations - Introduction	4	Understand the concepts of existence and uniqueness behavior of solutions of the ordinary differential equations	Lectures, Assignmen ts	Test
	2	The general solution of a homogeneous equation	4	To understand the theorems and identify whether a system of functions is linearly independent using the Wronskian	Lectures, Assignmen ts	Test
	3	The use of a known solution to find another	4	To determine the solutions for the Second order Linear Equations	Lectures, Assignmen ts	Test
	4	The method of variation of parameters	4	To determine the solutions using the method of variation of parameters	Lectures, Seminars	Test
II	Power se	eries solutions		<u> </u>		
	1	Review of power series, Series solutions of first order equations	4	To learn about Power Series method	Lectures, Assignment s	Test

	2	Power Series solutions for Second order linear equations – Ordinary Points	3	To determine series solutionsforsecond order equations	Lectures, Seminars	Test
	3	Singular points	3	To understand the concepts of regular singular points and irregular singular points	Lectures, Group Discussion	Quiz
	4	Power Series solutions for Second order linear equations -Regular singular points	5	To solve ordinary linear differential equations with constant coefficients by using Frobenius method	Group Discussion	Test
III	System o	of Equations				
	1	Linear systems- theorems	4	To understand the theorems in Systems of Equations	Lectures, Online Assignmen ts	Test
	2	Linear systems- problems	3	To determine the solutions for a linear system of first order equations	Online Assignmen ts	Test
	3	Homogeneous linear systems with constant coefficients	4	To understand the theorems Homogeneous linear systems with constant coefficients	Seminars	Test
	4	Homogeneous linear systems with constant coefficients– problems	4	To determine the solutions for Homogeneous linear systems with constant coefficients	Group Discussion s, Online Assignmen ts	Test
IV	Some Sp	ecial Functions of Ma	thema	tical Physics	1	1
	1	Legendre Polynomials	3	To derive Rodrigues' formula	Lectures, Online Assignmen ts	Test

	2	Properties of Legendre Polynomials	4	To understand Orthogonal property and other properties of Legendre Polynomials	Online Assignmen ts Seminars	Test
	3	Bessel Functions. The Gamma Function	4	To derive Bessel function of the first kind $J_P(x)$, To understand the gamma function and to determine the general solution of Bessel's equation	Online Assignmen ts Seminars	Test
	4	Properties of Bessel Functions	4	To understand properties of Bessel functions and to derive orthogonal property of Bessel Functions	Online Assignmen ts Seminars	Test
V	Picard's	method of Successive	appro	ximations		
	1	The method of Successive approximations	4	To solve the problems using the method of Successive approximations	Lectures, Assignmen ts	Test
	2	Picard's theorem	3	To understand Picard's theorem	Lectures	Test
	3	Lipchitz condition	5	To solve problems using Lipchitz condition	Lectures, Group discussion	Quiz
1	1	Systems-The	2	To solve the problems in		Assignment

Course InstructorAided): Dr.L.Jesmalar

HOD(Aided): Dr. V. M. Arul Flower Mary

Course Instructor(SF): Ms. J. Anne Mary Leema

Ι

Semester

Name of the Course : Numerical Analysis

Course Code : PM2015

HOD(SF): Ms. J. Anne Mary Leem

Elective I

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

1. To study the various behaviour pattern of numbers.

2. To study the various techniques of solving applied scientific problems.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the methods of finding the roots of the algebraic and transcendental equations.	PSO - 2	R
CO - 2	understand the significance of the finite, forward, backward and central differences and their properties.	PSO - 3	U
CO - 3	learn the procedures of fitting straight lines and curves.	PSO - 2	U
CO - 4	compute the solutions of a system of equations by using appropriate numerical methods.	PSO - 1	Ар
CO - 5	solve the problems in ODE by using Taylor's series method, Euler's method etc.	PSO - 4	Ар

Unit	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/		
			hours			evaluation		
Ι	Solution of Algebraic and Transcendental Equations							
	1	Bisection Method -	3	Recall about finding the	Lecture	Evaluation		
		Examples and		roots of the algebraic	with	through test		
		graphical		and transcendental	Illustration			
		representation,		equations using				
		Problems based on		algebraic methods.				
		Bisection Method						
	2	Method of False	3	Draw the graphical	Lecture	Evaluation		
		Position –		representation of each	with	through test		
		Examples and		numerical method.	Illustration			
		graphical						
		representation,						
		Problems based on						
		Method of False						
		Position.						
	3	Ramanujan's	3	To solve algebraic and	Discussion	Quiz and		
		Method &		transcendental equations	with	Test		
		Problems based		using	Illustration			
		onRamanujan's		Ramanujan'sMethod.				
		Method,						
	4	Secant Method -	3	To understand the	Lecture	Test		
		Problems based on		methods of Secant.	with			
		Secant Method and			Illustration			

		graphical				
		representation.				
	5	Muller's Method,	3	To understand the	Lecture	Test
	5	Problems based on	5	methods of Muller's.	Lecture	Test
		Muller's Method		methods of Muller s.		
II	Interpol					
11	1 1 1	Forward	3	Understand the	Lactura	Test
	1		5		Lecture	Test
		Differences,		significance of the		
		Backward Differences and		finite, forward, backward and central		
		Central		differences and their		
		Differences, Problems related to		properties.		
		Forward				
		Differences, Backward				
		Differences and				
		Central Differences,				
		Differences, Detection of Errors				
		by use of difference tables				
	2	Differences of a	3	To prostice vericus	Lecture	Test
	Δ	polynomial,	5	To practice various problems	Lecture	1051
		Newton's formulae		problems		
		for Interpolation,				
		Problems based on				
		Newton's formulae				
		for Interpolation				
	3	Central Difference	3	To solve problems using	Lecture	Formative
	5	Interpolation	5	Gauss's forward central	Lecture	Assessment
		formulae - Gauss's		and Gauss's backward		Test
		forward central		formula		1051
		difference				
		formulae, Problems				
		related to Gauss's				
		forward central				
		difference				
		formulae, Problems				
		related to Gauss's				
		backward formula				
	4		4	To colve problems using	Group	Test
	4	Stirling's formulae, Problems related to	4	To solve problems using Stirling's formulae	Group Discussion	1051
				Stirling's formulae	Discussion	
		Stirling's formulae,				
		Bessel's formulae				1

	5	Problems related to Bessel's formulae, Everett's formulae, Problems related to Everett's formulae	4	To solve problems using Bessel's formulae and Everett's formulae	Group Discussion	Test
III	Least sq	uares and Fourier Tr		Γ		Γ
	1	Least squares Curve Fitting Procedure	2	To understand the Curve Fitting Procedure.	Lecture	Quiz
	2	Fitting a straight line. Problems related to fitting of straight line	3	To solve Problems related to fitting of straight line	Lecture	Test
	3	Multiple Linear Least squares	2	To solve Problems related to Multiple Linear Least squares.	Lecture	Test
	4	Linearization of Nonlinear Laws. Problems related to fitting of nonlinear equation.	4	To solve Problems related to fitting of nonlinear equation.	Group Discussion	Formative Assessment Test
	5	Curve fitting by Polynomials. Problems related to fitting of Polynomials	2	To solve Problems related to fitting of Polynomials.	Lecture	Test
IV	Numeri	cal Linear Algebra				I
	1	Triangular Matrices, LU Decomposition of a matrix	2	To evaluate the matrix using LU Decomposition method.	Lecture	Test
	2	Solution of Linear systems – Direct methods: Gauss elimination, Necessity for Pivoting, Problems related to Gauss elimination	3	To understand the Gauss elimination and practice problems based on it	Lecture with Illustration	Quiz
	3	Gauss-Jordan method, Problems based on Gauss- Jordan method, Modification of the Gauss method to compute the inverse	3	To understand Gauss- Jordan method	Lecture and group discussion	Test
	4	Examples to compute the inverse	3	To compute the inverse using different methods	Lecture with	Test

		using Modification of the Gauss method, LU			Illustration	
		Decomposition method and related problems, Solution of Linear systems - Iterative methods				
	5	Gauss-Seidal method, Problems related to Gauss- Seidal method, Jacobi's method, Problems related to Jacobi's method	3	To understand the Gauss-Seidal method and Jacobi's method	Lecture with Illustration	Test
V	Numeric	al Solution of Ordina	ry Differei	ntial Equations	1	1
	1	Solution by Taylor's series, Examples for solving Differential Equations using Taylor's series, Picard's method of successive approximations	4	To solve Differential Equations using different methods	Lecture with Illustration	Test
	2	Problems related to Picard's method, Euler's method, Error Estimates for the Euler Method, Problems related to Euler's method	4	To understand the methods Picard's and Euler's and practice problems related to it.	Lecture with Illustration	Formative Assessment test
	3	Modified Euler's method, Problems related toModified Euler's method, Runge - Kutta methods - II order and III order	4	To solve problems using Modified Euler's method	Lecture with Illustration	Assignment
	4	Problems related to Runge - Kutta II order and III order, Problems related to Fourth-order Runge - Kutta methods	4	To solve problems using Fourth-order Runge - Kutta methods	Lecture with Illustration	Assignment

Course Instructor(Aided): Dr. K. Jeya Daisy

HOD(Aided) :Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Ms. V. Princy Kala

HOD(S.F) :Ms. J. Anne Mary Leema

Semester : III

Name of the course : Field Theory and Lattices

Major Core IX

Course code : PM2031

Number of hours/ Week	Credits	Total number of hours	Marks
6	5	90	100

Objectives:

1. To learn in depth the concepts of Galois Theory, theory of modules and lattices.

2. To pursue research in pure Mathematics.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the definitions and basic concepts of field theory and lattice theory	PSO - 2	U
CO - 2	express the fundamental concepts of field theory, Galois theory	PSO - 2	U
CO - 3	demonstrate the use of Galois theory to construct Galois group over the rationals and modules	PSO - 3	Е
CO - 4	distinguish between field theory and Galois theory	PSO - 3	Ар
CO - 5	interpret distributivity and modularity and apply these concepts in Boolean Algebra	PSO - 4	Ар

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Extensio	n fields		1	I	
	1	Extension field - Definition, Finite extension- Theorems on finite extension	4	Recall the definitions and basic concepts of field theory and lattice theory, Express the fundamental concepts of field theory, Galois theory	Lecture with illustration	Evaluation through: Short Test Formative assessment I
	2	Theorems and corollary on algebraic over Fields and understand about subfields of an extension	4	Express the fundamental concepts of field theory, Galois theory	Lecture with PPT illustration	
	3	To understand about adjunction of an element to a field, subfields, Theorems.	4	Recall the definitions and basic concepts of field theory and lattice theory, Express the fundamental concepts of field theory, Galois theory	Lecture with illustration	
	4	Algebraic extension- Theorems on algebraic extension- algebraic number- transcendental number	3	Express the fundamental concepts of field theory, Gain knowledge in algebraic extension in fields.	Lecture with illustration	
II	Roots of	Polynomials				
	1	Definition- root, Remainder theorem, Definition- multiplicity	3	Recall the definitions and basic concepts of field theory and lattice theory, Express the fundamental concepts of field theory, Galois theory	Lecture with illustration	Short Test Formative assessment I, II

	2	Theorems based	4	Recall the	Lecture	
		on roots of		definitions and basic	with PPT	
		polynomials,		concepts of field	illustration	
		Corollary and		theory and lattice		
		lemma based on		theory, Express the		
		roots of		fundamental		
		polynomials.		concepts of field		
				theory, Galois theory		
				and theory of		
	-			modules	-	
	3	Definition-	4	Recall the	Lecture	
		splitting field.		definitions and basic	with PPT	
		Theorems based		concepts of field	illustration	
		on isomorphism of fields,		theory, Galois		
		Theorems based		theory and lattice theory.		
		on splitting field		tileory.		
		of polynomials				
	4	Definition-	3	Understand the	Lecture	
		derivative,		concept of Galois	with	
		Lemmas on		theory,	illustration	
		derivative of		irreducibility,		
		polynomials,		splitting fields,		
		Simple		derivative of		
		extension,		polynomials		
		Theorems on				
		simple				
		extension.				
III	Galois Tl	•			-	
	1	Fixed Field -	4	Recall the	Lecture	Short Test
		Definition,		definitions and basic	with	E
		Theorems based		concepts of field	illustration	
		on Fixed Field,		theory and lattice		assessment II
		Group of Automorphism		theory, Express the fundamental		11
		Automorphism		concepts of field		Assignment
				theory, Galois theory		on lemma
	2	Theorems based	5	Express the	Lecture	based on
		on group of		fundamental	with	Algebraic
		Automorphism,		concepts of field	illustration	
		Finite		theory, Galois theory		
		Extension,				
		Normal				
		Extension				
	3	Theorems based	4	Recall the	Lecture	
		on Normal		definitions and basic	with	
		Extension,		concepts of field	illustration	
		Galois Group,		theory and lattice		
		Theorems based		theory, Express the		
1		1	1	fundamental		

		on Galois		concepts of field		
		Group		theory, Galois theory		
	4	Galois Group	4	Express the	Lecture	
		over the		fundamental	with PPT	
		rationals,		concepts of field	illustration	
		Theorems based		theory, Galois		
		on Galois		theory, Demonstrate		
		Group over the		the use of Galois		
		rationals,		theory to compute		
		Problems based		Galois Group over		
		on Galois		the rationals		
		Group over the				
		rationals				
IV	Finite fie			Γ		
	1	Finite Fields –	4	Recall the	Lecture	Short Test
		Definition,		definitions and basic	with PPT	
		Lemma-Finite		concepts of field	illustration	
		Fields,		theory and lattice		Formative
		Corollary-Finite		theory, Express the		assessment
		Fields		fundamental		III
				concepts of field		
				theory, Galois theory		
	2	Theorems based	4	Recall the	Lecture	
		on Finite Fields,		definitions and basic	with	
		Wedderburn's		concepts of field	illustration	
		Theorem on		theory and lattice		
		finite division		theory, Express the		
		ring		fundamental		
				concepts of field		
	2	XX7 11 1 2	4	theory, Galois theory	T /	
	3	Wedderburn's	4	Recall the	Lecture	
		Theorem,		definitions and basic	with	
		Wedderburn's		concepts of field	illustration	
		Theorem-First		theory and lattice		
	4	Proof	3	theory	Lasteres	
	4	A Theorem of	3	Understand the	Lecture	
		Frobenius-		theory of Frobenius	with illustration	
		Definitions,		Theorem, four	mustration	
		Algeraic over a		square theorem and		
		field, Lemma based on		Integral Quaternions		
		Algeraic over a field				
V	Lattice T					
•	1	Partially	3	Recall the	Lecture	Short Test
	1	ordered set-	5	definitions and basic	with	Short Test
		Definitions,		concepts of field	illustration	
		Theorems based		theory and lattice	musuation	Formative
		on Partially		theory		assessment
		ordered set				III
L	1	ordered bet		1		

2	Totally ordered set, Lattice, Complete Lattice	4	Recall the definitions and basic concepts of field theory and lattice theory, Interpret distributivity and modularity and apply these concepts in Boolean Algebra, Develop the knowledge of lattice and establish new relationships in Boolean Algebra	Lecture with illustration	Seminar on Lattice
3	Theorems based on Complete lattice, Distributive Lattice	3	Interpret distributivity and modularity and apply these concepts in Boolean Algebra, Develop the knowledge of lattice and establish new relationships in Boolean Algebra	Lecture with illustration	
4	Modular Lattice, Boolean Algebra, Boolean Ring	4	Develop the knowledge of lattice and establish new relationships in Boolean Algebra	Lecture with PPT illustration	

Course Instructor(Aided): Dr. S. Sujitha

HOD(Aided):Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Dr. J. C. Eveline

HOD(S.F): Ms. J. Anne Mary Leema

Semester	: III	Major Core X
Name of the Course	: Topology	
Course code	: PM2032	

No. of Hours per Week	Credit	Total No. of Hours	Marks
6	5	90	100

Objectives: 1. To distinguish spaces by means of simple topological invariants.

2. To lay the foundation for higher studies in Geometry and Algebraic Topology.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	Understand the definitions of topological space, closed sets, limit points, continuity, connectedness, compactness, separation axioms and countability axioms.	PSO - 3	U
CO - 2	Construct a topology on a set so as to make it into a topological space	PSO - 4	С
CO - 3	Distinguish the various topologies such as product and box topologies and topological spaces such as normal and regular spaces.	PSO - 3	U, An
CO - 4	Compare the concepts of components and path components, connectedness and local connectedness and countability axioms.	PSO - 2	E, An
CO - 5	Apply the various theorems related to regular space, normal space, Hausdorff space, compact space to other branches of mathematics.	PSO - 1	Ap
CO - 6	Construct continuous functions, homeomorphisms and projection mappings.	PSO - 4	С

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	Topolog	ical space and Contin	uous funct	ions		
	1	Definition of topology, discrete and indiscrete topology, finite complement	3	To understand the definitions of topological space and different types of topology	Lecture with PPT	Test

	topology, Basis for a topology and examples, Comparison of standard and lower limit topologies				
2	Order topology: Definition & Examples, Product topology on XxY: Definition & Theorem	3	To compare different types of topology and Construct a topology on a set so as to make it into a topological space	Lecture	Test
3	The Subspace Topology: Definition & Examples, Theorems	3	To understand the definition of subspace topology with examples and theorems	Lecture	Test
4	Closed sets: Definition & Examples, Theorems, Limit points: Definition Examples & Theorems , Hausdorff Spaces: Definition & Theorems	5	To understand the definitions of closed sets and limit points with examples and theorems and identify Hausdorff spaces and practice various theorems	Lecture	Test
5	Continuity of a function: Definition, Examples, Theorems, Homeomorphism: Definition & Examples, Rules for constructing continuous function, Pasting lemma &	3	To understand the definition of continuous functions and construct continuous functions	Lecture	Test

		Examples, Maps into products				
II	The Pro	oduct Topology, The N	letric Topo	ology & Connected Spaces	5	<u> </u>
	1	The Product Topology: Definitions,Compar ison of box and product topologies, Theorems related to product topologies, Continuous functions and examples	3	To understand the definition of homeomorphism and prove theorems and practice various Theorems related to Maps into products, Cartesian Product, Projection mapping and distinguish the various topologies such as product and box topologies and topological spaces	Lecture	Test
	2	The MetricTopology:Definitions andExamples,Theorems,Continuity of afunction, Thesequence lemma,Constructingcontinuousfuctions, Uniformlimit theorem,Examples andTheorems	5	To understand the concept of metric topology and prove the theorems	Lecture	Class Test
	4	Connected Spaces: Definitions, Examples, Lemmas and Theorems, Connected Sub space of the real lines: Definitions and Examples, Theorems, Intermediate value	5	To understand the concepts of connected space open and closed sets and to practice the various theorems	Group discussion	Quiz

	5	theorem, connected space open and closed sets, lemma, examples, Theorems. Components and Local Connectedness: Definitions, Path components, Locally connected, Locally path connected: Definitions and Theorems	3	To compare the concepts components and path components, connectedness and local connectedness	Lecture	Test
III	Compa	ctness				
	1	Compact space: Definition, Examples, Lemma, Theorems and Image of a compact space, Product of finitely many compact spaces, Tube lemma, Finite intersection property: Definition & Theorem	4	To understand the concept compact space with examples and theorems. To practice various theorems related to product of finitely many compact spaces, Tube lemma, Finite intersection property	Lecture and Seminar	Assignment
	2	Compact Subspaces of the Real Line: Theorem, Characterize compact subspaces of R ⁿ , Extreme value theorem, The Lebesgue number lemma, Uniform continuity theorem	3	To characterize the compact subspace and prove various theorems	Lecture	Formative Assessment Test

	3	Limit Point Compactness: Definitions, Examples and Theorems, Sequentially compact	2	To under the concept of limit point compactness and analyze the sequentially compactness	Lecture with group discussion	Test
	4	Complete Metric Spaces: Definitions, Examples and Theorems, Isometric embedding	3	To analyze the concept of completeness of metric space to be complete, and to understand that every metric space can be imbedded isometrically in a complete metric space	Lecture	Test
	5	Compactness in Metric spaces: Totally bounded, Pointwise bounded, Equicontinuous, Definitions, Lemmas, Theorems	3	To understand the concept of compactness in metric spaces.	Lecture	Class test
IV	(Compactness, Countal	bility and S	Separation axioms		<u> </u>
	1	Local compactness: Definition & Examples, Theorems	3	To understand the concept local compactness with examples and theorems	Lecture with illustration	Quiz
	2	First Countability axiom, Second Countability axiom: Definitions, Theorems, Dense subset: Definitions & Theorem, Examples, Lindelof space : Definition , Examples	3	To compare countability axioms and understand the definition of dense subset and identify Lindelof space	Lecture	Test

	3	The Separation Axioms: Regular space & Normal space: Definitions, Lemma, Relation between the separation axioms, Examples based on separation axioms, Theorem based on separation axioms and Metrizable space	4	To distinguish various topological spaces such as normal and regular spaces. To practice examples and theorems based on separation axioms	Lecture	Test
	4	Normal Spaces: Theorems and Examples	2	To understand the concept of Normal Spaces	Group discussion	Test
	5	Urysohn lemma	3	To constuct Urysohn lemma	Lecture	Formative Assessment Test
V	Urysohn	Metrization Theorem	, Tietze Ex	xtension Theorem,& The	Tychonoff Th	eorem
	1	Urysohn metrization theorem, Imbedding theorem	3	To construct the Urysohn metrization theorm and Imbedding theorem	Lecture with illustration	Quiz
	2	Tietze extension theorem	3	To constuct Tietze extension theorem	Lecture	Assignment
	3	The Tychonoff Theorem	3	To understand and analyze the The Tychonoff Theorem	Lecture	Test
	4	The Stone-Cech Compactification: Defintions, Lemmas, Theorems	3	To understand the concept of Stone-Cech Compactification	Lecture	Test

Course Instructor (Aided): Dr. M.K. Angel Jebitha HoD(Aided): Dr. V.M. Arul Flower Mary

Course Instructor (S.F): Ms. R.N. Rajalekshmi

HoD(S.F): Ms. J. Anne Mary Leema

Semester	III	
Name of the Course	: Measure Theory and Integration	Major Core XI
Course Code	:PM2033	

Number of hours/ week	Credits	Total number of hours	Marks
6	5	90	100

Objectives: 1. To generalize the concept of integration using measures.

2. To develop the concept of analysis in abstract situations.

Course Outcome

CO	Upon completion of this course thestudents	PSOs	CL
	will be able to :	addressed	
CO - 1	define the concept of measures and Vitali covering and recall some properties of convergence offunctions,	PSO - 1	R
CO - 2	cite examples of measurable sets , measurable functions, Riemann integrals, Lebesgue integrals.	PSO - 3	U
CO - 3	apply measures and Lebesgue integrals to various measurable sets and measurable functions	PSO - 2	Ар
CO - 4	apply outer measure, differentiation and integration to intervals, functions and sets.	PSO - 2	Ар
CO - 5	compare the different types of measures and Signed measures	PSO - 3	An

Uni t	Sectio n	Topics	Lectur e hours	Learning Outcome	Pedagog y	Assessment Evaluation
Ι	Lebesgu	ie Measure				
		Lebesgue Measure - Introduction, outer measure	4	To understand the measure and outer measure of any interval	Lecture, Illustratio n	Evaluation through : Class test on outer measure and
		Measurable sets and Lebesgue measure	5	To be able to prove Lebesgue measure using measurable sets	Lecture, Group discussio n	Lebesgue measure Quiz

		integration-		concepts of measure	Group	Seminar on
1 1	1.	Measure and	3	To understand	Lecture,	
IV	Меасии	re and integration	1	absolute continuity	n	
		Absolute continuity	3	To differentiate continuity and	Lecture, Illustratio	assessment- II
		integral	3	integrals To differentiate	Lacture	Formative
		n of an		differentiation of		
		Differentiatio	4	To find	Lecture	
		variation		different functions	n	
		bounded		bounded variation of	Illustratio	
		Functions of	4	To evaluate the	Lecture,	
		functions				bounded variation
		of monotone		integration		functions of
		differentiation		differentiation and	n	Unit test on
		integration-		them with	discussio	
		n and		functions and use	Group	questions
		Differentiatio	4	To recall monotone	Lecture,	Multiple choice
III	Differe	ntiation and integ	ration	I ▲		1
		integral		proofs		
		Lebesgue	I	named theorems and	Lecture	
	4.	The general	4	To understand a few	Lecture	4
		function			11	assessment-II
		negative		negative functions	n	Formative
	J.	of a non-	5	theorems using non-	Illustratio	
	3.	The integral	5	To prove various	Lecture,	
		a set of finite measure				negative function
		function over a set of finite			n	integral of a non-
		bounded		measures	discussio	Short test on the
		integral of a		use of integration in	Group	
	2.	The Lebesgue	5	To understand the	Lecture,	questions
	2	Integral			T (Multiple choice
		Riemann		importance	n	N.C14: 1 1 '
		integral - the		integral and its	Discussio	assessment- I
	1.	The Lebesgue	1	To recall Riemann	Lecture,	Formative
						1
Π	The Le	besgue integral			•	
		two).		6		
		proof for first		convergence		
		principles (no		pointwise	n	
		three	_	convergence and	Illustratio	
		Littlewood's	2	To differentiate	Lecture,	
				various theorems		
				uses to prove	11	assessment- I
		functions		functions and its	n	Formative
		tunotions		measurable	Discussio	

		Measure spaces			discussio n	spaces, measurab le functions and
	2.	Measurable functions	3	To recall measurable functions and use them in measure spaces	Lecture, Discussio n	integration. Short test on general
	3.	Integration	3	To integrate functions in measure spaces	Lecture, Illustratio n	convergence theorems and signed measures
	4.	General convergence theorems	3	To learn various convergence theore ms in measure spaces	Lecture, Discussio n	Formative assessment- II
	5.	Signed measures	3	To understand signed measures in detail	Lecture	
V	The L ^P s	spaces and Meas	sure and o	outer measure	·	
	1.	The L ^P spaces	5	To understand L ^P space s	Lecture, Illustratio n	Seminar on outer measure, measurability and
	2.	Measure and outer measure- Out er measure and measurability	3	To understand outer measure and measurability in L ^p spaces	Lecture, Discussio n	extension theorem Short test on outer measure and measurability
	3.	The extension theorem	7	To prove various theorems based on σ-algebra	Lecture, Group discussio n	

Course Instructor(Aided): Dr. V. M. Arul Flower Mary HOD(Aided) : Dr. V. M. Arul Flower Mary Course Instructor(S.F): Ms. C.Joselin Jenisha

HOD(S.F) : Ms. J. Anne Mary Leema

: III Semester Name of the Course: Algebraic Number Theory and Cryptography

Elective III

Course code : PM2034

No. of Hours per Week	Credit	Total No. of Hours	Marks
6	4	90	100

Objectives: 1. To gain deep knowledge about Number theory

To study the relation between Number theory and Abstract Algebra.

3. To know the concepts of Cryptography.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the basic results of field theory	PSO - 1	R
CO - 2	understand quadratic and power series forms and Jacobi symbol	PSO - 2	U
CO - 3	apply binary quadratic forms for the decomposition of a number into sum of sequences	PSO - 3	Ар
CO - 4	determine solutions using Arithmetic Functions	PSO - 3	Ар
CO - 5	calculate the possible partitions of a given number and draw Ferrer's graph	PSO - 2	An
CO - 6	identify the public key using Cryptography	PSO - 4	An

Course Outcome

Unit	Sectio ns	Topics	Lectur e hours	Learning Outcome	Pedagogy	Assessment /
						Evaluation
Ι	Quadra	tic reciprocity and Qua	dratic for	ms	•	
	1	Quadratic Residues, definition, Legendre symbol definition and Theorem based on Legendre symbol	3	To understand definition and examples of quadratic residues and Legendre symbol and theorems on Legendre symbol.	Lecture with Illustration	Question and Answer
	2	Lemma of Gauss, Theorem based on Legendre symbol	4	To understand quadratic and power series forms and Lemma of Gauss, Theorem based on Legendre symbol .	Lecture with Illustration	Test
	3	Quadratic reciprocity law, Theorem based on Quadratic reciprocity.	3	To understand quadratic and power series and Quadratic reciprocity law, Theorem based on Quadratic reciprocity	Lecture with PPT Illustration	Quiz and Test
	4	The Jacobi symbol definition and examples, Theorems	2	To understand the concept of Jacobi symbol and	Lecture with Illustration	Assignment

		based on Jacobi		theorems based on Jacobi		
		symbol		symbol.		
	5		2	To understand theorem	Lastra	Evolution
	5	Theorem based on	2		Lecture with	Evaluation
		Jacobi symbol and		based on Jacobi symbol		through test
II	Dinomy	Legender symbol Quadratic forms		and Legender symbol.	Illustration	
11	-		2		T (T t
	1		2	To recall the basic results	Lecture	Test
		examples of quadratic		of field theory and to	with PPT	
		form, definite,		understand the concept of	Illustration	
		indefinite and		quadratic form.		
		semidefinite form.			-	
	2	Theorems based on	4	To understand the	Lecture	Quiz and
		binary Quadratic forms		quadratic and power series	with	Test
				forms and Theorems	Illustration	
				based on binary Quadratic		
				forms		
	3	Definition and	3	To understand the	Lecture	Test
		Theorems based on		Definition and Theorems	with	
		modular group,		based on modular group	Illustration	
		Definition, theorem		and perfect square.		
		based on perfect square				
	4	Theorems based on	2	To calculate the possible	Lecture	Formative
		reduced Quadratic		partitions of a given	with PPT	Assessment
		forms		number and draw Ferrer's	Illustration	Test
				graph		
	5	Sum of two squares,	2	To apply binary quadratic	Lecture	Quiz and
		Theorems based on		forms for the	with	Test
		sum of two squares		decomposition of a	Illustration	
				number into sum of		
				sequences		
III		unctions of Number The				
	1	Definition and	3	To understand the	Lecture	Formative
		examples based on		definition and examples of	with	Assessment
		Arithmetic functions,		Arithmetic function and to	Illustration	Test
		Multiplicative		determine solutions using		
		function and theorems		Arithmetic Functions.		
		on arithmetic and				
		multiplicative				
		multiplicative function.				
	2	multiplicative function. Definition and	3	To understand the	Lecture	Test
	2	multiplicative function. Definition and theorem of Mobius	3	definition and theorem on	with PPT	Test
	2	multiplicative function. Definition and theorem of Mobius function, The Mobius	3	definition and theorem on Mobius function, The		Test
	2	multiplicative function. Definition and theorem of Mobius function, The Mobius Inversion Formula and	3	definition and theorem on Mobius function, The Mobius Inversion Formula	with PPT	Test
	2	multiplicative function. Definition and theorem of Mobius function, The Mobius Inversion Formula and theorem on Mobius	3	definition and theorem on Mobius function, The Mobius Inversion Formula and to determine solutions	with PPT	Test
	2	multiplicative function. Definition and theorem of Mobius function, The Mobius Inversion Formula and theorem on Mobius function and	3	definition and theorem on Mobius function, The Mobius Inversion Formula and to determine solutions using Arithmetic	with PPT	Test
		multiplicative function. Definition and theorem of Mobius function, The Mobius Inversion Formula and theorem on Mobius function and Multiplicative function.		definition and theorem on Mobius function, The Mobius Inversion Formula and to determine solutions	with PPT	Test
	2	multiplicative function. Definition and theorem of Mobius function, The Mobius Inversion Formula and theorem on Mobius function and	3	definition and theorem on Mobius function, The Mobius Inversion Formula and to determine solutions using Arithmetic	with PPT	Test Quiz and
		multiplicative function. Definition and theorem of Mobius function, The Mobius Inversion Formula and theorem on Mobius function and Multiplicative function.		definition and theorem on Mobius function, The Mobius Inversion Formula and to determine solutions using Arithmetic Functions.	with PPT Illustration	
		multiplicative function. Definition and theorem of Mobius function, The Mobius Inversion Formula and theorem on Mobius function and Multiplicative function. Definition and		definition and theorem on Mobius function, The Mobius Inversion Formula and to determine solutions using Arithmetic Functions. To understand the	with PPT Illustration Group	Quiz and

		finding selection f		find the extention of]
		finding solutions of		find the solutions of		
		Diophantine Equations		Diophantine equations.		
		and solving problems				
		on Diophantine				
	4	equation.	2		.	m
	4	Definition and	3	To understand the	Lecture	Test
		examples of		Pythagorean triangle and	with	
		Pythagorean triangle,		problems for finding	Illustration	
		Lemma on perfect		primitive solutions.		
		square and theorem				
		and problems for				
		finding primitive				
		solutions.				
IV	The par	rtition Function	1		1	
	1	Partitions definitions,	2	To understand the	Lecture	Question
1		theorems based on		Partitions definitions,	with	and
		Partitions		theorems based on	Illustration	Answers
				Partitions and to Calculate		
				the possible partitions of a		
				given number		
	2	Ferrers Graphs,	3	To understand the	Lecture	
		Theorems based on		Ferrers Graphs, Theorems	with	Quiz and
		Ferrers Graphs		based on Ferrers Graphs	Illustration	Test
				and how to draw the		
				Ferrer's graph		
	3	Formal power series	2	To understand the Formal	Lecture	Formative
		and identity Euler		power series and identity	with	Assessment
		formula.		and Euler formula.	Illustration	Test
	4	Theorems on Euler		To understand theorems	Lecture	Test
		identity and bounds on	3	on Euler identity and	with	
		p(n).		bounds on p(n).	Illustration	
	5	Theorems based on	3	To understand Theorems	Lecture	Assignment
		Euler formula		based on Euler formula	with	
		converges of power		,converges of power series	Illustration	
		series and absolute		and absolute convergent.		
		convergent.				
V	Public 1	Key Cryptography	1		1	
	1	Definition and	2	To understand the concept	Lecture	Question
		examples of		of Cryptography	with	and Answer
		Cryptography, the			Illustration	
		concepts of Public Key				
		Cryptography with				
		examples				
	2	The idea of classical	3	To understand the idea of	Lecture	Quiz
	1	vesus public key,		public key Cryptography		
					1	
		Authentication, Hash		and to Identify the public		
		Authentication, Hash functions, key		key using Cryptography		
		,		• -		
		functions, key		• -		

3	RSA Cryptosystem with examples, Discrete log cryptosystem with examples, The Diffie – Hellman key exchange system and assumption with examples.	4	To understand and apply the concept of RSA cryptosystem and Diffie – Hellman key exchange system	Lecture with illustration	Test
4	The Massy- Omura cryptosystem for message transmission, the ElGamal cryptosystem, the Digital Signature Standard, Algorithm for finding discrete log in finite fields with example and index calculus algorithm for discrete logs	4	To understand and apply the idea of Massy- Omura cryptosystem, ElGamal cryptosystem and solve the problem on discrete log using Silver Pohlig Hellman algorithm.	Lecture with illustration	Formative Assignment Test
5	Basic facts of Elliptic curves, Elliptic curves over the reals, complexes and rationals, Points of finite order with examples.	4	To understand the concept of Elliptic curves and solve the problems on points of finite order	Lecture	Quiz
6	Analog of the Diffie- Helman key exchange, Analog of Massey - Omura, Analog of ElGamal, reducing a global modulo p with examples.	5	To understand the concept of Elliptic curve Cryptosystem and Analog of all cryptosystem.	Lecture with illustration	Assignment

Course Instructor: Dr. V.Sujin Flower

HOD(Aided): Dr. V. M. Arul Flower Mary

Course Instructor: Dr.S.Kavitha

HOD (SF): Ms. Anne Mary Leema

Semester

: IV

Major Core XII

Name of the Course

: Complex Analysis

Course Code : PM2041

No. of Hours per Week	Credits	Total No. of Hours	Marks
6	5	90	100

Objectives: 1. To impart knowledge on complex functions.

2. To facilitate the study of advanced mathematics.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	Understand the fundamental concepts of complex variable theory	PSO - 1	U
CO - 2	Effectively locate and use the information needed to prove theorems and establish mathematical results	PSO - 3	R
CO - 3	Demonstrate the ability to integrate knowledge and ideas of complex differentiation and complex integration	PSO - 4	U
CO - 4	Use appropriate techniques for solving related problems and for establishing theoretical results	PSO - 3	Ар
CO - 5	Evaluate complicated real integrals through residue theorem	PSO – 2, 4	E
CO - 6	Know the theory of conformal mappings which has many physical applications and analyse its concepts	PSO – 3, 4	An

Unit	Sec tio n	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment /evaluation	
Ι	Power series						
	1	Abel's theorem, Abel's limit theorem	3	To understand the concept and practice theorems	Lecture	Quiz	
	2	The periodicity	2	The periodicity and solve problems based on the concept	Lecture with Group disscussion	Test	

	3	Conformality: Arcs and		To understand the	Lecture with	Test		
		closed curves, Analytic Functions in Regions	4	definition of Arcs and closed curves& Analytic Functions in	illustration			
				Regions				
	4	Conformal Mapping	3	To understand the concept of Conformal Mapping	Lecture	Test		
	5	Length and Area	2	To understand the concepts and give illustrations	Lecture	Quiz		
II	Complex Integration – Fundamental theorems							
	1	Cauchy's Theorems for a Rectangle, Cauchy's Theorem in a Disk	5	To practice theorems based on this concepts	Lecture	Test		
	2	Cauchy's integral formula, The Index of a Point with Respect to a Closed Curve	3	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Test		
	3	The Integral Formula, Higher Derivatives	3	To solve problems using this concepts.	Lecture	Formative Assessmen Test II &II		
	4	Local Properties of Analytic Functions - Removable singularties and Taylor's theorem, Zeros and poles.	4	To understand the concepts and give illustrations& practice theorems	Seminar			
III		Complex Integration			·			
	1	The local mapping, The maximum principle, The General Form of Cauchy's Theorem	5	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Assignmen		
	2	Chains and Cycles, Simple Connectivity, Homology	4	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Quiz		
	3	The General Statement of Cauchy's Theorem (statement only),Calculus of Residues	3	To understand the concept about Calculus of Residues.	Lecture	Test		
	4	The Residue Theorem, The Argument Principle	2	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Formative Assessmen Test III		
	5	Evaluation of Definite Integrals.	2	To solve problems related to Definite Integrals.	Video	Test		

	1	Partial Fractions and Entire Functions, Partial Fractions, Infinite products, Canonical products	3	To understand the concept and practice theorems	Lecture with illustration	Test
	2	Gamma functions, Jensen's formula, Hadamard's Theorem	4	To practice theorems based on this concepts	Lecture	Test
	3	Riemann Theta Functions and Normal Families, product development, Extension of $\tau(s)$ to the whole plane	3	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Test
	4	The zeros of zeta functions, Equicontinuity, Normality and compactness	2	To solve problems using this concepts.	Lecture	Formative Assessment Test II &III
	5	Arzela's theorem, Families of analytic functions, The classical Definitions	3	To understand the concepts and give illustrations& practice theorems	Seminar	
V		Conformal Mappings				
	1	Riemann mapping theorem, Statement and proof, Boundary Behaviour, Use of the Reflection principle	5	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Assignment
	2	Conformal mappings of Polygons, Behaviour at an angle	3	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Quiz
	3	Schwarz-Christoffel formula, Mapping on a rectangle	3	To understand the concept about mapping on a rectangle	Lecture	Test
	4	Harmonic Functions, Functions with mean value Property, Harnack's Principle	4	To understand the concept about Harmonic functions	Lecture with illustration	Formative Assessment Test III

Course InstructorAided): Dr. A. JancyVini

HOD(Aided) :Dr. V.M. Arul Flower Mary

Course Instructor(S.F): V.G. MichealFlorance

HOD(S.F) :Ms. J. Anne Mary Leema