Department of Mathematics

PG Teaching Plan 23-24

Even Semester

Department	: Mathematics
Class	: I M.Sc
Semester	: 11
Name of the Course	: Advanced Algebra
Course Code	: MP232CC1

Course Code	L	т	P	s	Credits	Inst.	Total		Mar	·ks
		-		5		Hours	Hours	CIA	External	Total
MP232CC1	5	1	-	-	5	6	90	25	75	100

Learning Objectives

1. To study field extension, roots of polynomials, Galois Theory, finite fields, division rings, solvability by radicals

2. To develop computational skill in abstract algebra.

Course Outcomes

On the	successful completion of the course, students will be able to:	
1.	exhibit a foundational understanding of essential concepts, including field extensions, roots of polynomials, Galois Theory, and finite extensions	K1
2.	demonstrate knowledge and understanding of the fundamental concepts including extension fields, Galois Theory, Automorphisms and Finite fields	K2
3.	compose clear and accurate proofs using the concepts of Field extension, Galois Theory and Finite field	К3
4.	examine the relationships between different types of field extensions and their implications by applying algebraic reasoning	K4
5.	evaluate the validity of statements and theorems in field theory by providing proofs or counterexamples	К5
6.	develop novel results or theorems in field theory, potentially by exploring	K6

extensions of existing theories	

Unit	Modulo	Tonic	Teaching	Cognitive	Podogogy	Assessment/
Omt	WIGUIE	торіс	Hours level		Teuagogy	Evaluation
Ι			Extension 1	Fields	1	
	1.	Extension Fields,	2	K1 & K2	Brainstorming	MCQ
		dimension, subfield-				
		Introduction and definition				
	2.	Theorems based on	3	K3	Chalk and	Slip Test using
		extension fields			Talk	Socrative
	3.	Definition and Theorems on	3	K1 & K3	Analytic	Questioning
		algebraic over a field F			Method	
	4.	Theorems on algebraic	3	K5	Lecture with	Questioning
		extension			Illustration	
	5.	Interpretation of Extension	1	K4	Collaborative	Concept
		fields such as finite			learning	explanations
		extension, algebraic				
		extension				
	6.	Transcendence of e	3	K2. K3 &	Blended	Evaluation
			_	K5	classroom	through poll
II		R	loots of Poly	nomials		6 1
	1.	Definition- roots of	1	K1	Brainstorming	True/False
		polynomials, multiplicity of			6	
		roots				
	2.	Remainder theorem	1	K3	Flipped	Short summary
					Classroom	of the theorem
	3.	Theorems based on roots of	2	K2 & K3	Lecture	Concept
		polynomials			Discussion	definitions
	4.	Existence theorem of	2	K3 & K4	Group	Recall steps
		splitting fields			Discussion	
	5.	Theorems based on	2	K3	Lecture with	Questioning
		isomorphism of fields			Illustration	
	6.	Theorems based on splitting	2	K3	Blended	MCQ
		field of polynomials			classroom	
	7.	Uniqueness theorem of	2	K4 & K5	Peer	Slip Test using
		splitting fields			Instruction	Quizziz
	8.	Definition- derivative of	1	K2 & K3	Flipped	Quiz
		polynomials, Simple			Classroom	
		extension				
	9.	Theorems on simple	2	K5& K6	Integrative	Evaluation
		extension			method	through short
						test
III			Galois Th	eory		
	1.	Definition -Fixed Field,	1	K1 & K2	Brainstorming	Quiz
		Group of automorphism				

Total contact hours: 90 (Including instruction hours, assignments and tests)

	2.	Theorems on Fixed Field	2	K3	Lecture	Concept
						Explanation
	3.	Theorems on Group of	3	K4	Lecture	Slip Test
		Automorphism			Discussion	
	4.	Theorems on Normal	2	K5	Lecture	Questioning
		Extension				
	5.	Theorems on Galois Group	3	K6	Collaborative	Questioning
					learning	
	6.	Construct theorems on	4	K6	Poster	Simple
		Normal Extension and			Presentation	Questions
		Galois Group				
IV			Finite Fi	elds		1
	1.	Definition -Finite Fields,	3	K1 & K2	Brainstorming	Quiz
		Characteristic of F with				
		examples				
	2.	Theorems based on Finite	4	K3 & K4	Flipped	Differentiate
		Fields and Characteristic of			Classroom	between
		F				various ideas
	3.	Finite field and Cyclic	4	K4 & K5	Analytic	Simple
		group			Method	Questions
	4.	Wedderburn's Theorem on	4	K4 & K5	Integrative	Concept
		finite division ring			method	Explain
V		S	olvability by	Radicals	•	
	1.	Solvability by radicals -	1	K1 & K2	Seminar	MCQ
		Introduction			Presentation	
	2.	Solvable and Commutator	1	K4	Seminar	Concept
		group			Presentation	explanations
	3.	Lemma and Theorem based	1	K4 & K5	Seminar	Questioning
		on solvable by radicals			Presentation	
	4.	General polynomial	2	K2 & K3	Seminar	Slip Test
		definition and theorem			Presentation	
	5.	Definitions -algebraic over	4	K2 & K5	Seminar	Simple
		F and Frobenius theorem			Presentation	Questions
	6.	Internal quaternions and	2	K4	Seminar	Evaluation
		Lagrange identity			Presentation	through short
						test
	7.	Left-Division algorithm	3	K6	Seminar	Simple
					Presentation	Questions
	8.	Four-Square Theorem	3	K6	Seminar	Simple
					Presentation	Questions

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD):Poster Presentation, Develop Theorems on Extension Fields

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: Make an interactive PPT (Any topic from the syllabus)

Seminar Topic: Unit V

Sample questions

Part A

1. Complete: [L:F] =-----

a) [L:K]+[K:F] b) [L:K]-[K:F] c) [L:K][K:F] d) [L:K]/[K:F]

- Complete: Any polynomial of degree n over a field can have ----- roots in any extension field.
 a) exactly n
 b) at least n
 c) at most n
 d) exactly n+1
- 3. What is the Galois group of $x^3 3x 3$ over Q?
- 4. Say True or False: $\Phi_3(x) = x^2 + x + 1$ is a cyclotomic polynomial
- 5. Say True or False: The adjoint in Q satisfies $x^{**} = x$

Part B

- 1. Prove that F(a) is the smallest subfield of K containing both F and a
- 2. State and prove Remainder theorem
- 3. If K is a finite Extension of F ,then G(K,F) is a finite group then prove that $o(G(K,F)) \le [K:F]$
- 4. Analyse: For every prime number p and every positive integer m there is a unique field having p^m elements
- 5. State and prove Lagrange Identity.

Part C

- 1. Prove that the element $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F
- 2. Justify: A polynomial of degree n over a field can have at most n roots in any extension field
- 3. State and prove fundamental theorem of Galois theory
- 4. Prove that, the multiplicative group of nonzero elements of a finite field is cyclic.
- 5. Justify: Every positive integer can be expressed as the sum of squares of four integers.

Head of the Department

Dr. T. Sheeba Helen

Course Instructor

Dr. S. Sujitha

Department:MathematicsClass:IM.ScSemester:IIName of the Course: Real Analysis – IICourseCode:MP231CC5

Course Code	L	Т	Р	S	Credits	Inst.	Total Hours		Mai	ks
						Hours	nouis	CIA	External	Total
MP231CC5	5	1	-	-	5	6	90	25	75	100

Learning Objectives

1. To introduce measure on the real line, Lebesgue measurability and integrability, Fourier Series and Integrals.

2. To get the in-depth study in multivariable calculus.

Course Outcomes

On the s	successful completion of the course, students will be able to:	
1.	recall and describe the basic concepts of measure, integration of functions, Fourier series on real line and multivariable differential calculus, implicit functions and extremism problems.	K1 & K2
2.	compare Boral measure with Lebesgue measure and the total derivatives with partial derivatives.	К3
3.	determine the matrix representation and Jacobian determinant of functions.	К3
4.	analyze the properties of measurable functions, Riemann and Lebesgue Integrals, convergence of Fourier series and extrema of real valued functions.	K4
5.	test measurable sets and measurable functions.	К5

			Teaching	Cognitive		Assessment/
Unit	Module	Торіс	Hours		Pedagogy	Evaluation
Ι		Measure on the Re	al line			
	1.	Lebesgue Outer Measure	3	K1&K2	Brainstorming	Questioning
	2.	Measurable sets	4	K2& K5	Lecture Method & Seminar Presentation	Quiz through Quizziz
	3.	Regularity	2	K3	Content based & Seminar Presentation	Questioning
	4.	Measurable Functions	4	K2&K5	Lecture withIllustration	Oral Test
	5.	Borel and Lebesgue Measurability	2	K2 &K3	Collaborativelearni ng	Conceptexplan ations
II	I	ntegration of Functions of	a Real varia	able		
	1.	Integration of Non- negative functions	5	K1& K2	Brainstorming& Seminar Presentation	Quiz through Slido
	2.	The General Integral	5	К3	FlippedClassr oom and Seminar Presentation	Home Work
	3.	Riemann and Lebesgue Integrals.	5	K2&K4	Lecture& Seminar presentation	Conceptdefiniti ons

Total contact hours:90(Including instruction hours, assignments and tests)

III		Fourier Series and Fourier	r Integrals			
	1.	Orthogonal system of functions - The theorem on best approximation	3	K1&K2	Brainstorming	Quiz through Socrative
	2.	The Fourier series of a function relative to an orthonormal system - Properties of Fourier Coefficients	2	K4	Lecture	Questioning
	3.	The Riesz-Fischer Thorem - The convergence and representation problems for trigonometric series - The Riemann - Lebesgue Lemma	4	К3	Content Based	ConceptEx planation
	4.	The Dirichlet Integrals - An integral representation for the partial sums of Fourier series	4	K4	Flipped Class Room & Seminar Presentation	SlipTest
	5.	Riemann's localization theorem - Sufficient conditions for convergence of a Fourier series at a particular point	4	K4	Lecture	Home Work
	6.	Cesaro summability of Fourier series- Consequences of Fejes's theorem - The Weierstrass approximation theorem	3	K4	Collaborative learning	Recall Concepts
IV		Multivariable Differential	Calculus			
	1.	The Directional derivative - Directional derivative and continuity	4	K1&K2	Brainstorming	Quiz through Quizziz

	2.	The total derivative - The	4	K2&K3	FlippedClass	Differentiate
		total derivative expressed in			room	between
		terms of partial derivatives-				various ideas
		An application to complex-				
		valued functions				
-	3.	The matrix of linear	2	K3	Illustrative	Simple
		function - The Jacobian			Method	Questions
		matrix				
-	4.	The chain rule - Matrix form	3	K2 & K3	Lecture	Concept
		of chain rule			Method	Explain
			-	77.4	9	
	5.	The mean - value theorem	3	K4	Content	Home
		for differentiable functions			Based	WORK
		- A sufficient condition for				
	6		2	T7 4	T .	G1:
	6.	A sufficient condition for	2	K 4	Lecture	Slip
		equality of mixed partial			Method	Test
-	7	derivatives	2		0 1 1	<u>G1</u>
	7.	aylor's theorem for functions	2	K/	Content	Short
		of \mathbb{R}^n to \mathbb{R}^1		N 4	Based	Answer
						Test
* *			.			
V	I	mplicit Functions and Extrem	um Problei	ns		
V	I 1.	mplicit Functions and Extrem Functions with non-zero	um Problei	ns K2&K3	Content Based	Questioning
V	I 1	mplicit Functions and Extrem Functions with non-zero Jacobian determinants	um Probler	ns K2&K3	Content Based	Questioning
V	1.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants	um Problei	ns K2&K3	Content Based	Questioning
V	1. 2.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem	4 3	ns K2&K3 K3	Content Based Analytic Method	Questioning
V	1. 2.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem	4 3	ns K2&K3 K3	Content Based Analytic Method	Questioning Concept explanations
V	1. 2. 3.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function	4 3	ns K2&K3 K3	Content Based Analytic Method	Questioning Concept explanations Ouestioning
V	1. 2. 3.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem-	4 3 3	ns K2&K3 K3 K3	Content Based Analytic Method Lecture Method	Questioning Concept explanations Questioning
V	1. 2. 3.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem-	4 3 3	ns K2&K3 K3 K3	Content Based Analytic Method Lecture Method	Questioning Concept explanations Questioning
V	1. 1. 2. 3. 4.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem- Extrema of real valued	4 3 3 5	ns K2&K3 K3 K3 K2 & K4	Content Based Analytic Method Lecture Method Content Based	Questioning Concept explanations Questioning Home Work
V	1. 1. 2. 3. 4.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem- Extrema of real valued functions of	4 3 3 5	ns K2&K3 K3 K3 K2 & K4	Content Based Analytic Method Lecture Method Content Based and Seminar	Questioning Concept explanations Questioning Home Work
V	1. 1. 2. 3. 4.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem- Extrema of real valued functions of severable	4 3 3 5	ns K2&K3 K3 K3 K2 & K4	Content Based Analytic Method Lecture Method Content Based and Seminar Presentation	Questioning Concept explanations Questioning Home Work
V	1. 1. 2. 3. 4.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem- Extrema of real valued functions of severable variables	4 3 3 5	ns K2&K3 K3 K3 K2 & K4	Content Based Analytic Method Lecture Method Content Based and Seminar Presentation	Questioning Concept explanations Questioning Home Work
V	1. 1. 2. 3. 4. 4.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem- Extrema of real valued functions of severable variables	4 3 3 5 5	ns K2&K3 K3 K3 K2 & K4 K4	Content Based Analytic Method Lecture Method Content Based and Seminar Presentation	Questioning Concept explanations Questioning Home Work
V	In 1. 2. 3. 4. 4.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem- Extrema of real valued functions of severable variables Extremum problems with side	4 3 3 5 5	ns K2&K3 K3 K3 K2 & K4 K4	Content Based Analytic Method Lecture Method Content Based and Seminar Presentation Lecture Method	Questioning Concept explanations Questioning Home Work SlipTest
V	I 1. 2. 3. 4. 4.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem- Extrema of real valued functions variables Extremum problems with side conditions.	4 3 3 5 5	ns K2&K3 K3 K3 K2 & K4 K4	Content Based Analytic Method Lecture Method Content Based and Seminar Presentation Lecture Method	Questioning Concept explanations Questioning Home Work SlipTest
V	I 1. 2. 3. 4. 4.	mplicit Functions and Extrem Functions with non-zero Jacobian determinants The inverse function theorem The Implicit function theorem- Extrema of real valued functions of severable variables Extremum problems with side conditions.	4 3 3 5 5	ns K2&K3 K3 K3 K2 & K4 K4	Content Based Analytic Method Lecture Method Content Based and Seminar Presentation Lecture Method	Questioning Concept explanations Questioning Home Work SlipTest

Course Focusing on Employability/Entrepreneurship/ SkillDevelopment: **Employability** Activities(Em/En/SD):**PosterPresentation and Model Making**

Assignment: MakeaninteractivePPT using AI (Anytopicfrom the syllabus) SeminarTopic: Problems in the Exercises

Sample Questions

Part A

- 1. A function is said to be periodic with period $p \neq 0$ if
- 2. The directional derivative of f at c in the direction u is $\ldots \ldots$
- 3. Let B = B(a, r) be an *n*-ball in R^n . Then $\partial B = \dots$

Part B

1.

- 2. Assume that g(0+) exists and suppose that for some $\delta > 0$ the Lebesgue integral $\int_0^{\delta} \frac{g(t)-g(0+)}{t} dt$ exists. Prove that $\lim_{n \to \infty} \frac{2}{\pi} \int_0^{\delta} g(t) \frac{\sin \alpha t}{t} dt = g(0+).$
- 3. Let f = u + iv. Show that Cauchy-Riemann equations along with differentiability of u and v, imply that f'(c).
- 4. Let *f* be a real valued function with continuous second –order partial derivatives at a stationary point *a* in R². Let A = D_{1,1}f(a), B = D_{1,2}f(a), C = D_{2,2}f(a) and let Δ = det \begin{bmatrix} A & B \\ B & C \end{bmatrix} = AC B'. Then prove that a) If Δ > 0 and A > 0, f has a relative minimum at a.b) If Δ > 0 and A < 0, f has a relative maximum at a.c) If Δ < 0, f has a saddle point at a.

Part C

- 1. State and Prove Riesz-Fischer theorem.
- 2. State and prove mean-valued theorem for vector-valued functions.
- 3. Assume $f = (f_1, f_2, ..., f_n) \in C'$ on an open set in \mathbb{R}^n , and let T = f(S). If the Jacobian determinant $J_r(a) \neq 0$ for some point a in S, then prove that there are two open sets $X \subseteq S$ and $Y \subseteq T$ and a uniquely determined function g such that
 - a) $a \in X$ and $f(x) \in Y$,

b)
$$Y = f(X)$$

- c) f is one-to-one on X,
- d) **g** is defined on **Y**, g(Y) = X and g(f(x)) = x for every x in X,
- e) $g \in C'$ onY.

Head of the Department

Course Instructor

Dr.T.Sheeba Helen

Dr.M. K. Angel Jebitha

Department	:	Mathematics
Class	:	I M. Sc Mathematics
Title of the Course	:	Partial Differential Equation
Semester	:	II
Course Code	:	MP232CC3

Course Code	L	Т	Р	s	Credits	Inst. Hours	Total Hours		Marks	
							nouis	CIA	External	Total
MP232CC3	5	1	-	-	4	6	75	25	75	100

Objectives

1. To formulate and solve different forms of partial differential equations.

2. Solve the related application-oriented problems.

Course Outcomes

On the su	ccessful completion of the course, students will	PSO	Cognitive
be able to	:	Addressed	Level
1.	recall the definitions of complete integral, particular integral, and singular integrals.	PSO-2	R
2.	learn some methods to solve the problems of non- linear first-order partial differential equations. homogeneous and non-homogeneous linear partial differential equations with constant coefficients and solve related problems.	PSO-1	U
3.	analyze the classification of partial differential equations in three independent variables – Cauchy's problem for a second-order partial differential equation.	PSO-3	An
4.	solve the boundary value problem for the heat equations and the wave equation.	PSO-4	Ар

5	apply the concepts and methods in physical	PSO-5	Ар
5.	processes like heat transfer and electrostatics.		

Total Contact Hours: 90 (Including lectures, assignments and tests)

Unit	Module	e Topic	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι		Non -linear par	tial different	tial equation	s of first order	
	1.	Introduction	1	К3	Brainstorming	Questioning
	2.	Explanation of terms, compactible system of first order equations	3	К3	Heuristic Method	Recall Steps
	3.	Examples related to compactible system	3	К3	Blended Learning	Slip Test
	4.	Explaining Charpit's Method	2	K4	PPT	True or False
	5.	Example Problems related to charpit's method	2	К3	Interactive Method	Peer Discussion with questions
	6.	Solving problems using charpit's method	3	К3	Inductive Learning	Short Summary
II		Homogeneous linear part	tial different	ial equation	with constant coe	fficient
	7.	Homogeneous and non- homogeneous linear equation with constant coefficient	2	K2	Blended Learning	Questioning
	8.	Solution of finding homogeneous equation with constant coefficient, Theorem I, II	2	K2	Blended Learning	Proof Narrating
	9.	Method of finding complementary function	2	К3	Flipped Classroom	Short Answer
	10.	Working rule for finding complementary function, Alternative working rule for finding complementary	2	K3	Heuristic Method	MCQ

		function				
	11.	Examples for finding Complementary function	3	К3	Analytic Method	Recall Steps
	12.	General method and working rule for finding the particular integral of homogeneous equation and some example	2	K3	PPT	Relay Race
	13.	Examples to find the particular integral	2	K3	Brainstorming	Match the following
ш		Non – homogeneous linear pa	artial differe	ential equat	ions with constant	coefficient
	14.	Definition, Reducible and irreducible linear differential operators	3	K3	Brainstorming	Questioning
	15.	Reducible and irreducible linear partial differential equations with constant coefficient	2	К3	Interactive Method	Slip Test
	16.	Determination of complementary function	2	K2	PPT using Microsoft 365	True or False
	17.	General solution and particular integral of non- homogeneous equation and some examples of type 1	2	K2	Heuristic Method	Peer Discussion with questions
	18.	Examples of type 2	2	K2	Blended Learning	Creating Quiz with Group Discussion
	19.	Problems related to type 3	2	K5	Blended Learning	Relay Race
	20.	Examples related to type 4, Miscellaneous examples for the determination of particular integral	2	K2	Inductive Learning	Questioning
IV	Classi	fication of Partial Differentia	l equations of	of second or	der	
	21.	Classification of Partial Differential equations of second order	2	K1	Analytic Method	Quiz

	22.	Classification of P.D.E. in three independent variables	2	K2	Heuristic Method	MCQ – Slido
	23.	Cauchy's problem for a second order P.D.E.	2	К3	Flipped Classroom	Slip Test
	24.	Characteristic equation of the second order P.D.E	2	K4	Video using Zoom	Questioning
	25.	Characteristic curves of the second order P.D.E	1	K5	Analytic Method	Slip Test
	27.	Laplace transformation.	2	K4	Heuristic Method	True or False
	28.	Reduction to Canonical (or normal) forms.	2	K5	Flipped Classroom	Presentation
V		F	Boundary Va	lue Problem	I	
	29.	A Boundary value problem, Solution by Separation of variables, Solution of one dimensional wave equation	2	K3	Brainstorming	Questioning
	30.	D'Alembert's solution, Solution of two dimensional wave equation	2	К3	Interactive Method	Slip Test
	31.	Vibration of a circular membrane, Examples related to vibration of a circular membrane	3	K4	РРТ	True or False
	32.	Solution of one dimensional heat equation, Problems related to solution of one dimensional heat equation	2	K4	Heuristic Method	Peer Discussion with questions
	33.	Solution of two dimensional Laplace's equation	3	K4	Blended Learning	Group Discussion
	34.	Solution of two dimensional heat equation	3	К3	Analytic Method	MCQ

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (SD): Quiz, MCQ, Slip Test, Problem Solving, Presentation, Relay Race

Assignment: Find the solution of one dimensional wave equation

Sample questions

Part A

1. The system of two given PDE is compatible possess ------

(a) no solution (b) Two solution (c) Infinitely many solutions (d) Unique solution

2. First order PDE are compatible iff ------

3. If u is the C.F and z' a P.I of a linear PDE then -----is the general solution of the equation.

(a) u - z'(b) u + z'(c) u + z(d) u + f(z)

4. If $u_1, u_2, ..., u_n$ are solution of the homogeneous linear PDE F(D, D') z = 0 then ------is also a solution, where $C_1, C_2, ..., C_n$ are arbitrary constants.

5. A linear differential operator F (D, D') is known as irreducible if ------.

6. Complementary function of the partial differential equation $(D^2 - D'^2 + D - D') = 0$ is -----.

7. Classify the PDE 2r + 4s + 3t - 2 = 0.

8. The PDE $U_{xx} + U_{yy} + U_{zz} = 0$ is of------type.

(a) Hyperbolic (b) Parabolic (c) Elliptic (d) All the above

9. Give the eigen functions of one - dimensional wave equation.

10. What is the D'Alembert's solution for wave equation.

Part-B

Answer all the questions:

- 11. Show that the equations xp = yq and z(xp + yq) = 2xyare compatible and solve them.
- 12. Find a complete integral of $q = yzp^2$.
- 13. Solve (D D') (D +D') $z = (y+1)e^x$.
- 14. Solve $(D^2+2DD'+D'^2)z = 7 \cos y$.
- 15. Solve $(D^2 DD' 2D'^2 + 2D + 2D')z = \sin(2x + y)$.
- 16. Solve $D(D+D'-1)(D+3D'-2)z = x^2 4xy + 2y^2$.

17. Explain the classification of a PDE in three independent variables.

18. Find the characteristics of 4r + 5s + t + p + q - 2 = 0.

19. Find the General solution of one –dimensional wave equation $\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \left(\frac{\partial^2 y}{\partial t^2} \right).$

20. Find the deflection u (x, y, t) of the square membrane with a = b = 1 and c = 1, if the initial velocity is zero and show that the initial deflection is f (x, y) = A sin x sin 2xy.

Part-C

21. Solve completely the simultaneous equations: z = px + qy and $2xy (p^2 + q^2) = z (yp + xq)$.

22. Find a complete integral of $(p^2 + q^2)^n (q x - p y) = 1$.

23. Solve $r - t = tan^3 x tan y - tan x tan^3 y$.

24. Solve $r + 2s + t = 2 \cos y - x \sin y$.

25. Solve the PDE $(3D^2 - 2D'^2 + D - 1)z = e^{x+y} \cos(x+y)$.

26. Solve (D+D')(D+D'-2)z = sin (x + 2y).

27. Reduce the equation yr + (x + y) s + xt = 0 to canonical form and hence find its

general solution.

28. Reduce the equation $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form and hence solve it.

29. A thin rectangular plane whose surface is impervious to heat flow has at t =0 an arbitrary distribution of temperature f(x,y). Its four edges x = 0, x = a, y = 0, y = b is kept at zero temperature. Determine the temperature at a point of the plate as t increases.

30. Find a temperature in a rod which is at a uniform temperature of 50 0 C. Suddenly at t = 0, the end x =0 is cooled to 0 0 C by an application of ice, and the end x = 1 is heated to 100 0 C by an application of the stream, and these two-temperature s are maintained at ends. Furthermore, the rod is insulated along its length so that no transfer of heat can occur from the sides.

Head of the Department Dr. T. Sheeba Helen Course Instructor Dr. K. Jeya Daisy

Department : Mathematics Class : I M.Sc Mathematics Title of the Course : Mathematical Statistics Semester :II Course Code: MP232EC1

Course Code	L	Т	Р	s	Credits	Inst. Hours	Total	al Marks				
Course Coue					creates		Hours	CIA	External	Total		
MP232EC1	3	1	-	-	3	4	60	25	75	100		

Learning Objectives

- 1. To enhance knowledge in mathematical statistics and acquire basic knowledge about various distributions.
- 2. To understand about mathematical expectations, moment generating function technique and the Central Limit Theorem.

Course Outcomes

CO	Upon completion of this course, the students will be able to:	PSO	Cognitive
		Addressed	Level
1	recall the basic probability axioms, conditional probability, random variables and related concepts	PSO - 1	K1
2	learn the transformation technique for finding the p.d.f of functions of random variables and use these techniques to solve related problems	PSO - 3	K2
3	compute marginal and conditional distributions and check the stochastic independence	PSO - 4	K3
4	employ the relevant concepts of analysis to determine limiting distributions of random variables	PSO - 3	K2
5	design probability models to deal with real world problems and solve problems involving probabilistic situations.	PSO-2	K3

K1 - Remember; K2 - Understand; K3– Apply

Total Contact Hours: 60 (Including lectures, assignments and tests)

Unit	Module	е Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation			
Ι		Distribution	s of Function	ns of Randor	n Variables				
	1.	Sampling Theory	3	K ₂ (U)	Brainstorming	Questioning			
	2.	Transformations of Variables of the Discrete 3		K ₃ (Ap)	Inductive Learning	Recall Steps			
	3.	Transformations of Variables of the Continuous Type	3	K ₃ (Ap)	Blended Learning	Slip Test			
	4.	The t and F Distributions	3	K ₂ (U)	Demonstration Method	Quiz - Quizzes			
II	I Limiting Distributions								
	1.	Limiting Distributions	3	K ₂ (U)	Brainstorming	Match the following – Gamma			
	2.	Stochastic Convergence	3	K ₃ (Ap) PPT using Gamma		Solve Problem			
	3.	Limiting Moment Generating Functions	3	K ₃ (Ap)	Flipped Classroom	Group Discussion with questions			
	4.	The Central Limit Theorem	3	K ₂ (U)	Heuristic Method	MCQ			
III			Estim	ation					
	1.	Point Estimation	3	K ₂ (U)	Interactive Method	True or False			
	2.	Measures of Quality of Estimators	2	K ₃ (Ap)	Heuristic Method	Peer Discussion with questions			
	3.	Confidence Intervals for Means	2	K ₃ (Ap)	Blended Learning	Creating Quiz with Group Discussion			
	4.	Confidence Interval for Difference of Means	3	K ₂ (U)	Blended Learning	Slip Test			
	5	Confidence Interval for Variances	2	K ₃ (Ap)	Inductive Learning	Questioning			
IV			Statistical I	Iypothesis					
	1.	Some Examples and Definitions	3	K ₂ (U)	Analytic Method	Peer Discussion with questions			

	2.	Certain Best Tests	3	K ₃ (Ap)	Brainstorming	Quiz – Gamma
	3.	Uniformly Most Powerful Tests	3	K ₃ (Ap)	Inductive Learning	Slip Test
	4.	Likelihood Ratio Tests	3	K ₂ (U)	Blended Learning	Short Summary
V			Other Statis	stical Tests		
	1.	Chi-Square Tests	1	K ₂ (U)	Brainstorming	Match the following – Gamma
	2.	The Distributions of Certain Quadratic Forms	1	K ₃ (Ap)	PPT using Gamma	Solve Problem
	3.	A Test of Equality of Several Means	1	K ₃ (Ap)	Flipped Classroom	Short Answer – Google Form
	4.	Non central χ^2	1	$\overline{K_2(U)}$	Heuristic Method	MCQ
	5	Non central F	2	K ₃ (Ap)	Flipped Classroom	Presentation

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (SD): Quiz, Slip Test, Problem Solving, presentation, Group Discussion and questions.

Assignment: Statistical Hypothesis

Seminar: Other Statistical Tests

Sample questions (minimum one question from each unit)

Part A

- 1. The variance of the random sample is defined as ------
- 2. Give one example of random variables that have limiting distributions.
- 3. Define point estimation and give an example.
- 4. A test of a statistical hypothesis is a rule which, when the experimental sample values have been obtained, leads to a decision to accept or to reject the hypothesis under consideration.(Say True / False)
- 5. State the null hypothesis for a two-sample t-test.

Part B

- 1. Let the random variable X have the p.d.f f(x) = 1, o < x < 1 = 0 elsewhere, Show that the random variable Y= -2 in X has a Chi square distribution with 2 degrees of freedom
- 2. Let $F_n(y)$ denote the distribution function of a random variable Y_n whose distribution depends upon the positive integer n. Let c denote a constant which does not depend upon n. The random

variable Y_n converges stochastically to the constant c if and only if, for every $\in > 0$, the lim Pr($|Yn - c| < \in$) = 1.

- 3. If we take n = 100 and y = 20, give the first approximate 95.4 per cent confidence interval
- Let X₁, X₂, ., ., X_n be a random sample from the normal distribution n(θ, 1). Show that the likelihood ratio principle for testing H₀: θ = θ', where θ' is specified, against H₁: θ ≠ θ' leads to the inequality |x θ| ≥ c. Is this a uniformly most powerful test of H₀ against H₁
- 5. Show that the square of a non central T random variable is a non central F random variable.

Part C

- 1. Explain the t and F Distributions
- 2. State and prove the Central Limit Theorem
- 3. Describe the construction of a confidence interval for the mean of a normal distribution.
- 4. State and Prove the Neyman-Pearson Theorem.

5. Compute the mean of a random variable that has a non central F distribution with degrees of freedom r₁ and r₂ > 2 and non centrality parameter θ .

Head of the Department Dr. T. Sheeba Helen Course Instructor Dr. T. Sheeba Helen

Department	: Mathematics
Class	: I M. Sc

Semester : II

Name of the Course : Operations Modeling

Course Code : MP232EC4

Course Code	L	Т	Р	s	Credits	Inst. Hours	Total		Marks	
Course Coue		-			0100100		Hours	CIA	External	Total
MP232EC4	3	1	-	-	3	4	60	25	75	100

Learning Objectives

- 1. To analyze different situations in the industrial/ business scenario involving limited resources
- 2. To finding the optimal solution within constraints.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	
1	build and solve Transportation and Assignment problems using appropriate method	PSO – 2	K ₁ (R)
2	Learn the constructions of network and optimal scheduling using CPM and PERT	PSO - 3	K ₂ (U)
3	ability to construct linear integer programming models and solve linear integer programming models using branch and bound method	PSO - 3	K ₅ (E)
4	understand the need of inventory management.	PSO - 4	K ₄ (An)
5	To understand basic characteristic features of a queuing system and acquire skills in analyzing queuing models	PSO - 1	K ₃ (Ap)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι		Transport	ation Models	s and its Varia	ants	
	1.	Transportation Models and its Variants	2	K1 & K2	Brainstorming	MCQ
	2	Definition of the Transportation Model–	2	K3	Chalk and Talk	Slip Test using Socrative
	3	Non-Traditional Transportation Mode	3	K1 & K3	Analytic Method	Questioning
	4	Transportation Algorithm The Assignment Model	3	K5	Lecture with Illustration	slido
	5	Transportation Algorithm – The Assignment Model	2	K4	Collaborative learning	Q
				1 '		
11			Network Ar	alysis	g .	T /E 1
	6	Network Analysis	1	KI	Seminar Presentation	True/False
	7	Minimal Spanning Tree Algorithm	1	K3	Seminar Presentation	Short summary of the theorem
	8	Shortest Route Problem	2	K2 & K3	Seminar Presentation	Concept definitions
	9	Maximum Flow Model	2	K3 & K4	Seminar Presentation	Recall steps
	10.	CPM –PERT	2	K3	Seminar Presentation	Questioning
III			Inventory T	heory		
	11	Inventory Theory- Introduction	1	K1 & K2	Brainstorming	Quiz
	12	Basic Elements of an Inventory Model	2	K3	Lecture	Concept Explanation
	13	Deterministic Models	3	K4	Lecture Discussion	Slip Test
	14	Single Item Stock Model With And Without Price Breaks	3	К5	Lecture	Questioning
	15	Multiple Item Stock Model With And Without Price Breaks	3	K6	Collaborative learning	Questioning
IV		Ι	Probabilistic	Models		

	16	Probabilistic Models:	3	K1 & K2	Brainstorming	Quiz
		Continuous Review Model-				
		Single Period Models.				
	17	Continuous Review Model	4	K3 & K4	Flipped	Differentiate
					Classroom	between
						various ideas
	18	Single Period Models	4	K4 & K5	Analytic	Simple
					Method	Questions
V			Queuing T	heory	1	1
	19	Queuing Theory-	2	K1 & K2	Seminar	MCQ
		Introduction			Presentation	
	20	Basic Elements of Queuing	2	K4	Seminar	Concept
		Model			Presentation	explanations
	21	Role of Poisson and	2	K4 & K5	Seminar	Questioning
		Exponential Distributions			Presentation	
	22	Pure Birth and Death	2	K2 & K3	Seminar	Slip Test
		Models			Presentation	
	23	Specialised Poisson Queues	2	K2 & K5	Seminar	Simple
		-(M/G/1):GD/∞/∞)			Presentation	Questions
	24	Pollaczek - Khintechine	2	K4	Seminar	Evaluation
		Formula			Presentation	through short
						test

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Poster Presentation,

Assignment: Problems based on Inventory and Queuing model. (Online)

Seminar Topic: unit II

Sample questions

Part A:

- 1. Which is known as Knapsack problem.
 - a) Principle of optimality b) flyaway kit problem c) Cargo loading problem
- 2. Project scheduling by PERT-CPM consists of _____ basic phases.
 - a) 2 b) 3 c) 4 d) 5
- 3. An ______ in a project is usually viewed as a job requiring time and resources for its

completion.

- 4. In a single server model(M/M/1): $(GD/\infty/\infty)$, the $W_q =$ ------
- 5. The measure of L_s in machine servicing model is

a)
$$L_q + \frac{\lambda_{eff}}{\mu}$$
b) $L_q + \lambda_{eff}$ c) $L_q + \mu \qquad \lambda_{eff}$ d) $\mu + \lambda_{eff}$

Part B:

6. Find the optimal solution to the cargo loading problem.

7. Write the Formulation of CPM by linear programming approach.

8.Explain the factors which may also influence the way the inventory

model is formulated.

9. Obtain the probability $P_n(t)$ of Departure Process.

10. Explain pure birth and death process.

Part - C

11.A Contractor needs to decide on the size of his work force over the next 5weeks.He estimates the minimum force size b_i for the 5 weeks to be 5,7,8,4 and 6 workers for

i=1,2,3,4 and 5 respectively. Find the optimum sizes of the work force for the 5 – week planning horizon.

12. Given the following information

Activity	0-1	1-2	1-3	2-4	2-5	3-4	3-6	4-7	5-7	6-7
Duration	2	8	10	6	3	3	7	5	2	8

Draw the network diagram. Find critical path. Determine Total Float and free Float

13.Explain Single item static model.

14.Derive the difference- differential equations of (M/M/1): $(GD/\infty/\infty)$.

15. Derive P.K formula

Head of the Department:

Course Instructor:

Dr. T. Sheeba Helen

Dr. L. Jesmalar

Department	: Mathematics
Class	: I M.Sc.
Title of the Course	: Modeling and Simulation with Excel
Semester	: II
Course Code	: MP232SE1

Comme Code	т	т	n	Cara di ta	T	Total		Marks	
Course Code	L	I	P	Creatts	Inst. Hours	Hours	CIA	External	Total
MP232SE1	4	-	-	3	4	60	25	75	100

Objectives

- To know about modifying a spreadsheet and workbook
- To understand the concept of data analysis tools and data analysis for two data sets.

Course outcomes

со	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO - 1	Learn the spreadsheet and workbook.	PSO - 1	R
CO - 2	Understand the types of charts and graphs.	PSO - 2	U
CO - 3	Apply the custom data formats and layouts.	PSO - 3	Ар
CO - 4	Analyze the data with Excel.	PSO - 4	An
CO - 5	Create spreadsheets, workbooks and charts.	PSO - 5	С

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Introdu	ction to Spreadsheet Model	ing			
	1.	Feng Shui of Spreadsheets, Spreadsheet Makeover	3	K2	Introductory Session	Questioning
	2.	Julia's Business Problem-A Very Uncertain Outcome, Ram's Critique	2	K4	Narrative method	Short Summary
	3.	Julia's New and Improved Workbook, Summary, Exercise	4	К3	Presentation	Problem Solving
II	Present	ation of Quantitative Data				
	4.	Introduction, Data Classification	2	К2	Blended Learning	Concept Explain
	5.	Data Context and Data Orientation	2	K2	Interactive Lectures	Evaluation through Poll
	6.	Data Preparation Advice	3	K4	Flipped Classroom	Class Participation
III	Data Vi	sualization				
	7.	Types of Charts and Graphs – Ribbons and the Excel Menu System, Some Frequently Used Charts	4	К2	Brainstorming	Questioning
	8.	Specific Steps for Creating a Chart, An Example of Graphical Data Analysis and Presentation, Example – Tere's Budget for the 2 nd Semester of college	4	K3	Interactive Method	Evaluation through short test
	9.	9. Collecting Data, Summarizing Data, Analyzing Data, Presenting Data, Summary, Exercise		K6	Group Discussion	Recall the methods
IV	Analysi	s of Quantitative Data				-
	10.	10. Introduction, Data Analysis, Data Analysis Tools, Data Analysis for Two Data Sets		К2	Short Video	Quiz through Quizizz

	11.	Time Series Data: Visual Analysis, Cross-Sectional Data: Visual Analysis	3	K4	Lecture with Illustration	Online Assignment
	12.	Analysis of Time Series Data: Descriptive Statistics, Analysis of Cross-Sectional Data: Descriptive Statistics, Summary, Exercise	3	K4	Contextual Based Learning	Short Summary
V	Present	tation of Qualitative Data – I	Data Visualiz	zation		
	13.	Introduction, Essentials of Effective Qualitative Data Presentation – Planning for Data Presentation and Preparation	3	K2	Lab Method	Practical
	14.	Data Entry and Manipulation – Tools for Data Entry and Accuracy, Data Transposition to Fit Excel	3	K3	Integrative Method	Presentation
	15.	Data Conversion with the Logical IF, Data Conversion of Text from Non-Excel Sources, Summary, Exercise	3	K5	Problem Solving	Class Test

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities: Quiz, Slip test, Narrating Real Life Problems, Presentation

Assignment: Introduction to Spreadsheet Modeling, Presentation of Quantitative Data

Sample questions (minimum one question from each unit)

Part A

- 1. What is a hyperlink?
- 2. Data that have natural zero
- a) ordinal data b) interval data c) ratio data d) big data
- 3. The mother of all Graphs is the _____
- 4. Expand VBA

5. _____ is the tool of data menu that can be quite useful for promoting accurate data entry

Part B

- 1.Describe Ram's critique
- 2.Explain in detail about Data classification
- 3.List out the Specific Steps for creating a chart
- 4. What is Data Analysis?
- 5.Describe the Data Transposition to Fit Excel.

Part C

- 1. Explain in detail about Julia's New and Improved Workbook
- 2. Discuss about Data Preparation Advice
- 3. Describe about the types Of Chart and Graphs
- 4. Characterize about the Data Analysis Tools
- 5.Illustrate the Planning for Data Presentation And preparation

Head of the Department Dr. T. Sheeba Helen Course Instructor Sr. S. Antin Mary

Department	: Mathematics
Class	: II M.Sc Mathematics
Title of the Course	:Complex Analysis
Semester	:IV
Course Code	:PM2041

	т	T	n		T A T	Total		Marks	
Course Code	L	I	P	Credits	Inst. Hours	Hours	CIA	External	Total
PM2041	6	-	-	5	6	90	25	75	100

Objectives

- To impart knowledge on complex functions
- To facilitate the study of advanced mathematics

Course outcomes

со	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO - 1	understand the fundamental concepts of complex variable theory	PSO - 1	U
CO - 2	effectively locate and use the information needed to prove theorems and establish mathematical results	PSO - 3	R
CO - 3	demonstrate the ability to integrate knowledge and ideas of complex differentiation and complex integration	PSO - 4	U
CO - 4	use appropriate techniques for solving related problems and for establishing theoretical results	PSO - 3	Ар
CO - 5	evaluate complicated real integrals through residue theorem	PSO – 2, 4	E
CO - 6	know the theory of conformal mappings which has many physical applications and analyse its concepts	PSO – 3, 4	An

Unit	Module	Торіс	Teaching Hours	TeachingCognitiveHourslevel		Assessment/ Evaluation	
Ι			Power	Series			
	1.Abel's Theorem		2	K3	Brainstorming	Questioning	
	2. Abel's Limit Theorem		1	К3	Inductive Learning	Recall Steps	
	3.	The Periodicity	2	K3	Blended Learning	Slip Test	
	4.	Conformality	1	K4	PPT using nearpod	True or False	
	5.	Arcs and Closed Curves	1	K3	Interactive Method	Peer Discussion with questions	
	6. Analytic Functions in a Regions		2	K3	Inductive Learning	Short Summary	
	7. Conformal Mapping, Length and Area		1	K4	Demonstration Method	Quiz - Quizzes	
II	Complex Integration						
	8.	Cauchy's Theorem for a Rectangle	2	K2	Blended Learning	Proof Narrating	
	9.	Cauchy's Theorem in a Disk	1	К2	Blended Learning	Proof Narrating	
	10.	The index of a point with respect to a curve	3	К3	Flipped Classroom	Short Answer – Google Form	
	11.	Cauchy's Integral formula	2	K3	Heuristic Method	MCQ	
	12.	Higher Derivatives	2	K3	Derivative Method	Recall Steps	
	13.	Removable Singularities, Taylor's Theorem	2	K3	PPT using Gamma	Relay Race	
	14. Zeros and Poles		2	К3	Brainstorming	Match the following – Gamma	
III			Complex In	ntegration			
	15.	The Local Mapping	2	К3	Brainstorming	Questioning	
	16.	The Maximum Principle	2	К3	Interactive Method	Slip Test	

Total Contact hours: 90 (Including lectures, assignments and tests)

	17.	Chains and Cycles	2	K2	PPT using Microsoft 365	True or False						
	18.	Simple Connectivity	2	K2	Heuristic Method	Peer Discussion with questions						
	19.	The General Statement of Cauchy's Theorem	2	K2	Blended Learning	Creating Quiz with Group Discussion						
	20.	The Residue Theorem	2	K5	Blended Learning	Relay Race						
	21.	The Argument Principle	2	K2	Inductive Learning	Proof Writing						
	22.	Evaluation of Definite Integrals	5	K5	Problem Solving	Solve Problem						
IV		Serie	s and Produ	ct Developn	nents							
	23.	Partial Fraction	2	K2	Video using Zoom	Quiz – Gamma						
	24.	Infinite Products	2	K2	Video using Zoom	MCQ – Slido						
	25.	Canonical Products	2	K2	Video using Zoom	Slip Test						
	26.	The Gamma Function	2	K2	Video using Zoom	Short Summary						
	27.	Jensen's Formula	1	K2	Analytic Method	Proof Narrating						
	27.	Hadamard's Theorem	2	K2	Heuristic Method	Proof Narrating						
	28.	The Riemann Zeta Function – The Product Development	2	K2	Flipped Classroom	Presentation						
	29.	Extension of $\zeta(s)$ to the Whole Plane	2	K2	Flipped Classroom	Presentation						
	30.	The Zeros of the Zeta Function	2	K2	Flipped Classroom	Presentation						
	31.	Equicontinuity, Normality and Compactness	2	K2	Flipped Classroom	Presentation						
	32.	Arzela's Theorem	2	K2	PPT	Proof Narrating						
	33.	Families of Analytic Function	1	K2	Video using Zoom	Quiz - Socrative						
	34.	The Classical Definition	1	K2	Video using Zoom	Slip Test						
V		Conformal Mapping										

35.	The Riemann Mapping Theorem	2	К3	Blended Learning	Proof Narrating
36.	Boundary Behaviour, Use of the Reflection Principle	1	К3	Flipped Classroom	Presentation
37.	Conformal Mapping of Polygons – Behaviour at an Angle	1	K4	Flipped Classroom	Presentation
38.	The Schwarz-Christoffel formula	1	К3	Flipped Classroom	Presentation
39.	Mappings on a Rectangle	1	K4	Flipped Classroom	Presentation
40.	Harmonic Functions – Functions with the Mean Value Property, Harnack's Principle	2	К3	Flipped Classroom	Presentation

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (SD): Quiz, MCQ, Slip Test, Problem Solving, Proof Narrating, Presentation, Relay Race, Riddles

Assignment: Evaluation of Definite Integrals, The Riemann Zeta Function, Conformal Mapping

Sample questions (minimum one question from each unit)

Part A

Unit I

- 1. Say True or False: Any analytic function can be represented as a power series
- 2. When will we say that a function f(z) is a periodic function?
 (i) f(z + c) = f(z) for all z
 (ii) (z + c) = f(c) for all z
 - (iii)(z + c) = f(-z) for all z(iv)(z + c) = f(c) for all c
- 3. Which of the following are correct?
 (a) An arc is the image of a closed finite interval under a mapping
 (b) An arc is the set of points (x, y) such that x=x(t), y=y(t), α<t≤β
 (c) An arc is the set of points (x, y) such that x=x(t), y=y(t), α≤t≤β
 (i) (a) only (ii) (a) and (b) (iii) (a) and (c) (iv) (b) and (c)
 4. Which of the following functions is a single valued function?
 - (i)f(z) = z $(ii)f(z) = z^2$ $(iii)f(z) = \log z$ $(iv)f(z) = \sqrt{z}$
- 5. An analytic function is said to be degenerates if it reduces to

Unit II

- 1. The winding number of a point inside the circle is
- (i) 1 (ii) 0 (iii) ∞ (iv) None of these
- 2. The value of Cauchy's Estimate is
- 3. Consider the function f(z)=z². Which of the following are true?
 (i) *f* is conformal at all points
 (ii) *f* is differentiable
 (iii) *f* is analytic
 (iv) *f* is continuous
- 4. True or False: Let x, y be zeros of an analytic function. Then there exist an neighbourhood which contains both x and y
- 5. The value of the integral $\int_{\gamma} \frac{dz}{z-a}$ if γ is a piecewise differentiable curve and does not pass through the point a

Unit III

- 1. If f(z) is analytic and non-constant in a region Ω , then which value of f(z) has no maximum in Ω ?
- 2. The maximum value of modulus of f(z) attains in
- 3. Define Simply Connected Region
- 4. The value of $\int_0^{\pi} \log \sin z \, dz$
 - (i) $\pi \log 2$ (ii) $-\pi \log 2$ (iii) $\log 2$ (iv) $-\log 2$
- 5. If f(z) is analytic in a region Ω , then $\int_{\gamma} f(z) dz = 0$ for every cycle γ which is homologous to zero in Ω . This statement is known as

Unit IV

- 1. Write the two standard representation of rational function
- 2. Genus of the function $\sin \pi z$ is
 - (i) 0 (ii) 1 (iii) 2 (iv) 3
- 3. If $\lim_{n \to \infty} P_n = 0$, then the infinite product $\prod_{n=1}^{\infty} P_n$ is
- 4. True or False: A function which is analytic in the whole plane is said to be an Entire Function
- 5. Give an example of integral function which are not polynomial

Unit V

- The polynomial is if and only if all β_k > 0.
 (i) Concave
 (ii) Convex
 (iii) Analytic
 (iv) Empty
- 2. True or False: Every harmonic function satisfies the mean value condition
- 3. Define univalent function

- 4. Any two regions can be mapped onto each other
- 5. Define Harnack's inequality

Part B

Unit I

- 1. Let f be an analytic function defined in a region Ω and $z_0 \in \Omega$. If $f'(z_0) \neq 0$, then f is conformal at z_0
- 2. Define Jordan Curve, Piecewise Differentiable, Single and Multiple valued function with an example
- 3. If $\sum a_n z^n$ has radius of convergence *R*, what is the radius of convergence of $\sum a_n z^{2n}$ and $\sum a_n^2 z^n$.
- 4. Prove that an analytic function in a region Ω whose either derivative vanishes identically or the real part, the imaginary part, the modulus or the argument is constant must reduce to a constant
- 5. Find the single valued and analytic branch of the function \sqrt{z} in Ω , where Ω is the complement of the negative real axis

Unit II

- 1. If the piecewise differentiable closed curve γ does not pass through the point *a*, then the value of the integral $\int_{\gamma} \frac{dz}{z-a}$ is a multiple of $2\pi i$
- 2. (i). If γ lies inside a circle, then n(γ, a) = 0 for all points a outside the circle (ii). If a is a point inside the circle C, then n(γ, a) = 1
- 3. State and prove Liouville's Theorem
- 4. An analytic function comes arbitrary close to any complex value in every neighbourhood of an essential singularity
- 5. Let z_1 and z_2 be two points on a closed curve γ which does not pass through the origin. Denote the subarc from z_1 to z_2 in the direction of the curve γ_1 and the subarc from z_2 to z_1 by γ_2 . Suppose that z_1 lies in the lower half plane and z_2 lies in the upper half plane. If γ_1 does not meet the negative real axis and γ_2 does not meet the positive real axis, then $n(\gamma, 0) = 1$

Unit III

- 1. State and prove Schwarz Lemma
- 2. State and prove Argument Principle
- 3. Evaluate $\int_0^{2\pi} \frac{1}{a + \cos\theta} d\theta$, a > 1.
- 4. Evaluate $\int_0^\infty \frac{x^2 x + 2}{x^4 + 10x^2 + 9} dx$.
- 5. If f(z) is defined and continuous on a closed bounded set E and analytic on the interior of E, then the maximum of |f(z)| on E is assumed on the boundary of E

Unit IV

- 1. Find the expansion of $\pi \cot \pi z$ by MittagLeffler Theorem
- 2. Show that $sin\pi z$ is an entire function of genus 1
- 3. Prove that the ξ –function can be extended to a meromorphic function in the whole plane whose only pole is a simple pole at s = 1 with the residue 1
- 4. Prove that a locally bounded family of analytic functions has locally bounded derivatives
- 5. The family \mathfrak{F} is totally bounded if and only if to every compact set $\mathbb{E} \subset \Omega$ and every $\varepsilon > 0$ it is possible to find $f_1, \dots, f_n \varepsilon \mathfrak{F}$ such that every $f \varepsilon \mathfrak{F}$ satisfies $d(f, f_j) < \varepsilon$ on \mathbb{E} for some f_j

Unit V

- 1. If the boundary of Ω contains a free one-side analytic arc γ , then prove that the mapping function has an analytic extension to $\Omega \cup \gamma$ and γ is mapped on an arc of the unit circle.
- 2. Explain the functions with the mean value property
- 3. Prove that a continuous function u(z) which satisfies condition u $(z_o) = \frac{1}{2\pi} \int_0^{2\pi} u(z_o + re^{i\theta}) d\theta$ is necessarily harmonic
- 4. State and prove Harnack's inequality

Part C

Unit I

- 1. State and prove Abel's Theorem
- 2. State and prove Abel's Limit Theorem
- 3. Prove that every period of e^{iz} is an integral multiple of its smallest period
- 4. Find the single-valued and analytic branch of the function $\log z$ in Ω , where Ω is the complement of the negative real axis $z \leq 0$

Unit II

- 1. State and prove Cauchy's Theorem for Rectangle
- 2. State and prove generalization of Cauchy's Theorem in a disk
- 3. Let f(z) be analytic in an open disk Δ and γ be a closed curve in Δ . Then for any point *a* not on γ , $n(\gamma, a)$. $f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} dz$, where $n(\gamma, a)$ is the index of *a* with respect to γ . Also derive the Cauchy's Integral Formula.
- 4. If f(z) is an analytic function such that f(z) and all of its derivatives vanishes at a point a in a region Ω , then f(z) vanishes identically in Ω .
- 5. State and prove Taylor's Theorem

Unit III

- 1. Let f(z) be analytic except for isolated singularities a_j in a region Ω . Then $\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_j n(\gamma, a_j) Res_{z=a_j} f(z)$ for any cycle γ which is homologous to zero in Ω and does not pass through any one of the points a_j
- 2. A region Ω is simply connected if and only if $n(\gamma, a) = 0$ for all cycles γ in Ω and all points a which do not belong to Ω
- 3. Evaluate $\int_0^{\pi} \log \sin x \, dx$.

4. (i). Evaluate
$$\int_0^\infty \frac{x^{\frac{1}{3}}}{1+x^2} dx$$

(ii). Evaluate $\int_0^\infty \frac{x \sin x}{x^2+a^2} dx$
(iii). Evaluate $\int_0^\infty \frac{\sin x}{x} dx$

5. State and prove Characterization theorem

Unit IV

- 1. The infinite product $\prod_{n=1}^{\infty} (1 + a_n)$ with $(1 + a_n) \neq 0$ converges simultaneously with the series $\sum_{n=1}^{\infty} \log(1 + a_n)$ whose terms represent the values of the principal branch of the logarithm
- 2. Suppose f(z) is holomorphic function with f(0) is non-zero and f(z) has zero at $a_1, a_2, ..., a_n$ inside $|z| < \rho$. Then $\log|f(0)| = -\sum_{k=1}^n \log\left(\frac{\rho}{|a_k|}\right) + \frac{1}{2\pi} \int_0^{2\pi} \log|f(\rho e^{i\theta})| d\theta$.
- 3. Prove that $\frac{\pi^2}{\sin^2 \pi z} = \sum_{-\infty}^{\infty} \frac{1}{(z-n)^2}$
- 4. Prove that a family \Im of analytic functions is normal with respect to C if and only if the functions in \Im are uniformly bounded on every compact set
- 5. State and prove Arzela's Theorem

Unit V

- 1. State and prove Schwartz Christoffel Formula
- 2. State and prove Riemann Mapping theorem
- 3. State and prove Harnack's Principle
- 4. Show that the inverse function of the elliptic integral $\int_0^{\omega} \frac{d\omega}{\sqrt{(1-\omega^2)(1-k^2\omega^2)}}$ is a meromorphic function with periods 2k and 2ik

Head of the Department Dr. T. Sheeba Helen Course Instructor Dr. A. Anat Jaslin Jini

Department	:	Mathematics
Class	:	II M.Sc Mathematics
Title of the Course	:	Functional Analysis
Semester	:	IV

Course Code : PM2042

Course Code	т	т	п	Cara ll'Ar	T	Total	Marks		
Course Code	L		P	Creatts	Inst. Hours	Hours	CIA	External	Total
PM2033	6	-	-	5	6	90	25	75	100

Objectives

- 1. To study the three structure theorems of Functional Analysis and to introduce Hilber Spaces and Operator theory.
- 2. To enable the students to pursue research.

Course outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	Learn and understand the definition of linear space, normed linear space, Banach Space and their examples	PSO - 1	K1(R)
CO - 2	Explain the concept of different properties of Banach Spaces, Hahn Banach theorem	PSO -2	K2(U)
CO - 3	Compare different types of operators and their properties, Natural imbedding	PSO - 2	K3(Ap)
CO - 4	Explain the ideas needed for open mapping theorem, Open Mapping theorem	PSO - 1	K5(C)
CO - 5	Construct the idea of projections, the spectrum of an operator and develop problem solving skills, Matrices, Determinants	PSO - 1	K3(Ap)
CO - 6	Learn and understand the definition of Hilbert Spaces ,Orthogonal Complements	PSO - 4	K1(R)
CO - 7	Explain the concept of the adjoint of an operator, Normal and Unitary operators, Spectral Theory	PSO - 2	K4(An)

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Modu le	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation	
Ι	Banach	n spaces	liouis	10101	I	Liturution	
	1.	Banach spaces	4	K2(U)	Lecture with Illustration	Evaluation through slido,MCQ	
	2.	Definition and examples	2	K1(R)	Blended classroom	Simple definitions, MCQ, Recall steps, Concept definitions	
	3.	Continuous linear transformations	4	K2(U)	Flipped Classroom	SlipTestusing Quizziz	
	4.	The Hahn Banach theorem.	5	K4(An)	Integrative method	Evaluation through short test, Seminar	
II	The na	tural imbedding of N in	to N**				
	1.	The natural imbedding of N into N**	5	K1(R)	Group Discussion	Questioning	
	2.	The open mapping theorem	5	K2(U)	Integrative method	Evaluation through slido	
	3.	The conjugate of an operator.	5	K4(An)	Peer Instruction	SlipTestusing Quizziz	
III	Hilbert	spaces					
	1.	Hilbert spaces	4	K1(R)	Brainstorming	Quiz	
	2.	Definition and properties	4	K3(Ap)	Lecture	Concept Explanation	
	3.	Orthogonal complements - Orthonormal sets	4	K3(Ap)	Lecture Discussion	SlipTest	
	4.	The conjugate space	3	K5(C)	Lecture	Evaluation through quiz test using quizziz	
IV	Adjoin	t of an operator					
	1.	Adjoint of an operator, self adjoint operators	3	K2(U)	Lecture,Introduct ory session	Evaluation through quiz test using quizziz, Seminar, MCQ, Recall steps	
	2.	Normal and unitary operators	3	K1(R)	Group Discussion	Questioning	

	3.	Projections	3	K3(Ap)	Lecture with Illustration	Evaluation through slido,MCQ
	4.	Spectral theory - Spectrum of an operator	3	K4(An)	Blended classroom	Simple definitions, MCQ, Recall steps, Concept definitions
	5.	The spectral theorem	3	K2(U)	Flipped	SlipTestusing Quizziz
					Classroom	
V	Banac	h Algebras			·	
	1.	Banach Algebras: The definition and some examples	5	K2(U)	Seminar Presentation	MCQ
	2.	Regular and singular elements	3	K2(U)	Seminar Presentation	Concept explanations
	3.	The spectrum	3	K4(An)	Seminar Presentation	Questioning
	4.	The formula for the spectral radius	4	K3(Ap)	Seminar Presentation	SlipTest

Course Focussing on Skill Development

Activities (Em/ En/SD): Evaluation through Quiz Competition

Assignment : Adjoint of an operator(PPT)

Seminar Topic: Banach Algebras

Sample questions

Part A

- 1. Let x, y be elements of a Hilbert space H, such that ||x|| = 3, ||y|| = 4 and ||x+y|| = 7. Then ||x-y|| equals:
 - (a) 1 (b) 2 (c) 3 (d) $\sqrt{2}$
- 2. Choose the correct answer for the following norm $\|\Box^*\Box\| =$

(a) $\|\Box^*\|\|\Box\|(b)\|\Box\|^2$ (c) $\|\Box^*\|^2$ (d) $\|\Box^2\|$.

- 3. The weak * topology is weaker than thetopology.
- 4. Say True or False

The Hilbert cube is compact as a subspace of $l_{\rm 2}$

5. $(T_1 T_2)^* = \dots$

Part B

- 1. State and prove Holder's inequality.
- 2. State and prove the Closed theorem.
- 3. State and prove the Schwartz inequality.
- 4. Show that a closed linear subspace M of H is invariant under an operator $T \Leftrightarrow M^{\perp}$ is invariant under T*.
- 5. Show that if T is normal then each M_i reduces T.

Part C

- 1. State and prove the Hahn Banach Theorem.
- 2. Show that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
- 3. State and prove the open mapping theorem.
- 4. If T is an operator on H for which $\langle Tx, x \rangle = 0$. For all x, prove that T = 0.
- 5. State and prove the spectral theorem.

Head of the Department

Course Instructor

Dr.T.Sheeba Helen

Dr. A. Jancy Vini

Department	: Mathematics
Class	: II M Sc
Semester	: IV
Name of the Course	: Operations Research
Course code	: PM2043

Course Code	L	Т	Р	Credits	Inst. Hours	Total Hours		Marks	
						nouis	CIA	External	Total
PM2034	6	-	-	5	6	90	25	75	100

Objectives: 1. To learn optimizing objective functions.

2. To solve real life-oriented decision-making problems.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	explain the fundamental concept of DP model, Inventory model and Queuing model	PSO - 2	K ₁ (R)
CO - 2	relate the concepts of Arrow (Network)diagram representations, in critical path calculations and construction of the Time chart	PSO - 3	K ₂ (U)
CO - 3	distinguish deterministic model and single item	PSO - 3	K ₅ (E)
CO - 4	interpret Poisson and Exponential distributions and apply these concepts in Queuing models	PSO - 4	K ₄ (An)
CO - 5	Solve real life- oriented decision-making problems by optimizing the objective function	PSO - 1	K ₃ (Ap)

Course Outcome

Unit	Section	Topics	Lecture	Cognitive level	Pedagogy	Assessment	
			hours			/	
т			71		Evaluation		
	1	Elements of the DD 4 Ke(U) Introductory acceler					
	1	Model	4	$\mathbf{K}_2(\mathbf{U})$	Group Discussion PPT	Shp Test	
		The Capital					
		Budgeting Example				Simple	
-	2	More on the	3	K ₁ (R)	Lecture using Chalk and	definitions,	
		definition of the state			talk, Problem-solving,	Recall steps	
					Group Discussion.	-	
						Evaluation	
	3	Examples of DP	3	$K_2(U)$	Lecture using Chalk and	through	
		models and			talk, Problem-solving,	Quizzes,M	
		computation			Group Discussion.	CQ,	
			2			True/False.	
	4	Solution of linear	2	$K_4(An)$	Problem-solving,	Evaluation	
		programming by			Demonstration.	Nearpod	
		programming				rearpou.	
	5	Game theory	3	$K_3(An)$	Lecture using Chalk and	-	
	5	Guine theory	5	ng(np)	talk. Problem-solving.	Assignment	
					Group Discussion.	U U	
II			I	Arrow (Network)	Diagram		
	1	Introduction	3	K ₂ (U)	Group Peer tutoring.	Short Test	
		Arrow (Network),					
		Diagram					
		Representations					
						D	
						Formative	
	2	Critical Path	4	K ₄ (An)	Lecture using Chalk and	assessment	
		Calculations,			talk, Problem-solving,	1,	
		Problem based on			Group Discussion.		
		critical Path				Evaluation	
		Calculations,				through	
		Determination of				short tests.	
		floats					
	3	Construction of the	4	$K_3(Ap)$	Problem-solving, Group		

Total contact hours: 90 (Including lectures, seminar and tests)

		Time Chart and			Peer tutoring	
		Resource Leveling			i eer tatoring.	Seminar on
		Problems based on				Arrow
		Time Chart and				(Notwork)
		Time Chart and				(INELWOIK)
		Resource Leveling	-			Diagram
	4	Probability and Cost	2	$K_3(Ap)$	Lecture with discussion	Quizzes
		Considerations in				
		Project Scheduling.				
III			G	eneralized Invent	ory model	
	1	Introduction,	4	$K_2(U)$	Lectures using videos.	Slip Test,
		Generalized				Online Quiz
		Inventory model,				
		Types of Inventory				
		Models				
	2	Deterministic	4	$K_4(An)$	Introductory session	
	-	Models			Group Discussion	
		Single Item Static			Group Discussion.	Formative
		Model				assessment
		Droblems based on				
		FibbleIlls Dased Oll				11
		Single item Static				
	2	Model				- ·
	3	Single Item Static,	3	$K_4(An)$	PP1, Review	Seminar on
		Model with Price				Generalized
		Breaks,				Inventory
		Problems based on				model
		Single Item Static				
		Model with Price				
		Breaks				Evaluation
	4	Multiple - Item static	2	K ₃ (Ap)	Lecture with PPT	through
		Model with Storage			illustration	short tests,
		Limitations,				Seminar.
		Problems based on				
		Multiple - Item static				
		Model with Storage				Evaluation
		Limitations				through
	5	Single – Item static	2	$K_2(\Delta n)$	Lecture with Group	Seminar.
	5	Model with Storage	2	K ₅ (Tp)	discussion	
		Limitationa			discussion.	
		Limitations.				
137				Output Ma	dal	
1 V	1	Pagia Elements of	2	Queung Mo	Deer tutoring Lectures	Short Test
		the Queuing Model	3		reer tutoring, Lectures	Short Test
		nie Queuing Model,			using videos.	
		Koles of Poisson				
		Distributions,				
		Roles of Exponential				

		Distributions				MCQ,
	2	Arrival process,	2	K ₂ (U)	Problem-solving, Group	True/False.
		Examples of arrival			Discussion.	
		process				Concept
	3	Departure process,	3	K ₄ (An)	Lecture using Chalk and	definitions,
		Queue with			talk, Problem-solving,	Seminar.
		Combined Arrivals			Group Discussion.	
		and Departure				Seminar.
	4	Problems based on	2	$K_3(Ap)$	Problem-solving, PPT.	
		Queue with				
		Combined Arrivals				Concept
		and Departure				definitions,
	5	Queuing Models of	3	K ₃ (Ap)	Problem-solving, Group	Seminar.
		Type: (M/M/1):			Discussion.	
		$(\text{GD}/\infty/\infty),$				
		Problems based on:				-
		$(M/M/1)$: $(GD/\infty/\infty)$				Concept
	6	Queuing Models of	3	K ₃ (Ap)	Problem-solving, Group	definitions,
		Type (M/M/1):			Discussion.	Seminar.
		$(\text{GD/N}/\infty),$				
		Problems based on				
		(M/M/1): (GD/N/∞)				
V				Types of Queuing	Models	1
	1	Queuing Model	4	$K_2(U)$	Problem-solving, PPT.	Short Test
		$(M/G/1)$: $(GD/\infty/\infty)$,				
		$(M/M/C)$: (GD/∞)				
		∞), The Pollaczek-				
		Khintchine Formula				
	2	Problems based	4	$K_3(Ap)$	Problem-solving, Group	Assignment
		on(M/M/C):			Discussion.	based on the
		$(\text{GD}/\infty/\infty),$				queueing
		$(M/M/\infty)$: $(GD/\infty/\infty)$				models
		Self service Model				
	3	(M/M/R): (GD/K/K)	4	$K_3(Ap)$	Lecture using Chalk and	
		R < K - Machine			talk, Problem-solving.	Concept
					, , , , , , , , , , , , , , , , , , , ,	
		Service,			Group Discussion.	definitions
		Service, Problems based			Group Discussion.	definitions
		Service, Problems based on(M/M/R):			Group Discussion.	definitions
		Service, Problems based on(M/M/R): (GD/K/K) R < K -			Group Discussion.	definitions
		Service, Problems based on(M/M/R): (GD/K/K) R < K - Machine Service			Group Discussion.	definitions
	4	Service, Problems based on(M/M/R): (GD/K/K) R < K - Machine Service Tandem or series	3	K4(An)	Group Discussion.	definitions Concept definitions
	4	Service, Problems based on(M/M/R): (GD/K/K) R < K - Machine Service Tandem or series queues	3	K ₄ (An)	Group Discussion.	definitions Concept definitions

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (SD): Quiz, Problem Solving

Assignment: Problems based on Queue with Combined Arrivals and Departure. (Online) Seminar Topic: Probability and Cost Considerations in Project Scheduling.

Sample questions (minimum one question from each unit)

Part A:

1. Which is known as Knapsack problem.

a) Principle of optimality b) flyaway kit problem c) Cargo loading problem

2. Project scheduling by PERT-CPM consists of _____ basic phases.

a) 2 b) 3 c) 4 d) 5

3.An ______ in a project is usually viewed as a job requiring time and resources for its

completion.

4.In a single server model(M/M/1): $(GD/\infty/\infty)$, theW_q =-----

5. The measure of L_s in machine servicing model is

a)
$$L_q + \frac{\lambda_{eff}}{\mu}$$
b) $L_q + \lambda_{eff}$ c) $L_q + \mu$ λ_{eff} d) $\mu + \lambda_{eff}$

Part B:

6. Find the optimal solution to the cargo loading problem. Consider the following special case of three items and assume that W=5.

i	Wi	v_i
1	2	65
2	3	80
3	1	30

7. Write the Formulation of CPM by linear programming approach.

8.Explain the factors which may also influence the way the inventory

model isformulated. 9.Obtain the probability $P_n(t)$ of Departure Process. 10. Explain (M/M/R): (GD/K/K) machine service model.

Part - C

11.A Contractor needs to decide on the size of his work force over the next 5weeks.He estimates the minimum force size b_i for the 5 weeks to be 5,7,8,4 and 6 workers for i=1,2,3,4 and 5 respectively. Find the optimum sizes of the work force for the 5 – week planning horizon.

12. Given the following information

Activity	0-1	1-2	1-3	2-4	2-5	3-4	3-6	4-7	5-7	6-7
Duration	2	8	10	6	3	3	7	5	2	8

Draw the network diagram. Find critical path. Determine Total Float and free Float

13.Explain Single item static model.

14.Derive the difference- differential equations of (M/M/1): $(GD/\infty/\infty)$.

15.Derive the difference- differential equations of $(M/M/\infty)$: $(GD/\infty/\infty)$.

Head of the Department

Dr. T. Sheeba Helen

:

Course Instructor

Mrs. J C Mahizha

Department: MathematicsClass: II M. ScTitle of the Course : Algorithmic Graph Theory

Semester:IVCourse Code:PM2044

Course	T.	Т	Р	Credits	Inst.	Total		Marks	
Code	L	•	1	creatis	Hours	Hours	CIA	External	Total
PM2044	6	-	-	4	6	90	25	75	100

Learning Objectives:

1. To instil knowledge about algorithms.

2. To write innovative algorithms for graph theoretical problems.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	Cognitive
CO - 1	understand basic algorithms and write algorithms for simple computing.	PSO - 1	K2(U) E
CO - 2	analyze the efficiency of the algorithm.	PSO - 2	K4(An)
CO - 3	understand and analyze algorithmic techniques to study basic parameters and properties of graphs.	PSO - 2	K1(R) K4(An)
CO - 4	use effectively techniques from graph theory, to solve practical problems in networking and communication.	PSO - 3	K3(Ap)

Total contact hours: 90 (Including instruction hours, assignments and tests)

Unit	Module	Topics	Teaching	Cognitive	Pedagogy	Assessment/	
			Hours	level		Evaluation	
Ι	The Role of Algorithms in Computing and Getting Started						
	1	Role of algorithms in computing- Algorithms,	4	K1 & K2	Lecture with illustration	Concept Explanation	

						1
		Data				
		structures,				
		Technique,				
		Hard				
		problems.				
		Parallelism				
	2	Algorithms as	2	K4	Flipped	Questioning
	-	a technology-	-		Classroom	Questioning
		Efficiency			Clubbroom	
		Algorithms				
		and other				
		tashnalagias				
	2	Incontion cont	2	V)	I acture with	Evolution
	3		3	KZ	DDT	
		and its				through
		algorithm,			illustration	MCQ
		Pseudocode				
		conventions				
	4	Analyzing	3	K2 & K3	Interactive	SlipTest
		Algorithms-			Lectures	
		Worst-case and				
		average-case				
		analysis				
	5	Designing	3	K2 & K4	Gamification	Self-
		Algorithms -				assessment
		The divide-				
		and-conquer				
		approach and				
		its algorithm,				
		Analysis of				
		merge Sort				
П	Elementa	ry Graph Algorit	hms	I		
	1	Representation	3	K1 & K2	Lecture with	Evaluation
	-	of graphs –	C		illustration	through
		adjacency list			mastration	short test
		representation				Short test
		adjacency				
		matrix				
		roprosentation				
	2	Definitions	2	V2	I acture with	Class
	Z		3	κ∠	DDT	
		and Breadth			PPI illustrati	Participation
		iirst Search			illustration	
		algorithms,				
		Shortest paths				
		and related				
		Lemmas,				
		Corollary and				

		correctness of				
		Breadth first				
		Search				
		theorem				
	3	Broadth first	2	KJ & K3	Intogrativa	Ouiz (alida)
	5	troop related	5	KZ & KJ	method	Quiz (siluo)
		Lommo			method	
		Definitions				
		Definitions				
		and Depth first				
		search				
	4		2	IZO.	0	
	4	Parenthesis	3	K 2	Group	Questioning
		theorem,			Discussion	
		Corollary on				
		nesting of				
		descendant's				
		intervals,				
		White-path				
		theorem				
	5	Topological	4	K4	Flipped	Concept
		Sort, Strongly			Classroom	Explanation
		Connected				
		Components				
		and related				
		Lemmas and				
		Theorems				
III	Growing	<u>a minimum span</u>	ning tree and	l The algorithms	of Kruskal and	Prim
	1	Theorem,	3	K2	Lecture with	Assignment
		Corollary			illustration	on minimum
		related to				spanning
		Growing a				tree
		minimum				
		spanning tree				
	2	Kruskal's	3	K1 & K3	Collaborative	Evaluation
		algorithm			learning	through
						MCQ
						(Quizziz)
	3	Prim's	4	K4	Group	Self-
		algorithm, The			Discussion	assessment
		execution of				
		Prim's				
		algorithm on				
		the graph				
	4	Problems	3	К3	Gamification	Questioning
		based on				_
		minimum				

		spanning tree				
IV	The Belln	nan – Ford algori	ithm and Dij	kstra's algorithm	1	
	1	Lemma and Corollary based on	3	К3	Lecture with PPT illustration	Short Test
		correctness of the Bellman- Ford algorithm				
	2	Theorem and definition related to Single-source shortest paths in directed acyclic graphs	3	K1 & K3	Integrative method	SlipTest
	3	Dijkstra's algorithm, The execution of Dijkstra's algorithm	3	K2 & K4	Group Discussion	Questioning
	4	Corollary and analysis of Dijkstra's algorithm	4	K4	Flipped Classroom	MCQ (Google forms)
	5	Difference Constraints and Shortest Paths- Systems of Difference Constraints, Constraint graphs, Solving Systems of Difference Constraints	3	К3	Collaborative learning	Slip Test
V	Shortest I	Paths and Matrix	<u>multiplicati</u>	on, The Floyd-W	arshall algorith	m
	1	Computing the shortest-path weights bottom up algorithm	3	K1 &K3	Seminar Presentation	Short Test
	2	Algorithm for matrix multiplication, Improving the	3	K4	Seminar Presentation	Evaluation through Quiz (slido)

	running time and technique of repeated squaring				
3	The structure of a shortest path, A recursive solution to the all-pairs shortest paths problem	3	К3	Seminar Presentation	MCQ
4	Computing the shortest-path weights bottom up algorithm, Transitive closure of a directed graph algorithm	4	K2 & K3	Seminar Presentation	Questioning
5	Johnson's Algorithm for Sparse Graphs- Preserving shortest paths by reweighting and related Lemma	2	K2	Seminar Presentation	SlipTestusin g Quizziz

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Poster Presentation, Group Discussion

Assignment: Apply DFS to detect cycles in a directed graph.

Seminar Topic:Shortest Paths and Matrix multiplication, The Floyd-Warshall algorithm

Sample questions

Part – A

1.Complete: An algorithm is said to be if for every input instance it halts with the correct output.

a) exact b) correct c) incorrect d) perfect

2. What is the total running time of the BFS algorithm?

a) $\Theta(V + E)$ b) $\Theta(n \lg n)$ c) cn^2 d) cn

3. Say true or false.

Kruskal's algorithm is similar to the connected components algorithm.

4. Choose: A system of difference constraints with m constraints on n unknowns produces a

graph with n + 1 vertices and edges.

a) m b) n c) n-m d) n+m

5. What is the intermediate vertex of a simple path $p = \langle v_1, v_2, v_3, ..., v_l \rangle$

Part – B

1. Write a short note on RAM model.

2. Prove that a directed graph G is acyclic if and only if a depth-first search of G yields noback edges.

3. Write MST-KRUSKAL(G,w) algorithm.

4. Explain the system of difference constraints.

5. Write square matrix multiplication algorithm.

Part – C

1.Describe about pseudocode conventions.

2. State and prove white path theorem.

3. Explain Prim's algorithm with an illustration.

4. Define Bellman-Ford algorithm. State and prove correctness of the algorithm.

5. Prove that reweighting does not change shortest paths.

Head of the Department Dr. T. Sheeba Helen Course Instructor Dr. V. Sujin Flower

Department	: Mathematics
Class	: II M.Sc
Semester	: IV
Name of the Course	: Combinatorics

Course code : PM2045

No. of Hours per Week	Credit	Total No. of Hours	Marks
6	4	90	100

Objectives: 1. To do an advanced study of permutations and combinations.

2. Solve related real life problems.

Course Outcome

CO	Upon completion of this course the students	PSO	CL	
co	will be able to :	addressed		
CO - 1	discuss the basic concepts in permutation and combination,	PSO - 1	U	
	Recurrence Relations, Generating functions, The Principle of			
	Inclusion and Exclusion			
CO - 2	distinguish between permutation and combination, distribution	PSO - 2	An	
	of distinct and non-distinct objects			
CO - 3	correlate recurrence relation and generating function	PSO - 2	An	
CO -4	solve problems by the technique of generating functions,	PSO - 3	Ар	
	combinations, recurrence relations, the principle of inclusion			
	and exclusion			
CO - 5	interpret the principles of inclusion and exclusion, equivalence	PSO - 4	An	
	classes and functions		Е	

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι			L			
	1.	Permutations and combinations	3	K1(R)	Introductory session, Brain Storming	Simple definitions, MCQ, Recall formulae
	2.	The Rules of Sum and Product	4	K2(U)	Lecture using videos, Problem solving, PPT	Quiz through Quizziz, MCQ, Recall formulae
	3.	Distribution of distinct objects	4	K4(An)	Group Discussion	Suggest formulae, Solve problems, Home work
	4.	Distribution of non- distinct objects	4	K4(An)	Lecture using Chalk and talk, Problem solving, PPT	Class test, Problem solving questions, Home work
II				r		
	1.	Generating functions	3	K1(R), K2(U)	Blended Classroom	Simple definitions, MCQ, Recall formulae
	2.	Generating functions for combinations	3	K3(Ap), K2(U)	Lecture using Chalk and talk, Problem solving	Problem solving, Home work
	3.	Enumerators for Permutations.	2	K2(U)	Flipped Classroom	Home work
	4.	Distribution of distinct objects into nondistinct cells	3	K3(Ap)	Collaborative Learning	Slip test, Assignments
	5.	Partitions of integers	2	K3(Ap)	Lecture using Chalk and talk, Problem solving	Class Test, Problem solving
		The Ferrers graph	2	K2(U)	Peer Teaching	Brain Storming
III						
		Recurrence Relations	5	K3(Ap), K2(U)	Seminar Presentation	Evaluation through Nearpod
		Linear Recurrence Relations with	5	K2(U)	Seminar Presentation	Quiz

	Constant Coefficients				
	Solution by the Technique of Generating Functions	5	K3(Ap)	Seminar Presentation	Assignment
IV					
	The Principle of Inclusion and Exclusion	3	K2(U)		Brain Storming
	The General Formula	3	K2(U)	Lecture using Chalk and talk, Problem solving, Peer tutoring	Brain Storming, Problem solving
	Derangements	3	K2(U)	Seminar Presentation	Slip test, Quiz through Quizziz
	Permutations with Restrictions on Relative Positions	3	K2(U)	Seminar Presentation	Simple Questions
	The Rook Polynomials	3	K3(Ap), K4(An)	Flipped Classroom	Brain Storming, Problem solving
V	i	•			
	Polya's Theory of Counting	3	K2(U)		Class test
	Equivalence Classes under a Permutation Group	3	K2(U)	Blended Classroom	Problem solving, Home work
	Equivalence classes of Function	3	K3(Ap)	Lecture using Chalk and talk	Slip test, Assignments
	Weights and Inventories of Functions	3	K2(U)	Lecture with illustratiuon	Suggest formulae, Solve problems, Home work
	Polya's Fundamental Theorem	3	K4(An)	Lecture using Chalk and talk, Problem solving	Slip test, Assignments

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development

Activities (Em/ En/SD):Seminar Presentation, Group Discussion, Quiz

Assignment : The Tower of Hanoi Problem, Solution by the technique of generating functions

Seminar Topic: Linear recurrence relations with constant coefficients, Permutations with Restrictions on Relative Positions

Sample Questions:

Part-A

1. Out of a large number of pennies, nickels, dimes and quarters, in how many ways can six coins be selected?

a) 6 b) 84 c) 60 d) 3

- 2. What is the coefficient of the term x^{23} in $(1 + x^5 + x^9)^{100}$? a) 485500 b) 485000 c) 485100 d) 481000
- 3. Write the recurrence relation representing the series $1, 3, 3^2, 3^3, \dots, 3^n$
- 4. Draw a chessboard that has Rook polynomial $1+2x+x^2$
- 5. What is the number of distinct strings of length 3 made up of blue beads and yellow beads?

Part – B

6. If no three diagonals of a convex decagon meet at the same point inside the decagon into how many line segments are the diagonals divided by their intersections.

7. Prove the identity $\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \cdots \binom{n}{n}^2 = \binom{2n}{n}$

8. Solve the recurrence relation using generating function $a_n = a_{n-1} + 2(n-1)$ with the boundary condition $a_1 = 2$.

9. Let n books be distributed to n children. The books are returned and distributed to the children again later on. In how many ways can the books be distributed so that no children will get the same book twice.

10. Find the number of distinct bracelets of five beads made up of yellow, blue and white beads.

Part – C

11. (i) Find the number of n-digit binary sequences that contain an even number of 0's.?

(ii) What is the number of n digit quaternary sequence that has even number of zero's?

12. (i) Find the number of ways in which 4 persons, each rolling a single die once, can have total score of 17?

(ii) What is the ordinary enumerator for the selection of r objects out of n objects ($r \ge n$), with unlimited repetitions, but with each object included in each selection.

13. State and prove the principle of inclusion and exclusion.

14. Find the number of integers between 1 and 250 that are not divisible by any of the integers 2, 3, 5 and 7

15. State and prove Polya's theorem.

Head of the Department

Dr. T. Sheeba Helen

Course Instructor Dr.J. Befija Minnie