DEPARTMENT OF COMPUTER SCIENCE

M.Sc. Teaching Plan for the Academic Year 2023-2024

Semester II

Programme Educational Objectives (PEOs)

PEO	Upon completion of UG Degree Programme, the graduates will be able to:						
PEO – 1	apply appropriate theoretical knowledge to participate in activities that support						
	humanity and economic development nationally and globally, developing as						
	leaders in their fields of expertise.						
PEO – 2	pursue lifelong learning and continuous improvement of the						
	knowledge and skills with the highest professional and ethical standards.						
PEO – 3	inculcate practical knowledge for developing professional empowerment and						
	entrepreneurship and societal services.						

Programme Outcomes (POs)

РО	Upon completion of B.Sc. Degree Programme, the graduates will be able
	to:
PO – 1	utilize scientific knowledge to pursue higher studies in the relevant field.
PO – 2	create innovative ideas to enhance entrepreneurial skills for economic
	independence.
PO – 3	face challenging competitive examinations that offer rewarding careers.
PO – 4	reflect upon green initiatives and take responsible steps to build a sustainable
	environment.
PO – 5	handle ethical issues with social responsibility.
PO – 6	communicate effectively and collaborate successfully with peers to become
	competent professionals.

Programme Specific Outcomes (PSOs)

PSOs	Upon completion of the B.Sc. Degree Programme, the graduates will be able
	to:
PSO – 1	obtain sufficient knowledge and skills enabling them to undertake further studies
	in Computer Science and its allied areas on multiple disciplines linked with
	Computer Science.
PSO - 2	evaluate and apply emerging technologies in computer science to develop
	innovative solutions for real-world problems
PSO – 3	develop a range of generic skills helpful in team building, problem solving,
	technical ability, employment, internships, communication and societal activities.
PSO - 4	communicate effectively, work collaboratively, and demonstrate ethical and
	professional attitudes in diverse settings.
PSO - 5	sensitize various economic issues related to Development, Growth, International
	Economics, Sustainable Development and Environment

Department	:	Computer Science
Class	:	I M. Sc Computer Science
Title of the Course	:	Core Course III: Data Mining and Warehousing
Semester	:	II
Course Code	:	SP232CC1

Course Code	L	Т	Р	S	Credits	Inst. Hours	Inst. Hours Hours			arks	
							nours	CIA	External	Total	
SP232CC1	6	-	-	-	5	6	90	25	75	100	

- 1. Enabled the students to learn the concepts of Data Mining tasks, classification, clustering and Data Warehousing.
- 2. Developed the skills of using recent data mining software for solving practical problem.

CO	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive Level
CO – 1	understand the basic data mining techniques and algorithms	PSO – 1	K2 (U)
CO – 2	understand the Association rules, Clustering techniques and Data warehousing contents	PSO – 2	K2(U), K3(Ap)
CO – 3	compare and evaluate different data mining techniques like classification, prediction, Clustering and association rule mining	PSO – 4	K4(An), K5 (E)
CO – 4	design data warehouse with dimensional modeling and apply OLAP operations	PSO – 5	K5(E), K6()
CO – 5	identify appropriate data mining algorithms to solve real world problems	PSO – 3	K6(C)

Course Outcomes

Teaching plan

Total Contact hours: 90 (Including lectures, assignments and tests)

TT .º.			Teaching	Cognitive	D	Assessment/
Unit	Module	Торіс	Hours	level	Pedagogy	Evaluation
T	BASIC	S AND TECHNIQUES				
1	1.	Basic data mining			-	Ouiz, Written
		tasks, data mining	3	K2(U)	Lecture,	Assignment
		versus knowledge			Discussion	
		discovery in databases				
	2.	Data mining issues	2	K4(An)	Debates, Analysis of Case Studies	Presentation
	3	Data mining metrics – social implications of	3	K5 (E)	Problem-solving Sessions, Case	Quiz, Written Assessment
	3	Data mining from a		$K_{3}(\Lambda n)$	Practical	Database
	5.	database perspective	2	KS(Ap)	Database Queries, Case Studies	Project
	4.	Data mining techniques: Introduction	1	K2(U)	Lecture with PPT Interactive Sessions	Quiz, Conceptual Assignment
	5.	Statistical perspective on data mining	2	K4(An)	Data Analysis Exercises, Problem-Solving	Data Analysis Project
	6.	Similarity measures – decision trees	2	K4(An)	Algorithm Implementation, Comparative Study	Algorithm Analysis Report
	7.	Neural networks – genetic algorithms	3	K6(C)	Advanced Workshops, Model Design Exercises	Model Design and Implementation
II	ALGO	RITHMS	1		1	
	1.	Classification: Introduction	1	K1(R)	Lecture, Discussions	Quiz
	2.	Statistical –based algorithms-Regression and Bayesian - distance–based algorithms	3	K2(U)	Case Studies, Practical Examples	Written Assignment
	3.	Hamming distance - Euclidean Distance	3	K3(Ap)	Hands-on Exercises, Problem-Solving	Give problem solving exercises
	4.	Decision tree-based algorithms- Use of A Decision Tree- Decision Tree	3	K4(An)	Coding Workshops, Decision Tree Analysis	Presentation

		Induction				
	5.	Neural network-based		K4(An)	Interactive	Assignment
		algorithms - Neural	3		Sessions	Project Proposal
		Network			Neural Network	
		Architecture-Neural			Applications,	Problem-
		Network Method in			Case Studies	solving
		Data Mining				Assessment
	6.	Rule-based	2	K3(Ap)	Rule-based	Quiz, Rule-
		algorithms	2		System Design,	based System
					Exercises	Design
	7	Combining Techniques		K5(E)	Ensemble	Seminar
			3		Learning,	
					Comparative	
					Analysis	
III	CLUST	FERING AND ASSOCIA	ATION	-		-
	1.	Clustering:	2	K1(R)	Lecture,	Quiz
		Introduction			Discussions	
	2.	Similarity and	3	K3(Ap)	Hands-on	Ask to write a
		Distance Measures-			Exercises,	program to
		Outliers			Problem-Solving	measure the
						distance
	3.	Hierarchical	3	K5(E)	Algorithm	Presentation
		Algorithms -			Comparison,	
		Partitional Algorithms.			Case Studies	
	4.	Association rules:	2	K2(U)	Lecture,	Conceptual
		Introduction			Interactive	Assignment
					Sessions	~ .
	5.	large item sets - basic	3	K5(E)	Comparative	Comparative
		algorithms – parallel			Analysis,	Analysis
		& distributed			Distributed	
		algorithms	2		Systems	D 11
	6.	comparing	2	K5(E)	Incremental	Problem-
		approaches-			Mining	solving
		incremental rules			Techniques, Case	Assessment
	7	A dream and A and niction	2	$V_2(\Lambda_{re})$	Advanced	Casa Study
	7.	Advanced Association	3	К3(Ар)	Advanced	Analysis
		Measuring the quality			workshops,	Allalysis
		of Pulse			Application	
IV	Д АТА	WARFHOUSINC AN	D MODEL		Application	
1 V	DATA	WAREHOUSING AN				
	1.	Data warehousing:	•	K1(R)	Lecture,	Ouiz
		Introduction	2		Discussions	
	2.	characteristics of a	2	K2(U)	Case Studies,	Written
		data warehouse			Examples	Assignment
	3.	data marts- other		K4(An)	Case Studies,	Presentation
		aspects of data mart	3		Comparative	
					Analysis	

	4.	Online analytical		K2(U)	Lecture with PPT	Short test
		processing:	3		Interactive	
		introduction –OLTP &			Sessions	
		OLAP systems Data				
		modeling				
	5	star schema for		K5(E)	Comparative	Comparative
	0.	multidimensional view	3		Analysis	Analysis
		_data modeling _	5		Practical	1 1111 515
		multifact star schema			Exercises	
		or snow flake schema			Exercises	
	6	$OI \Delta P TOOI S$		$K_3(\Delta n)$	Tool Exploration	Tool Evaluation
	0.	OLAI TOOLS	2	KJ(Ap)	Hands on	
					Workshops	
	7	State of the market		$K/(\Lambda n)$	Market Analysis	Market
	7.	OLARTOOLS and	3	K4(All)	Tranda and	Analysis Doport
		the internet	5		A mulications	Analysis Report
V		CATIONS OF DATA M			Applications	
V		CATIONS OF DATA W	AKEHOU		Tastanas	O D
	1.	Developing a data	2	K3(Ap)	Lectures,	Quiz, Recall
		warehouse: why and			Discussions	Questions
		how to build a data				
	2	warenouse				
	2.	Data warehouse	2	K2(U)	Case Studies,	Analysis of
		architectural	2		Group	Case Studies,
		strategies, organization			Discussions	Conceptual
	_	issues				Questions
	3.	design consideration –	2	K3(Ap)	Practical	Data Modeling
		data content	-		Exercises, Hands-	Exercise
					on Activities	
	4.	Metadata distribution	3	K3(Ap)	Demonstrations,	Tool-Based
		of data – tools for data	5		Tool Usage	Assessment
		warehousing				
	5.	Performance		K4(An)	Problem-solving	Performance
		considerations –	3		Sessions,	Evaluation
		crucial decisions in	5		Performance	Exercise, Test
		designing a data			Testing	Decision-
		warehouse			Debates, Scenario	making
					Analysis	Assessment,
						Role-play
	6.	Applications of data	2	K2(U)	Case Studies,	Case Study
		warehousing and data	3		Guest Lectures	Analysis,
		mining in government:				Presentation
		Introduction				
	7.	National data		K4(An)	Research	Research Paper,
		warehouses – other	3		Projects, Industry	Presentation
		areas for data			Examples	
		warehousing and data			··· r ·~	
		mining				

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development

Activities (Em/ En/SD): 1. Employability: Data Warehousing and Mining in the industry 2. Skill Development: Hands on Data Warehouse

Provide students with a case study or simulated scenario where they need to design a data warehouse architecture. This includes considerations such as data content, metadata, distribution of data, performance, and tools selection. Allow them to use software tools to model and present their data warehouse design.

Assignment: Statistical -based algorithms, Neural Network Architecture-Neural

Network Method in Data Mining

Seminar Topic: Applications of data warehousing and data mining, data marts

Sample questions

Part A (1 Mark)

- 1. Which of the following is a social implication of data mining?
 - a) Increased efficiency in data storage b) Improved decision making in business
 - c) potential invasion of privacy d) Enhanced data visualization techniques
- 2. Which algorithm is primarily used for classification and prediction tasks based on historical data?
 - a) Decision Trees b) Genetic Algorithms
 - c)Hierarchical Algorithms d) Parallel Algorithms
- 3. What are the key components of a neural network architecture?
 - a) Nodes, edges, and weights
 - b) Decision nodes, root node, and leaf nodes
 - c)Heuristics, fitness functions, and chromosomes
 - d) Clusters, centroids, and outliers
- 4. What is the primary purpose of hierarchical clustering algorithms?
 - a) To partition data into a predetermined number of clusters
 - b) To identify outliers in the dataset
 - c) To organize data points into a tree-like structure
 - d) None of these
- 5. Which technique is used to find relationships between items in a transactional database?
 - a) Clustering b) Decision Trees c) Association Rules d) Regression

Part B (8 Marks)

- 6. Discuss the major issues associated with data mining.
- 7. Explain about Statistical based algorithms
- 8. Illustrate the impact of outliers on Clustering.
- 9. Write about characteristics of a data warehouse.
- 10. Applications of data warehousing and data mining

Part C (12 Marks)

- 11. Explain the significance of data mining from a database perspective.
- 12. Explain the working principles of neural network-based algorithms in data mining.
- 13. Discuss the process of association rule mining in detail.
- 14. Describe the role of OLAP tools in data analysis.
- 15. Write about data warehouse architectural strategies and organization issues

Head of the Department Mrs.J.Anto Hepzie Bai **Course Instructor** Dr.F.Fanax Femy

Department	: Computer Science
Class	: I M. Sc Computer Science
Title of the Course	: Core IV: Advanced Java Programming
Semester	: П
Course Code	: SP232CC2

Course Code	L	Т	Р	Credits	Inst. Hours	Total Hours	Total Marks		
						nouis	CIA	External	Total
SP232CC2	6	-	-	5	6	90	25	75	100

- 1. Enable the students to learn the basic functions, principles and concepts of advanced java programming.
- 2. Learn JDBC, Servlet packages, JQuery, Java Server Pages and JAR file format.

Course Outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO – 1	understand the advanced concepts of Java Programming	PSO – 1	K1 (R), K2 (U)
CO – 2	understand JDBC and RMI concepts	PSO – 2	K3 (AP), K4 (AN)
CO – 3	apply and analyze Java in Database	PSO – 4	K4 (AN), K5 (E)
CO – 4	handle different event in java using the delegation event model, event listener and class	PSO – 5	K5 (E)
CO – 5	design interactive applications using Java Servlet, JSP and JDBC	PSO – 3	K5 (E), K6 (C)

Teaching plan

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Module		Teaching	Cognitive	Pedagogy	Assessment/
			Hours	level		Evaluation
Ι			[[
	1.	BASICS OF JAVA: Java Basics Review	3	K1(U)	Introductory session	Word Cloud
	2.	Components and event handling-Types of Exceptions	2	K2(R)	Problem solving	Simple definitions
	3.	Threading, Concurrency, Synchronization	2	K2(U)	Lecture using Chalk and talk	Diagnostic test
	4.	Networking features- java.net Package, Client and Server Programs	3	K2(U)	Interactive PPT	Quiz using slido
	5.	Content and Protocol Handlers-Network Class Overview	3	K2(U)	Computational Thinking	Evaluation essay
	6.	Java Security and the Network classes	1	K3(A)	Demonstration	Concept definitions
	7.	JavaSocket Programming-Media Techniques	2	K2(U)	Computational Thinking	Evaluation essay
	8.	Applet-Java Graphics- Basic Animation	2	K3(A)	Problem solving	Problem solving questions
II			,		1	
	1.	Remote Method Invocation- Introduction	4	K1(R)	Lecture using Chalk and talk	Evaluation through short test
	2.	Working of RMI- Distributed Application Architecture	4	K2(U)	Simulation	Map knowledge
	3.	Creating stubs and skeletons- Defining Remote objects- Remote Object Activation	4	K2(U)	Lecture using videos	Differentiate between various ideas
	4.	Object Serialization- Java Spaces	4	K3(A)	Spoken Tutorial	Seminar
	5.	Benefits and Limitations of Java Spaces	2	K3(A)	Inquiry Based Teaching	Prepare a sheet

III						
	8.	Java in Databases- java.sql package	3	K2(U)	PPT	Short essays
	9.	JDBC Driver- JDBC principles–JDBC API- database access- Interacting-database search	3	K1(R)	Project Based	MCQ Using Slido
	10.	Meta Data Interfaces- Stored Procedures- Extending JDBC	3	K5(E)	Flipped Classroom	Recall
	11.	Creating multimedia databases – Database support in web applications	3	K4(An)	Lecture using videos	Slip test
	12.	Components of Web Based Database Applications	3	K3(A)	Blended Learning	MCQ Using Nearpod
IV		· • •		·	·	·
	8.	Java Servlets: Java Servlet and CGI programming	2	K2(U)	Context Based	Short summary
	9.	A simple java Servlet- Anatomy of a java Servlet	2	K3(A)	Lecture using videos	Concept explanations
	10.	Reading data from a client-Reading http request header- sending data to a client and writing the http response header	2	K3(A)	Computational Learning	Recall Steps
	11.	Working with cookies	3	K4(An)	PPT	Evaluation through short test
	12.	Java Server Pages: JSP Overview- Installation- JSP tags	2	K3(A)	Demonstration	Short summary
	13.	Components of a JSP page-Expressions- Script lets	2	K6(A)	Experimental Learning	Evaluation through short test
	14.	Directives- Declarations-A complete example	2	K5(E)	Demonstration	Concept explanations
V		1		I		
	8.	JAR file format creation	2	K1(R)	Demonstration	True/False
	9.	Internationalization– Locales	2	K3(A)	Lecture	Evaluation through problems

10.	Resource Bundles	2	K3(A)	Problem solving	Recall Steps
11.	MVC Architecture	3	K4(An)	Lecture method	MCQ
12.	Swing Programming	2	K3(A)	Problem solving	Short essays
13.	Swing Components: Text Fields, Buttons, Toggle Buttons, Check Boxes and Radio Buttons-	2	K2(U)	Gamification	Seminar
14.	Advanced java Techniques	2	K5(E)	PPT	Evaluation through short test

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): 1. Display a message using Servlet.

- 2. Create an applet for a calculator application.
- 3. Prepare employee payslip using JSP.

Assignment :

- 1. Internationalization
- 2. Swing Components

Seminar Topic:

- 1. MVC Architecture
- 2. Object Serialization

Sample questions (minimum one question from each unit)

Part A

1. Which mechanism in Java RMI is responsible for converting objects into a stream of bytes for transmission?

A) Serialization B) Marshalling C) Stubbing D) Invocation Handler

2. In the context of Java RMI, what is the purpose of stubs and skeletons?

A) Managing thread synchronization B) Facilitating object serialization

C) Handling remote method calls D) Controlling network security protocols

3. Which interface in the JDBC API is used to provide metadata about a database?

A) SQLMetadata B) DatabaseMetaData C) DBInspector D) JDBCInfo

4. What is the primary function of a Java Servlet?

A) Generating client-side scripts	B) Processing HTTP requests on the server-side
C) Rendering HTML elements	D) Managing session cookies

5. Which directive in JSP is used to import Java classes into a JSP page?

A) <import> B) <java> C) <include> D) <jsp:useBean

Part B

- 1. Explain the working mechanism of RMI in Java for remote method invocation.
- 2. Discuss the concept of object serialization in Java.
- 3. Explain the principles of JDBC.
- 4. Discuss the anatomy of a Java servlet.
- 5. Write any five swing components.

Part C

- 1. Explain the significance of concurrency and threading in Java applications.
- 2. Define stubs and skeletons in the context of RMI.

3. Explain the key components of JDBC, including drivers, connection management, executing SQL queries, and handling result sets.

4. Discuss the lifecycle of a servlet and the execution flow of a JSP page.

5. Explain the responsibilities of each component (Model, View, Controller) in the MVC pattern and discuss how it helps in achieving separation of concerns and code maintainability.

Head of the Department Mrs.J.Anto Hepzie Bai **Course Instructor** Dr.S.Immaculate Shyla

Department	:	Computer Science
Class	:	I M.Sc Computer Science
Title of the Course	:	Elective Course III: Advanced Operating Systems
Semester	:	II
Course Code	:	SP232EC1

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total Hours		Marks	
							nours	CIA	External	Total
SP232EC1	4	-	-	-	3	4	60	25	75	100

- 1. Enable the students to learn the different types of operating systems and their functioning.
- 2. Gain knowledge on Distributed Operating Systems

Course Outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	understand the design issues associated with operating systems	PSO - 1	K1 (R), K2 (U)
CO - 2	master various process management concepts including scheduling, deadlocks and distributed file systems	PSO - 3	K3 (AP), K4 (AN)
CO - 3	prepare Real Time Task Scheduling	PSO -2	K4 (AN), K5 (E)
CO - 4	analyze Operating Systems for Handheld Systems	PSO - 4	K5 (E)
CO - 5	analyze Operating Systems like LINUX and iOS	PSO - 5	K5 (E), K6 (C)

Teaching plan

	1			~ ···		
Unit	Module	Торіс	Teaching	Cognitive	Pedagogy	Assessment/
T	BASICS	OF OPERATING SVST	FMS	level		Evaluation
1	1.	Basics of Operating	1	K2(U)	Lecture.	Ouiz. Concept
		Systems: What is an	-		Discussion	Mapping
		Operating System?				
	2.	Main frame Systems,	2	K1(R)	Lecture using	Recall steps,
		Desktop Systems			Chalk, PPT	Concept
						definitions
	3.	Multiprocessor Systems	2	K3(Ap)	Lecture using	Questioning,
		– Distributed Systems,			Chalk and talk,	Discussions
		Clustered Systems			Demonstration,	
	1	Peol Time Systems	1	K5(E)	Presentation	Case Analysis
	4.	Handheld Systems	1	KJ(E)	Debate	Presentation
						Tiobolitation
	5.	Process: Process	2	K3(Ap)	Lecture,	Algorithm
		Scheduling,			Problem-solving	Analysis
		Algorithms			exercises	
	6	Cooperating Processes	2	K4(An)	Case Studies,	Critical
				× ,	Group	Thinking Tasks
					Discussions	
	7	Inter Drogog	2	$V_{4}(\Lambda n)$	Lastura Group	Simulation
	/	Communication:	2	K4(All)	Activities	Case Studies
		Shared Memory			Activities	Case Studies
		Message Passing				
		System.				
II	DISTRI	BUTED OPERATING SY	YSTEMS	·	·	
	1	Distributed Operating	2	K2(U)	Lecture with	Check
		Systems: Issues –			illustrations	knowledge by
		Communication				asking
		Primitives		TT 4 (A)		questions.
	2	Deadlock –	2	K4(An)	Lecture cum	Evaluation
		Resource-			Demonstration,	through short
		conditions for a				1051
		deadlock				
	3	Resource Allocation	2	K3(Ap)	Lecture.	Algorithm
	-	graph		- \ F /	Examples	Analysis
			-		-	
	4	Deadlock handling	2	K5(E)	Lecture,	Simulation,
		strategies - deadlock			Problem-solving	Case Studies

exercises

detection

Total Contact hours: 60 (Including lectures, assignments and tests)

		Deadlock Avoidance - Deadlock Recovery	2	K6(C)	Lecture using Chalk and talk, Group Discussion, PPT	Evaluation through online Quiz, Home work
	6	distributed file systems –design issues – Case studies – The Sun Network File System.	2	K3(Ap)	Case Study Discussion, Presentation	Case Analysis, Presentation
III	REAL T	IME OPERATING SYST	TEM (RTO	S):		
	1	Real time Operating Systems: Introductions	2	K2(U)	Lecture using Chalk and talk, Group Discussion	MCQ, True/False, , Concept explanations
	2	Types of Real time OS- Hard Real time - Firm Real Time- Soft Real Time Systems	2	K4(An)	Lecture with PPT, Examples	Concept Mapping
	3	Difference between Hard and Real - Advantages Disadvantages of RTOS	2	K5(E)	Lecture, Group Discussions	Critical Thinking Tasks
	4	Applications of Real Time Systems – Basic Model of Real Time System	2	K3(Ap)	Explore real- world applications of RTOS	Presentation by seminar
	5	Basic Model of Real Time System	2	K3(Ap)	Case Analysis, Presentation	Model creation
	6	Characteristics – Safety and Reliability - Real Time Task Scheduling	2	K6(C)	MS-Word Presentation	Recall
IV	HANDE	IELD SYSTEMS:		I		
	1	Features of Handheld Operating System	1	K2(U)	Lecture using PPT, Group Discussion	Formative Assessment
	2	Types of Handheld Operating Systems- Operating Systems for Handheld System	2	K6(C)	Lecture using Chalk and talk, Demonstration, PPT	Class test
	3	Requirements– Technology Overview– Handheld Operating Systems	2	K4(An)	Lecture using Chalk and talk	Discussions

	4	Palm OS - Symbian Operating System- Android OS –	3	K2(U)	Lecture, Case Studies	Group discussions
	5	Architecture of android Applications of Android OS	2	K6(C)	Program Demonstration, PPT	Problem- solving questions, home work
	6	Securing handheld systems -Advantages , Disadvantages	2	K5(E)	Lecture, Group Discussions	Critical Analysis Tasks
V	CASE S	FUDIES:		•		·
	1	Case Studies: Linux System: Introduction	2	K4(An)	Group Discussion	Assignments
	2	Memory Management –Contiguous memory management	2	K4(An)	Lecture using Chalk, Group Discussion, PPT	Map knowledge, questioning
	3	paging-Segmentation	2	K3(Ap)	MS-Word presentation	Suggest idea/concept with examples.
	4	Disk Scheduling Algorithms- First Come First Serve - Shortest Seek Time First - SCAN- CSCAN Scheduling	2	K6(C)	Lecture Demonstration, PPT with examples	Problem- solving questions
	5	Managing I/O devices, Accessing Files, iOS: Architecture and SDK Framework	2	K6(C)	Lecture using Chalk and talk, Demonstration, with PPT	Asking Questions
	6	Media Layer, Services Layer, Core OS Layer, File System.	2	K5(E)	Lecture, Examples, Case Studies	Short test

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Asking students to develop an application using Android OS.

Assignment: Deadlock Recovery, Linux OS.

Seminar Topic: Distributed file systems, Applications of Real Time System

Sample questions

Part A (1 mark)

1. A -----is not a deadlock state

2. Banker's algorithm is the deadlock avoidance algorithm? (T/F)

3. ______ system call is used to create a new process.

- The circular wait is one of the condition under which a deadlock situation can arise. (T/F)
- 5. The following one is not the operating system

a) Linux b)UNIX c) Android d) Scheduling

Part B (8 marks)

- 6. Short notes on Process.
- 7. Explain about Real-Time Systems.
- 8. Discuss about Paging? Explain
- 9. Elaborate about Resource Allocation Graph
- 10. Briefly explain about Architecture of android OS.

Part C (12 marks)

- 11. Explain about Inter Process Communication(IPC).
- 12. Write about Deadlock Recovery in detail
- 13. Discuss about Real Time Operating System.
- 14. Explain about Applications of Android OS
- 15. Explian about Disk Scheduling

Head of the Department

Ms. J. Anto Hepzie Bai

Course Instructor

Dr. F. Fanax Femy

Department	: Computer Science
Class	: I M.Sc. Computer Science
Title of the Course	: Elective Course IV: Artificial Intelligence and Machine Learning
Semester	: II
Course Code	: SP232EC4

Course Code	L	Т	Р	Credits	Inst. Hours	Total Hours		Marks	
						nouis	CIA	External	Total
SP232EC4	4	-	-	3	4	60	25	75	100

- 1. Enable the students to learn the basic functions of AI, Heuristic Search Techniques.
- 2. Provide knowledge on concepts of Representations and Mappings and Predicate Logic.

Course Outcomes

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	demonstrate AI problems and techniques	PSO-1	K1, K2
CO - 2	understand machine learning concepts	PSO-1 & PSO-2	K2, K3
CO - 3	apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning	PSO-1 & PSO-2	K3, K4
CO - 4	analyze the impact of machine learning on applications	PSO-1 & PSO-2	K4, K5
CO - 5	analyze and design a real-world problem for implementation and understand the dynamic behaviour of a system	PSO-2 & PSO-3	K5, K6

Teaching plan

Total Contact hours: 75(Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching	Cognitive	Pedagogy	Assessment /		
			Hours	level		Evaluation		
Ι	INTRODUCTION							
	1	History of AI - AI	1	K1(R) &	Brain	Questioning		
		Problems		K2 (U)	Storming,			
					Content Based			
	2	Al techniques -	2	K1(R) &	Content Based	Group		
		Criteria for		K2 (U)		Discussion		
		success.						

	3	Problems, Problem Spaces	1	K1(R) & K2 (U)	Demonstrative, Blended	Oral Presentation
		riceren spaces		112 (0)	Learning.	Tresentation
	4	Search: State	3	K1(R) &	Demonstrative,	
		space search -		K2 (Ú)	Blended	JAM
		Production			Learning.	
		Systems -			_	
	5	Problem	3	K1(R) &	Demonstrative,	
		Characteristics -		K2 (U)	Blended	JAM
		Issues in design			Learning.	
		of Search				
	6	Building AI	2	K1(R) &	Demonstrative,	Quiz
		Systems –		K2 (U)	Blended	
		Intelligent			Learning.	
		Agents.	~			
11	SEARC	H TECHNIQUE	5			
	1	Houristic Coord	1	$V1(\mathbf{D})$ $\theta_{\mathbf{r}}$	In quiery based	Quastianing
	1	techniques:	1	$K1(K) \propto K2$ (U)	inquiry – based	Questioning
		Generate and Test		$\mathbf{K}_{2}(\mathbf{U})$	approach	
	2	Hill Climbing	1	K2(II) &	Lecture	WordCloud
	2	Rest-First	1	$K_2(0) \&$ K3 (An)	Method	WordCloud
	3	Problem	3	K2(U)	KWL	
	5	Reduction	5	$K_{3}(Ap) \&$	IX () L	Online Ouiz
		Constraint		K4(An)		omme Quin
		Satisfaction.				
		Means-end				
		analysis.				
	4	Knowledge	3	K1(R) &	KWL	JAM
		representation		K2 (U)		
		issues:				
		Representations				
		and mappings -				
	5	Approaches to	2	K1(R) &	Demonstrative	Oral
		Knowledge		K2 (U)		Presentation
		representations -				
	6	Issues in	2	KI(R) &	Blended	Group
		Knowledge		K2(U)	Learning	Discussion
		From a Droblom				
тт	DDEDIC					
111	INEDIC	ATE LOGIC				
	1	Using Predicate	1	K1(R) &	Brainstorming.	Ouestioning
	_	logic:	-	K2 (U)	Demonstrative	
		Representing				
		simple facts in				
		logic				
	2	Representing	1	K2(U) &	Demonstrative,	Online Quiz
		Instance and Isa		K3 (Ap)	Team	
		relationships		· • •	Teaching	

	3	Computable functions and predicates - Resolution - Natural deduction.	2	K1(R) & K2 (U)	Lecture Method	Slip Test
	4	Representing knowledge using rules: Procedural Vs Declarative knowledge	3	K2(U) & K3 (Ap)	Blended Learning	Oral Presentation
	5	Logic programming Forward Vs Backward reasoning	3	K1(R) & K2 (U)	Demonstrative, Lecture Method	Group Discussion
	6	Matching-Control knowledge.	2	K2(U) & K3 (Ap)	Demonstrative, Lecture Method	Group Discussion
IV	MACHINE LEARNING					
	1	Understanding Machine Learning: What Is Machine Learning?	2	K1(R) & K2 (U)	Lecture Method, Blended Learning	Brainstorming WordCloud
	2	Defining Big Data- Big Data in Context with Machine Learning	2	K1(R) & K2 (U)	Demonstrative, Lecture Method	Group Discussion
	3	The Importance of the Hybrid Cloud-Leveraging the Power of Machine Learning	2	K1(R) & K2 (U)	Demonstrative, Lecture Method	Group Discussion
	4	The Roles of Statistics and Data Mining with Machine Learning	2	K1(R) & K2 (U)	Demonstrative, Lecture Method	Descriptive answers
	5	Putting Machine Learning in Context	2	K1(R) & K2 (U)	Demonstrative, Lecture Method	Open Book Test
	6	Approaches to Machine Learning.	2	K1(R) & K2 (U)	Demonstrative, Lecture Method	Online Quiz

V	APPLICATIONS OF MACHINE LEARNING					
	1	Applying Machine Learning: Getting Started with a Strategy	1	K3(Ap)	Demonstrative, Blended Learning	JAM
	2	Understanding Machine Learning Techniques – Tying Machine Learning Methods to Outcomes –	2	K2(U)	Demonstrative, Blended Learning	Group Discussion
	3	Applying Machine Learning to Business Needs.	2	K3(Ap), K4(An), K5(Ev) & K6(Cr)	Lecture Method, Computational Thinking	Group Discussion
	4	Looking Inside Machine Learning: The Impact of Machine	2	K2(U)	Demonstrative, Blended Learning	JAM
	5	Learning on Applications-Data Preparation-	3	K3(Ap), K4(An), K5(Ev) & K6(Cr)	Demonstrative, Blended Learning	Online Assignment
	6	The Machine Learning Cycle	2	K2(U)	Lecture Method, Computational Thinking	Group Discussion

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Group Discussions after reading contents from internet.

Assignment: Representing Instance and Isa relationships

Seminar Topic: Applying Machine Learning to Business Needs.

Sample questions

Part A

- 1. Which of the following AI techniques is best suited for handling unstructured data and pattern recognition tasks?
 - a) State space search b) Production Systems
 - c) Neural Networks d) Intelligent Agents
- The Frame Problem refers to the challenge of determining which actions are relevant and necessary to achieve a goal within a given knowledge representation system. (True/False)

- 3. In logic programming, ______ reasoning starts with a goal and works backward, attempting to find premises that support the goal.
- 4. Which technological framework plays a crucial role in facilitating the development and deployment of machine learning solutions by providing scalable resources and accessibility?

a) Virtual Reality
b) Hybrid Cloud
c) Blockchain
d) Quantum Computing
5. _______ involves converting raw data into a structured format suitable for analysis and model training in the realm of machine learning.

Part B

6. Explain two AI problems commonly encountered in the field, providing examples for each.

7. Compare and contrast the Generate and Test approach with Problem Reduction in heuristic search techniques, highlighting their respective advantages and limitations.

8. Explain the differences between procedural and declarative knowledge representations, providing examples for each and highlighting their respective advantages in AI systems.

9. Discuss the relationship between big data and machine learning, highlighting the significance of big data in enhancing machine learning algorithms and models.

10. Explain the impact of machine learning on various applications, highlighting how it transforms and enhances the functionality and efficiency of these applications.

Part C

11. Discuss the key criteria for the success of AI systems, emphasizing their significance in the development and evaluation of intelligent agents.

12. Investigate the application and relevance of Constraint Satisfaction in problemsolving, using real-world scenarios to demonstrate its effectiveness and limitations within AI systems.

13. Analyze the application of resolution and natural deduction in predicate logic, illustrating their usage in solving complex logical problems and demonstrating their effectiveness through examples.

14. Elaborate on the convergence of statistics, data mining, and machine learning, illustrating how their integration contributes to the advancement and effectiveness of AI systems.

15. Evaluate the significance of data preparation in the context of machine learning, outlining its stages and illustrating how proper data preparation impacts the effectiveness of machine learning models.

Head of the Department Ms. J. Anto Hepzie Bai Course Instructor Dr. R. Reena Rose