DEPARTMENT OF COMPUTER SCIENCE Teaching Plan for the Academic Year 2023-2024 Semester I

Programme Educational Objectives (PEOs)

PEO	Upon completion of UG Degree Programme, the graduates will be able to:							
PEO – 1	pply appropriate theoretical knowledge to participate in activities that support							
	humanity and economic development nationally and globally, developing as							
	leaders in their fields of expertise.							
PEO – 2	pursue lifelong learning and continuous improvement of the							
	knowledge and skills with the highest professional and ethical standards.							
PEO – 3	inculcate practical knowledge for developing professional empowerment and							
	entrepreneurship and societal services.							

Programme Outcomes (POs)

PO	Upon completion of B.Sc. Degree Programme, the graduates will be able						
	to:						
PO – 1	utilize scientific knowledge to pursue higher studies in the relevant field.						
PO – 2	create innovative ideas to enhance entrepreneurial skills for economic						
	independence.						
PO – 3	face challenging competitive examinations that offer rewarding careers.						
PO – 4	reflect upon green initiatives and take responsible steps to build a sustainable						
	environment.						
PO – 5	handle ethical issues with social responsibility.						
PO – 6	communicate effectively and collaborate successfully with peers to become						
	competent professionals.						

Programme Specific Outcomes (PSOs)

PSOs	Upon completion of the B.Sc. Degree Programme, the graduates will be able								
	to:								
PSO – 1	obtain sufficient knowledge and skills enabling them to undertake further studies								
	in Computer Science and its allied areas on multiple disciplines linked with								
	Computer Science.								
PSO - 2	evaluate and apply emerging technologies in computer science to develop								
	innovative solutions for real-world problems								
PSO – 3	develop a range of generic skills helpful in team building, problem solving,								
	technical ability, employment, internships, communication and societal activities.								
PSO - 4	communicate effectively, work collaboratively, and demonstrate ethical and								
	professional attitudes in diverse settings.								
PSO - 5	sensitize various economic issues related to Development, Growth, International								
	Economics, Sustainable Development and Environment								

Department	:	Computer Science
Class	:	I M. Sc Computer Science
Title of the Course	:	Core Course I: Analysis and Design of Algorithm
Semester	:	I
Course Code	:	SP231CC1

Course Code	L	L	T.	L	T.	L	T.	T.	L	т	Р	Credits	Inst. Hours	Total	Marks		
				Creatis		Hours	CIA	External	Total								
SP231CC1	6	-	-	5	6	90	25	75	100								

- 1. Enable the students to learn the Elementary Data Structures and algorithms.
- 2. Presents an introduction to the algorithms, their analysis and design.
- 3. Discuss various methods like Basic Traversal and Search Techniques, divide and conquer method, Dynamic programming, backtracking.
- 4. Understood the various design and analysis of the algorithms.

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO – 1	get knowledge about algorithms and determines their time complexity.	PSO – 1	K2(U)
CO – 2	gain good understanding of Greedy method and its algorithm.	PSO – 2	K3 (U)
CO – 3	able to describe about graphs using dynamic programming technique.	PSO – 4	K4(An)
CO – 4	demonstrate the concept of backtracking & branch and bound technique.	PSO – 5	K3(Ap)
CO – 5	explore the traversal and searching technique and apply it for trees and graphs.	PSO – 3	K6(C)

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation						
Ι	Introdu	ction										
	1.	Introduction about Algorithm, Algorithm Definition	3	K1(U)	Introductory session	Overview						
	2.	Algorithm Specification	2	K2(R)	Problem solving	Simple definitions						
	3.	Space complexity, Time Complexity, Asymptotic Notations	2	K2(U)	Lecture using Chalk and talk	Solve problems						
	4.	Elementary Data Structures, Stacks and Queues	3	K2(U)	PPT	Finish a procedure in many steps						
	5.	Binary Tree, Binary Search Tree	3	K2(U)	Lecture using Chalk and talk	Evaluation essay						
	6.	Heap sort	1	K3(Ap)	Demonstration	Concept definitions						
	7.	Graph	1	K3(Ap)	Problem solving	Problem solving questions						
II	Traversal And Search Techniques											
	1.	Basic Traversal And Search Techniques	3	K1(R)	Lecture using Chalk and talk	Evaluation through short test						
	2.	Techniques for Binary Trees	2	K2(U)	Demonstration	Map knowledge						
	3.	Techniques for Graphs	3	K2(U)	Lecture using videos	Differentiate between various ideas						

	4.	Divide and Conquer: General Method Binary Search	3	K3(Ap)	PPT	Seminar						
	5.	Merge Sort	2	K3(Ap)	Demonstration	Recall steps						
	6.	Quick Sort	2	K3(Ap)	Demonstration	MCQ						
III	General Method Binary Search5.Merge Sort6.Quick SortGreedy Method1.The Greedy Method Introduction2.General Method3.Knapsack Problem4.Minimum Cost Spanning Tree	y Method										
	1.	_	3	K2(U)	РРТ	Short essays						
	2.	3. Knapsack Problem 4. Minimum Cost	3	K1(R)	Lecture using Chalk and talk	MCQ						
	3.		3	K5(E)	Demonstration	Recall steps						
	4.		3	K4(An)	Lecture using videos	True/False						
	U	Single Source Shortest Path	3	K3(Ap)	Demonstration	MCQ						
IV	Dynamic Programming											
	1.	Programming	2	K2(U)	Lecture using Chalk and talk	Short summary						
	2.	Multistage Graphs	2	K3(Ap)	Lecture using videos	Concept explanations						
	3.	All Pair Shortest Path	2	K3(Ap)	Demonstration	Recall Steps						
	4.	4. Optimal Binary Search Trees		K4(An)	PPT	Evaluation through short test						
	5.	0/1 Knapsacks	2	K3(Ap)	Lecture using Chalk and talk	Short summary						
	6.	Traveling Salesman Problem	2	K6(C)	Problem solving	Evaluation through short test						

	7.	Flow Shop Scheduling	2	K5(E)	Demonstration	Concept explanations
V	Backtr	acking		<u> </u>		1
	1.	Backtracking General Method	2	K1(R)	Lecture using Chalk and talk	True/False
	2.	8-Queens Problem	2	K3(Ap)	Demonstration	Evaluation through problems
	3.	Sum of Subsets	2	K3(Ap)	Problem solving	Recall Steps
	4.	Graph Coloring	3	K4(An)	Demonstration	MCQ
	5.	Hamiltonian Cycles	2	K3(Ap)	Problem solving	Short essays
	6.	Branch And Bound: The Method	2	K2(U)	Lecture using Chalk and talk	Seminar
	7.	Traveling Salesperson	2	K5(E)	PPT	Evaluation through short test
VI	1.	Expert Lectures, Online Seminars, Webinars	2	K2(U)	РРТ	Concept explanations

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): 1. Solve problems for Traveling Salesman.

2. Solve problems for Graph Coloring.

3. Apply Quick sort algorithm for a set of numbers.

Assignment: Heap Sort, Multistage Graphs

Seminar Topic: Binary Search, Branch and Bound

Sample questions

Part A (1 Mark)

1. O(n) is _____ a) Linear

b) Quadrate

c) Cubic

d) Exponential

2. A heap is a tr	ee						
a) Binary	a) Binary						
c) Almost Comple	d) None of	f the above					
3. The complexity of	3. The complexity of merge sort is						
a) (n)	c) (n2)	d) (logn)					
4. In the greedy met							
a) Only one decision sequence is generated							
b) Two decision se	b) Two decision sequence is generated						
c) Many decision	sequences are generated	ł					
d) None of the abo	ove						
5. Which of the follo	wing is not a backtracki	ng algorithm?					
a) Knight tour pro	blem	b) N Queer	ns problem				
c) Towers of Har	c) Towers of Hanoi						
	Part B (4 Marks)						
6. Write about Stacl	Κ.						

- 7. Is quick sort a stable sorting method? Justify.
- 8. What do you understand about Knapsack problem?
- 9. Write notes on multistage graphs.
- 10. Compare BFS and DFS algorithm with an example graph and denote its time complexities.

Part C (8 Marks)

- 11. Explain about Algorithm Specifications.
- 12. Write about the techniques for Binary trees.
- 13. Apply greedy algorithm to generate single-source shortest path with an example graph. Mention its time complexity.
- 14. Explain Flow shop scheduling.
- 15. Describe the algorithm for Hamiltonian cycles and determine the order of magnitude of the worst case computing time for the backtracking procedure that finds all Hamiltonian cycles.

Head of the Department Mrs.J.Anto Hepzie Bai **Course Instructor** Dr.S.Immaculate Shyla

Department	:	Computer Science
Class	:	I M.Sc Computer Science
Title of the Course	:	Core Course II: Object Oriented Analysis and Design & C++
Semester	:	I
Course Code	:	SP231CC2

	L	т	т	т	т	т	т	n	C PA	T	Total			
Course Code		T	P	Credits	Inst. Hours	Hours	CIA	External	Total					
SP231CC2	6	-	-	4	6	90	25	75	100					

- 1. Present the object model, classes and objects, object orientation, machine view and model management view.
- 2. Enables the students to learn the basic function, principles and concepts of objectoriented analysis and design.
- 3. Enable the students to understand C++ language with respect to OOAD

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	understand the concept of Object-	PSO - 1	K1, K2
	Oriented development and		
	modelling techniques		
CO - 2	gain knowledge about the various	PSO - 3	K2, K3
	steps performed during object design		
CO - 3	abstract object-based views for	PSO -2	К3
	generic software systems		
CO - 4	link OOAD with C++ language	PSO - 4	K4, K5
CO - 5	apply the basic concept of OOPs and	PSO - 5	K5, K6
	familiarize to write C++ program		

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation					
Ι	The Object Model:										
l	1.	The Object Model: Introduction, The Evolution of the Object Model	4	K2(U)	Lecture using Chalk and talk, Demonstration, PPT.	Evaluation through short test, MCQ.					
	2.	Elements of the Object Model	2	K1(R)	Lecture using Chalk, PPT	Recall steps, Concept definitions					
	3.	Applying the Object Model. Classes and Objects	4	K3(Ap)	Lecture using Chalk and talk, Demonstration, PPT	Questioning, Discussions					
	4.	The Nature of an Object	2	K4(An)	Lecture using videos, PPT	Seminar					
	5.	Relationship among Objects.	3	K5(E)	Lecture, Group discussion	Short summary MCQ					
II	Classes	and Object									
	1	Classes and Object: Nature of Class	3	K1(R)	Lecture with illustrations	Check knowledge by asking questions.					
	2	The Interplay of classes and Objects.	2	K2(U)	Lecture cum Demonstration, PPT	Evaluation through short test					
	3	Classification: The importance of Proper Classification	4	K4(An)	Lecture using Chalk and talk, Group Discussion, PPT	Short summary, slip test					
	4	Identifying classes and objects	3	K5(E)	Lecture using videos, Demonstration, PPT,	Concept explanations, Short summary					
	5	Key Abstractions and Mechanism.	3	K3(A)	Lecture using Chalk and talk, Group Discussion, PPT	Evaluation through online Quiz, Home work					
III	Introdu	ction to C++									
	1	Introduction to C++	3	K2(U)	Lecture using Chalk and talk, Group Discussion,	test, MCQ, True/False, , Concept explanations,					

					Lecture using videos, Demonstration, PPT	Short summary or overview
	2	Declarations, control structures	6	K4(An)	Lecture using Chalk and talk, Group Discussion, PPT	Problem- solving questions
	3	Functions in C++.	6	K6(C)	Lecture using Chalk and talk, Problem solving	Finish a procedure in many steps, by writing program
IV	Inherit	tance and overloading				
	1	Classes and Objects	3	K2(U)	Lecture using Chalk and talk, Group Discussion,	Formative Assessment
	2	Constructors and Destructors	3	K6(C)	Lecture using Chalk and talk, Demonstration, PPT	Class test
	3	Operators overloading	3	K4(An)	Lecture using Chalk and talk, Introductory session, PPT	Discussions
	4	Type Conversion	2	K4(An)	Lecture using Chalk and talk, PPT	Class test, online quiz,
	5	Inheritance, Pointers and Arrays	4	K6(C)	Program Demonstration, PPT	Problem- solving questions, home work
V	Memo	ry Management				
	1	Memory Management Operators	3	K4(An)	Group Discussion	Assignments
	2	Polymorphism	3	K4(An)	Lecture using Chalk, Group Discussion, PPT	Map knowledge, questioning
	3	Virtual functions	2	K3(Ap)	Lecture using Chalk and talk, Demonstration, PPT	Suggest idea/concept with examples.
	4	Files, Exception Handling	3	K6(C)	Lecture using Chalk and talk, Demonstration, PPT	Problem- solving questions, Finish a procedure in many steps,

	5	String Handling,	2	K6(C)	Lecture using	Evaluation
		Templates			Chalk and talk,	through writing
					Demonstration,	program
					with PPT	
VI	1	Expert lectures, online seminars, webinars	2	K2(U)	Lecture, Group Discussion, PPT	Discussions

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Asking students to write a program for algorithm.

Assignment: Relationship Among classes, Functions in C++.

Seminar Topic: Functions Declaration

Sample questions

Part A (1 mark)

- 1. A _____ is a collection of objects of similar type
- 2. Each class in a program in related with each other (T/F)
- 3. _____ is a input object in c++..
- 4. constructor has the name as the class name (T/F)
- 5. _____ function is used to compare the two strings

Part B (4 marks)

- 6. Short notes on object Model.
- 7. Explain about relationships among objects
- 8. What are control structures? Explain
- 9. Elaborate about Inheritance
- 10. Briefly explain about Polymorphism

Part C (8 marks)

- 11. Explain about Elements of the Object Model.
- 12. Write about Classification: The importance of Proper Classification
- 13. Discuss with Functions in C++.
- 14. Explain about operators overloading with example
- 15. List out the string handling functions and explain with example.

Head of the Department Ms. J. Anto Hepzie Bai **Course Instructor** Dr. F. Fanax Femy

Department	: Computer Science
Class	: I M. Sc Computer Science
Title of the Course	: Elective Course I: Python Programming
Semester	: I
Course Code	: SP231EC1

Course Code	L	Т	Р	Credits	Inst. Hours	Total Hours	CIA	Marks External	Total
SP231EC1	5	-	-	3	5	75	25	75	100

- 1. Presents an introduction to Python, creation of web applications, network applications and working in the clouds
- 2. Use functions for structuring Python programs
- 3. Understand different Data Structures of Python
- 4. Represent compound data using Python lists, tuples and dictionaries

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO – 1	understand the basic concepts of Python Programming	PSO-1	K1(R)
CO – 2	understand file operations, Classes and Objects	PSO- 3	K3(Ap)
CO – 3	acquire Object Oriented Skills in Python	PSO- 2	K4(An)
CO – 4	develop web applications using Python	PSO- 4	K6(C)
CO – 5	develop Client Server Networking applications	PSO- 5	K6(C)

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Introdu	ction	1100115	10,01		
	1.	Python: Introduction	3	K1(R)	Introductory session	Overview
	2.	Numbers	2	K2(U)	Lecture using Chalk and talk	Simple definitions
	3.	Strings	2	K2(U)	Lecture using Chalk and talk	Solve problems
	4.	Variables	2	K2(U)	PPT	Finish a procedure in many steps
	5.	Lists	2	K2(U)	Lecture using Chalk and talk	Simple programs
	6.	Tuples Dictionaries Sets	2	K2(U)	Demonstration	Concept definitions
	7.	Comparison	2	K4(An)	PPT	Problem solving questions
II	Code St	ructures				
	1.	Code Structures: if, else if, and else Repeat with while Iterate with for	3	K2(U)	Lecture using Chalk and talk	Evaluation through short test
	2.	Comprehensions	2	K2(U)	Demonstration	Map knowledge
	3.	Functions	2	K2(U)	Lecture using videos	Differentiate between various ideas
	4.	Generators Decorators	2	K4(An)	РРТ	Seminar

	5.	Namespaces and	2	K1(R)	Demonstration	Recall steps
		Scope	2	$\mathbf{K}\mathbf{I}(\mathbf{K})$	Demonstration	
	6.	Handle Errors with try and except	2	K5(E)	Demonstration	MCQ
	7.	User Exceptions	2	K1(R)	Lecture using Chalk and talk	Map knowledge
III	Module	es, Packages, and Classes	5			
	1.	Modules, Packages, and Programs:				
		Standalone Programs Command Line Arguments , Modules and the import Statement	3	K1(R)	РРТ	Recall steps
	2.	The Python Standard Library	2	K1(R)	Lecture using Chalk and talk	MCQ
	6.	Objects and Classes: Define a Class with class	2	K2(U)	Demonstration	Recall steps
	7.	Inheritance Override a Method Add a Method Get Help from Parent with super	3	K6(C)	Lecture using videos	Short Summary
	8.	In self Defense Get and Set Attribute Values with Properties	2	K3(A)	Demonstration	MCQ
	9.	Name Mangling for Privacy	1	K2(U)	PPT	Concept explanations
	10.	Method Types Duck Typing Special Methods	1	K1(R)	PPT	Assignment
	11.	Composition	1	K6(C)	Demonstration	Quiz

IV	Dataty	pes and Web				
	1.	Data Types: Text Strings Binary Data	2	K2(U)	Lecture using Chalk and talk	Short summary
	8.	Storing and Retrieving Data: File Input /Output	2	K1(R)	Lecture using videos	Concept explanations
	9.	Structured Text Files	2	K3(Ap)	Demonstration	Recall Steps
	10.	Structured Binary Files	1	K2(U)	Lecture using Chalk and talk	Concept explanations
	11.	Relational Databases	2	K1(R)	PPT	Evaluation through short test
	12.	No SQL Data Stores	1	K6(C)	Lecture using Chalk and talk	Short summary
	13.	Web: Web Clients Web Servers	2	K1(R)	PPT	Evaluation through short test
	14.	Web Services and Automation	2	K6(C)	Demonstration	Concept explanations
V	System	s and Networks				1
	8.	Systems: Files Directories	2	K2(U)	Lecture using Chalk and talk	True/False
	9.	Programs and Processes Calendars and Clocks	2	K2(U)	Demonstration	Evaluation through problems
	10.	Networks: Patterns	2	K2(U)	PPT	Recall Steps
	11.	Internet Services	2	K4(An)	Demonstration	MCQ
	12.	The Publish Subscribe	2	K3(A)	PPT	Short essays

		Model				
		TCP/IP				
		Sockets				
		Zero MQ				
	13.	Concurrency:				Seminar
		Queues Processes			Lecture using	
		Threads Green	2	K5(E)	Chalk and talk	
		Threads and gevent			Chark and tark	
		Twisted Redis				
	14.	Web Services and				Concept
		APIs				explanations
		Remote Processing	2	K1(R)	РРТ	
		Big Fat Data and				
		Map Reduce				
	15.	Working in the Clouds	1	K2(U)	Lecture using	Recall
			1	K2(0)	videos	
VI		Expert Lectures,				Concept
		Online Seminars,	2	K2(U)	РРТ	explanations
		Webinars				

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill

Development

Activities (Em/ En/SD): 1. Develop programs using Object Oriented Concepts.

2. Creating interactive web pages using forms.

Assignment: Methods in Python and TCP/IP Model

Seminar Topic: Generators and Concurrency Control

Sample questions

Part A (1 Mark)

1. _____ is the maximum length of a Python identifier.

(a) 32 b)16 c)128 d) No fixed length

2. Which of the following is used for exception handling in Python?

(a) try b) except c) finally d) All the above

3. As what data type are the *args stored, when passed into a function?

- (a) List b) Tuple c) Dictionary d) None of the above
- 4. Which of the following keywords is not reversed keyword in python?

a) Class b) goto c) and d)none

- Python supports the creation of anonymous functions at run time using a construct called _____.
 - a) lambda b) pi c) anonymous d) none

Part B (4 Marks)

- 6. Write the features of Python.
- 7. Explain why Python is considered as an Interpreted Language.
- 8. Write notes on Name Mangling for Privacy.
- 9. Write a Python program to display Fibonacci sequence for n terms.
- 10. What do you understand about Redis?

Part C (8 Marks)

- 11. Explain about tuples, lists and dictionaries in Python with example.
- 12. Explain in detail about Exception Handling.
- 13. Elaborate Inheritance concepts with examples.
- 14. Describe Web Services and automation.
- 15. Write in detail about TCP/IP model.

Head of the Department

Mrs.J.Anto Hepzie Bai

Course Instructor

Dr.S.Immaculate Shyla

Department	:	Computer Science
Class	:	I M.Sc. Computer Science
Title of the Course	:	Elective Course II: Advanced Software Engineering
Semester	:	I
Course Code	:	SP231EC4

	т	L T P Credits Inst. Hours		Total Marks					
Course Code	L	I	P	Credits	Inst. Hours	Hours	CIA	External	Total
SP231EC4	5	-	•	3	5	75	25	75	100

- 1. Introduce to Software Engineering, Design, Testing and Maintenance.
- 2. Enable the students to learn the concepts of Software Engineering.

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	understand about Software Engineering process	PSO - 1	K1, K2
CO - 2	understand about Software project management skills, design and quality management	PSO - 2	K2, K3
CO - 3	analyze on Software Requirements and Specification	PSO - 3	K3,K4
CO - 4	analyze on Software Testing, Maintenance and Software Re- Engineering	PSO - 4	K4, K5
CO - 5	design and conduct various types and levels of software quality for a software project	PSO - 5	K5, K6

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation		
Ι	Introduc	ction, Software Processes						
	1.	The Problem Domain	2	K2(U)	Lecture using	Simple		
					Chalk and talk	explanations,		
						questioning		
	2.	Software Engineering	3	K1(R)	Lecture using	Recall steps,		
		Challenges, Software			PPT	Concept		
		Engineering Approach				definitions		
	3.	Software Process,	4	K4(An)	Lecture cum,	Suggest		
		Characteristics of a			Demonstration,	idea/concept		
		Software Process			PPT	with examples		
	4.	Software Development	2	K3(Ap)	Group	Finish a		
		Process Models			Discussion	procedure in		
						many steps.		
	5.	Other software	4	K5(E)	Lecture using	Short test		
		processes			videos,			
					Demonstration,			
					PPT			
II	Software	e Requirements Analysis	and Specifica	ation, Case st	tudy	<u> </u>		
	1	Requirement	2	K4(An)	Lecture using	Quiz		
		engineering, Type of			illustrations			
		Requirements						
	2	Feasibility Studies,	2	K2(U)	Lecture Group	Evaluation		
		Requirements			Discussion,	through short		
		Elicitation,				test		
		Requirement Analysis						
	3	Requirement	4	K4(An)	Lecture	Finish a		
		Documentation,			Discussion,	procedure in		
		Requirement			PPT	many steps,		
		Validation,				Map knowledge		

		Requirement				
		Management, SRS				
	4	Formal System	3	K5(E)	Lecture using	Longer essay/
		Specification,			videos,	Evaluation
		Axiomatic			Demonstration,	essay, Critique
		Specification,			PPT,	or justify with
		Algebraic				pros and cons
		Specification				
	5	Student Result	4	K3(Ap)	Discussion	Seminar.
		management system.				
		Software Quality				
		Management, Software				
		Quality, Software				
		Quality Management				
		System, ISO 9000, SEI				
		CMM.				
III	Softwar	e Project Management			1	
	1	Responsibilities of a		K2(U)	Lecture using	Evaluation
		software project	2		Chalk and talk,	through short
		manager, Project			PPT	test, MCQ,
		planning				
	2	Metrics for Project size	2	K4(An)	Lecture using	Map knowledge
		estimation, Project			PPT	
		Estimation Techniques,				
		Empirical Estimation				
		Techniques				
	3	COCOMO, Halstead'	4	K6(C)	Lecture	Class test
		software science,			Demonstration,	
		Staffing level			PPT	
		estimation				
	4	Scheduling,	4	K5(E)	Lecture using	Discussions,
		Organization and Team			videos, PPT,	questioning
		Structures, Staffing			Demonstration	

	5	Risk management,	3	K4(An)	Group	Quiz
		Software Configuration			Discussion.	
		Management,			2.10000001011	
		Miscellaneous Plan.				
IV	Softwar	e Design				
	1	Outcome of a Design	3	K2(U)	Lecture	Concept
	1	process	5	112(0)	Demonstration,	explanations,
		process			PPT	Short summary
	2	Change to visiting a fire	3			Differentiate
	2	Characteristics of a	3	K6(C)	Lecture with	
		good software design,			PPT	between various
		Cohesion and coupling				ideas
	3	Strategy of Design,	3	K4(An)	Group	Map
		Function Oriented			Discussion,	knowledge
		Design			PPT	
	4	Object Oriented	2	K4(An)	Lecture using	Online quiz
		Design, Detailed			Chalk and talk,	
		Design			PPT	
	5	IEEE Recommended	4	K6 (C)	Lecture with	Short summary
		Practice for Software			Demonstration.	
		Design Descriptions.				
V	Softwar	e Testing				
	1	A Strategic approach to	3	K4(An)	Lecture with	Concept
		software testing,			PPT	explanations
		Terminologies				
	2	Functional testing,	3	K4(An)	Peer Teaching	Finish a
		Structural testing,				procedure in
		Levels of testing,				many steps,
		Validation testing,				Map knowledge
		Regression testing				1
	3	Art of Debugging,	2	K3(Ap)	Lecture using	Suggest
	5	Testing tools, Metrics,	2	iss(rsp)	Chalk and talk,	idea/concept
		-				-
		Reliability Estimation			Demonstration,	with examples,
					PPT	

	4	Software Maintenance,	3	K5(E)	Lecture using	Seminar
		Maintenance Process,			Chalk and talk.	
		Reverse Engineering				
	5	Software	2	K6(C)	Group	Short test
		Reengineering,			Discussion	
		Configuration				
		Management Activities				
VI	1	Expert lectures, online	2	K2(U)	Lecture	Concept
		seminars, webinars			Demonstration,	explanations,
					PPT	Short summary

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development

Activities (Em/ En/SD): Making the students to create a data model for one project.

Assignment: Software Process, COCOMO Model

Seminar Topic: Risk Management, Software Maintenance

Sample questions

Part - A (1 mark)

- 1. If the objects focus on the problem domain, then we are concerned with _____.
 - a. Object Oriented Analysis b. Object Oriented Design
 - c. Object Oriented Analysis and Design d. None of the above
- 2. Software project management comprises of a number of activities, which contains
 - a. Project planning b. Scope management
 - c. Project estimation d. All mentioned above
- 3. COCOMO stands for _____
- 4. SRS stands for Software Requirement Specification (T/F)
- 5. Software Requirement Specification (SRS) is also known as specification of _____

Part - B (4 marks)

- 6. Short notes on Software Process.
- 7. Explain about Feasibility Studies

- 8. Discuss about the metrics for Project size Estimation
- 9. What are the Characteristics of a good software design?
- 10. Briefly explain about Validation Testing.

Part - C (8 marks)

- 11. Define Software Development Process Models
- 12. Explain about Software Quality Management
- 13. Write about COCOMO Model Techniques.
- 14. Discuss with Cohesion and Coupling.
- 15. Explain about different Strategic approach to software testing

Head of the Department Ms. J. Anto Hepzie Bai

Course Instructor Dr. F. Fanax Femy