Teaching Plan										
Department : Physics										
Class	s : I M.Sc. Physics									
Title of the	Title of the Course : Core: I Mathematical Physics									
Semester	•									
Course Cod	e	:	PP23	1CC	1					
Course	L	Т	Р	C	Creadita	Inst.	Total		Maula	
Code	L	I	P	S	Credits	Hours	Hours	Marks		
									1	
PP231CC1	6	-	-	-			90	CIA	External	Total
					4	6				
					-	Ĵ		25	75	100

Objectives

- To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program.
- To extend their manipulative skills to apply mathematical techniques in their fields.
- To help students apply Mathematics in solving problems of Physics.

СО	Upon completion of this course, students will	PSO	Cognitive	
	be able to:	addressed	level	
CO-1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them.	PSO - 3	K1(R) & K2(U)	
CO-2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	PSO - 2	K2(U) & K3(Ap)	
CO-3	Analyze characteristics of matrices and its different types, and the process of diagonalization.	PSO - 1	K4(An)	
CO-4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology.	PSO - 2	K4(An) & K5(E)	
CO-5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems.	PSO - 1	K2(U) & K5(E)	

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	oduleTopicTeaching HoursCognitive level		0	Pedagogy	Assessment/ Evaluation			
Ι	Linear Vector Space								
	1.	Basic concepts – Definitions- examples of vector space – Linear independence.	4	K2(U)	Introductory session, Lecture using Chalk and talk , PPT.	Evaluation through short test, MCQ, True/False, Short essays.			
	2.	Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –linear operators – Dual space- ket and bra notation	4	K1(R)	Lecture using Chalk and talk , PPT,Discussion , Mind mapping,	Concept definitions, MCQ.			
	3.	orthogonal basis – change of basis – Isomorphism of vector space – projection operator	4	K3(Ap)	Lecture using Chalk and talk, PPT.	Evaluation through short test, MCQ, True/False, Explain Principle.			
	4.	Eigen values and Eigen functions –	2	K5(E)	Problem solving.	Evaluation through Problem solving			
		Direct sum and invariant subspace – orthogonal transformations and rotation.	4	K4(An)	Lecture using Chalk and talk , Problem Solving, PPT.	Evaluation through Problem solving Definition.			
II	Complex	x analysis				1			
	1.	Review of Complex Numbers -de Moivre's theorem.	3	K2(U)	Introductory session, Lecture	Evaluation through short			

					using Chalk and talk , PPT.	test, MCQ, True/False, Short essays.
	2.	Complex Variable- Differentiability - Analytic functions- Harmonic Functions.	3	K4(An)	Problem solving, Demonstration.	Statements, MCQ, Problem solving.
	3.	Functions of a Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points .	4	K5(E)	Problem solving, Mind mapping,	Evaluation through short test, MCQ, True/False, Problem solving.
	4.	Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles	4	K5(E)	Lecture using Chalk and talk , Problem Solving, PPT.	Evaluation through short test, Long derivation, Problem solving.
	5.	Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems - Parallel plates and coaxial cylinders.	4	K3(Ap)	Lecture using Chalk and talk , Problem Solving, PPT.	Evaluation through Problem solving
III	Matrice					
	1.	Types of Matrices and their properties, Rank of a Matrix .	4	K5(E)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through short test, Concept definitions, MCQ.
	2.	Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix.	3	K5(E)	Lecture , discussion , PPT, Problem Solving	Concept definitions, MCQ, Problem Solving.

	3.	Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices.	3	K4(An)	Lecture using Chalk and talk , , Derivation.	Evaluation through short test, MCQ, True/False, Problem Solving .
	4.	Characteristic equation - Eigen values and Eigen vectors.	4	K5(E)	Problem solving,	Evaluation through Problem Solving .
	5.	Cayley–Hamilton theorem – Diagonalization.	4	K5(E)	Group Problem Solving	Evaluation through Problem Solving
IV	Fourier	Transforms and Laplace	Transforms			
	1.	Definitions -Fourier transform and its inverse.	2	K1(R)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through short test, MCQ, True/False, Problem Solving .
	2.	Transform of Gaussian function and Dirac delta function - Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem.	3	K5(E)	Lecture , discussion , PPT, Problem Solving	Evaluation through Problem Solving.
	3.	Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string.	4	K3(Ap)	Lecture using Chalk and talk , discussion, Problem Solving.	Evaluation through Definition, MCQ, Problem Solving
	4.	Laplace transform and its inverse - Transforms of	2	K5(E)	Lecture using Chalk and talk , discussion, Derivation.	Long Derivations, MCQ, Problem

		derivatives and integrals.				Solving
	5.	Differentiation and integration of transforms - Dirac delta functions .	3	K5(E)	Lecture , discussion , PPT, Derivation.	Long Derivations, MCQ, Problem Solving
	6.	Application - Laplace equation: Potential problem in a semi - infinite strip.	4	K3(Ap)	Lecture , discussion , PPT, Derivation.	Long Derivations, MCQ, Problem Solving
V	Differen	ntial Equations		1		
	1.	Second order differential equation- Sturm-Liouville's theory.	3	K2(U)	Lecture discussion, PPT	Evaluation through Definition, MCQ, Problem Solving.
	2.	Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations	4	K3(Ap)	Lecture using Chalk and talk , d Problem Solving , Derivation.	Evaluation through Definition, MCQ, Problem Solving
	3.	Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties	4	K5(E)	Lecture discussion, PPT, Problem Solving	Longer essay, MCQ, Problem Solving
	4.	Dirac delta function- One dimensional Green's function and Reciprocity theorem	3	K5(E)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through Definition, MCQ, Problem Solving .
	5.	Sturm-Liouville's type equation in one dimension & their Green's function.	4	K5(E)	Group discussion, PPT, Problem Solving	Evaluation through Definition, MCQ, Problem Solving.

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability Activities (Employability): Hands on Training on Problem solving using software. Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : State and derive the Generating function of the Hermite polynomials.

Seminar Topic: Problem solving in FT and LT

Sample questions (minimum one question from each unit)

Part A

- 1. State the difference between ket and bra notation (K2)
- 2. How to find the Singular points at Z=0? (K3)
- 3. Check the hermitian condition of 2x3 matrix. (K4)
- 4. Apply the Transform of Gaussian function. (K5)
- 5. State one dimensional greens theorem. (K2)

Part B

- 6. State and derive Gram-Schmidt orthogonalization procedure. (K2)
- 7. State and prove Cauchy's integral theorem. (K2)
- 8. Derive Cayley–Hamilton equation and the application in Diagonalization. (K4)
- 9. Derive the equation for Flow of heat in an infinite and in a semi infinite medium. (K3)
- 10. Find out the solution for Legendre polynomials. (K5)

Part C

- 11. Define vector space and explain the meaning of complete orthonormal set of basis vectors.(K1)
- 12. Derive Cauchy Integral Formula.(K2)
- 13. Analyze the characteristics of the given matrices and find out Eigen value and Eigen function. (K4)
- 14. Apply Fourier transform and found out the relation for heat flow in an infinite and a semi infinite medium.(K3)
- 15. Solve Hermite differential equation.(K6)

Dr.C.Nirmala Louis Head of the Department Dr.M.Abila Jeba Queen & Dr.R.Krishna Priya Course Instructor

Department : Physics Class : I M.Sc. Physics

Title of the Course: Core Course II: CLASSICAL MECHANICS AND RELATIVITY

Semester : I Course Code: PP231CC2

Γ	Course	т	т	Р	S	Credits	Inst. Hours	Total Hours		Marks	
	Code	L	I	Г	3	Creans	mst. nours		CIA	External	Total
	PP231CC2	5	-	-	-	4	5	75	25	75	100

Objectives

1. To understand fundamentals of classical mechanics.

2. To understand Lagrangian and Hamiltonian formulation of mechanics and apply it to solve equation of motion.

Course outcomes

	Course Outcomes					
Upon	Upon completion of this course the students will be able to:					
CO1	Understand the fundamentals of classical mechanics. K2					
CO2	Apply the principles of Lagrangian mechanics to solve the equations of motion of physical systems.	K3				
CO3	Apply the principles of Hamiltonian mechanics to solve the equations of motion of physical systems.	К3				
CO4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	K2, K4				
CO5	Understand and apply the principles of relativistic kinematics to the mechanical systems.	K2, K3				

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation	
Ι	Princij	oles of Classical Mecha	nics				
	1.	Mechanics of a single particle – mechanics of a system of particles	3	K2(U)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions Descriptive	
	2.	Conservation laws for a system of particles – constraints	2	K2 (U)	Lecture, Group Discussion and Problem Solving	answers MCQ, True/False, Concept explanations,	
	3.	Holonomic & non- holonomic constraints	2	K2 (U)	Lecture, Group Discussion and Problem Solving	Formative assessment I	
	4.	Generalized coordinates – configuration space	2	K2 (U)	Group Discussion and lecture		
	5.	Transformation equations	2	K2 (U)	Lecture using Chalk and talk		
	6.	Principle of virtual work	1	K2 (A)	Lecture using Chalk and talk		
II		Lagrangian Formulation				Evaluation through: Online	
	1.	D'Alembert's principle –	3	K2 (U)	Lecture, Group Discussion and Problem Solving	quiz, short questions Descriptive answers	
	2.	Lagrangian equations of motion for conservative systems	4	K3 (Ap)	Lecture, Group Discussion and Problem Solving	MCQ, True/False, Concept explanations,	
	3.	Applications:(i)simplependulum(ii)Atwood'sMachine(iii)projectile motion	5	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Formative assessment I	
III	1.	Hamiltonian Formulation: Phase space – Cyclic coordinates	2	K2 (U)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions Descriptive	
	2.	Conjugate	2	K3 (Ap)	Lecture, Group	answers	

	3.	momentum-HamiltonianfunctionHamilton'scanonicalequationsofmotion-applications	4	K3 (Ap)	Discussion and Problem Solving Lecture, Group Discussion and Problem Solving	MCQ, True/False, Concept explanations, Formative assessment I
	4.	Simple pendulum - one dimensional simple harmonic oscillator- motion of particle in a central force field	4	K3 (Ap)	Lecture, Group Discussion and Problem Solving	
IV	1.	Small Oscillations: Formulation of the problem–	4	K2 (U)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions
	2.	Transformation to normal coordinates	4	K4 (A)	Lecture, Group Discussion and Problem Solving	Descriptive answers MCQ, True/False,
	3.	Frequencies of normal modes – linear triatomic molecule.	4	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Concept explanations, Formative assessment II
V	1.	Relativity : Inertial and non- inertial frames	2	K2 (U)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions
	2.	Lorentz transformation equations	2	K4 (A)	Lecture, Group Discussion and Problem Solving	Descriptive answers MCQ, True/False,
	3.	Length contraction and time dilation – relativistic addition of velocities –	2	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Concept explanations, Formative assessment II
	4.	Einstein's mass- energy relation – Minkowski's space	3	K3 (Ap)	Lecture, Group Discussion and Problem Solving	
	5.	four vectors – position, velocity, momentum, acceleration and force in for vector	3	K3 (Ap)	Lecture using Chalk and talk ,Introductory session	

	notation and their transformations.		
		K3 (Ap)	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability

Activities (Em/ En/SD): Project

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity):-

Activities related to Cross Cutting Issues : -

Assignment : Normal Coordinates- Formulation : Online Assignment

Seminar Topic: Frames of Reference

Sample questions (minimum one question from each unit)

Part A

- 1. The total linear momentum of the system is equal to the product of total mass of the system and the velocity of _____.(K2-U, CO1)
- 2. An expression for principle of virtual work is _____. (K3- Ap, CO2)
- 3. The equation of motion of a simple pendulum is _____.(K3 Ap, CO2)
- 4. The Hamiltonian of a one dimensional harmonic oscillator is ------(**K4- A**, **CO3**)
- 5. The frequency associated with the period of motion is -----(K2- U, CO5)

Part B

- 1. Interpret work- kinetic energy theorem. (K2- U, CO1)
- Solve the equation of motion of a simple pendulum by using Lagrangian method and hence deduce the formula for its time period for small amplitude oscillations.(K3 Ap, CO2)
- 3. Explain the physical significance of Hamiltonian. (K4- A, CO3)
- 4. Deduce normal coordinates and normal frequencies of vibration. (K3- Ap, CO2)
- 5. Explain Lorentz transformation. (K2-U, CO-2)

Part C

- 1. Classify constraints with suitable examples.(K2 U, CO1)
- Illustrate the Lagrangian equation of motion using D'Alemberts principle. (K3 – Ap, CO2)
- 3. Formulate the Hamilton's Canonical equation of motion.(K4- A, CO3)
- 4. Discuss the free vibrations of linear triatomic molecule. (K3 Ap, CO2)
- 5. Explain Minkowski's space. (K4 A, CO4)

Head of the Department

Course Instructor

Dr. C. Nirmala Louis

Dr. M. Priya Dharshini & Dr. A. Lesly Fathima

Department	:	Physics
Class	:	I M.Sc Physics
Title of the Course	:	Core-III : Linear and Digital ICs and Applications
Semester	:	Ι
Course Code	:	PP231CC3

Correct Cords	т	т	Р	Course different	Ter et II er er er	Total		Marks	
Course Code	L	I	P	Credits	Inst. Hours	Hours	CIA	External	Total
PP231CC3	4	-	-	3	4	60	25	75	100

Objectives

- To introduce the basic building blocks of linear integrated circuits.
- To introduce the concepts of waveform generation and introduce one special function ICs.

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	Remember the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems	PSO - 1	K1 & K2
CO - 2	Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits.	PSO - 2	K2 & K3
CO - 3	Apply knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.	PSO - 3	K2 & K5
CO - 4	Analyze about various techniques to develop A/D and D/A converters.	PSO - 3	K4 & K5
CO - 5	Evaluate and to create the knowledge about the CMOS logic, combinational and sequential circuits	PSO - 4	K3 & K6

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	1.	Introduction; Classification of IC's	3	K1(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short
	2.	basic information of Op-Amp 741 and its features,	2	K1(R)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	test Class Test Multiple choice
	3.	the ideal Operational amplifier, Op-Amp internal circuit	4	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	questions Quiz Formative assessment
	4.	Op-Amp; Characteristics.	3	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	Short Summary or Overview
Π	5.	Solution to simultaneous equations and differential equations	3	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	6.	Instrumentation amplifiers, V to I and I to V converters.	3	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	questions Quiz Formative assessment
	7.	Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider	3	K3(Ap)	Lecture using Chalk and talk ,Introductory session, Group Discussion,	Short Summary or Overview

					Mind mapping,	
	8	Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators	3	K3(Ap)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
III	9	Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters	3	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	10	band pass, band reject and all pass filters.	3	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	questions Quiz Formative assessment
	11	Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger	3	K5(E)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Short Summary or Overview
	12	PLL - introduction, basic principle, phase detector/comparato r, voltage controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL	3	K5(E)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
IV	13	Introduction, Series Op-Amp regulator, IC Voltage Regulators	3	K4(An)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	14	IC 723 general	3	K4(An)	Peer tutoring, Lecture using	

	15	purpose regulators, Switching Regulator. Introduction, basic DAC techniques - weighted resistor DAC, R-2R ladder DAC, inverted R- 2R DAC, A to D converters	3	K5(E)	videos, Problem solving, Demonstration, PPT, Review Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	questions Quiz Formative assessment Short Summary or Overview
	16	parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.	3	K5(E)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
V	17	Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154)	3	K3(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	18	BCD to 7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154)	3	K3(Ap)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	assessment Short Summary
	19	Sequential circuits using TTL 74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers	3	K6(C)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	or Overview
	20	Universal Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).	3	K6(C)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : **Entrepreneurship**

Activities (Em/ En/SD): Display on IC collection

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability

Activities related to Cross Cutting Issues : -

Assignment : Four-bit parallel adder (IC 7483)

Seminar Topic: Multiplier and Divider

Sample questions (minimum one question from each unit)

Part A

1. If the output voltage is feedback to the non-inverting input terminal as part of the input, then the feedback is ______ (K1-R, CO-1)

2. Which one of the following is an electronic circuit that generates square waves? (**K2-U**, **CO-2**)

a) Amplifier b) Oscillator c) Multivibrator d) Conductor

3. A ----- clipper removes the positive half-cycles of the input voltage. (K2-U, CO-3)

4. The practical use of binary-weighted digital-to-analog converters is limited to (K4- An, CO 5)

- a) 4-bit D/A converters b)2-bit D/A converters
- c) 8-bit D/A converters d) Op-amp comparators

5. A circuit with many inputs but only one output is _____(K3-Ap, CO-5)

a) Multiplexer b) Demultiplexer c) Encoder d)Decoder

Part B

- 1. Compare inverting and non-inverting operational amplifier.(K2-U, CO-1)
- 2. Determine the output waveform of a bistable multivibrator. (K2-U, CO-2).

3. Write on quantization in signal conversion (K5- E, CO- 3)

- 4. Discuss in detail about the Schmitt trigger. (K4-An, CO-4)
- 5. What is a flip-flop. compare the truth table of RS flip-flop implementing using NOR and

NAND gates. (K3-Ap, CO-5)

Part C

1. Differentiate how the op-amp acts as an integrator and differentiator (K2-U, CO-1)

2. Determine the output waveform of a astable multivibrator. (K3-Ap, CO-2)

3. Explain the working of active filters as low, high and band pass first and second order filters. (K5- E, CO- 3)

4. Explain in detail with circuit diagram, the construction and working of an op-amp as the Triangular wave generator. (K5- E, CO -4)

5. Describe the working of AM receiver using a Phase-Locked Loop.(K6-C,CO-5)

Head of the Department

Course Instructor

Department	: Physics
Class	: I M.Sc. Physics
Title of the Course	: Elective : Energy Physics
Semester	: I
Course Code	: PP231DE1

ſ		т	т	n		T 4 TT	Total		Marks	
	Course Code	L	I	r	Creatts	Inst. Hours	Hours	CIA	External	Total
ĺ	PP231DE1	4	-	-	3	5	75	25	75	100

Objectives

- To learn about various renewable energy sources, the techniques useful for the conversion of biomass into useful energy
- To know the ways of effectively utilizing the oceanic energy, utilization of solar energy.
- To study the method of harnessing wind energy and its advantages.

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	To identify various forms of renewable and non-renewable energy sources	PSO-1	U
CO 2	Understand the principle of utilizing the oceanic energy and apply it for practical applications.	PSO-2	U
CO 3	Discuss the working of a windmill and analyze the advantages of wind energy.	PSO-3	E
CO 4	Distinguish aerobic digestion process from anaerobic digestion.	PSO-6	С
CO 5	Understand the components of solar radiation, their measurement and apply them to utilize solar energy.	PSO-1	U

Total Contact hours: 75 (Including lectures, assignments and tests)

Uni t	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	INTROD	UCTION TO ENERGY	SOURCES			
	1	Conventional and non-conventional energy sources and their availability	4	K1(R)	PPT, Illustration	Evaluation through: Online quiz, Problem solving short
	2	Prospects of Renewable energy sources– Energy from other sources	4	K3(Ap)	Group discussion	questions Descriptive answers MCQ,
	3	Chemical energy– Nuclear energy	3	K5(E)	PPT, Illustration,	True/False, Short essays,
	4	Energy storage and Distribution	4	K6(C)	Group discussion	Concept explanations, Short summary or overview
						Formative assessment I
II		FROM THE OCEANS				
	1	Energy utilization– Energy from tides	4	K2(U)	PPT, Derivation discussion	Evaluation through: Online quiz,
	2	Basic principle of tidal power	4	K3(A)	Group discussion, PPT	Problem solving short questions Descriptive
	3	Utilization of tidal energy	3	K4(An)	Illustration,	answers Formative
	4	Principle of ocean thermal energy conversion systems.	4	K5(E)	Group discussion, PPT, Illustration	assessment I
III	WIND E	NERGY SOURCES				
	1	Basic principles of wind energy conversion	4	K2(U)	Discussion	Evaluation through: Online quiz, Problem

	2 3	Power in the wind– forces in the Blades Wind energy conversion–	4	K3(Ap) K6(C)	Illustration, PPT Group discussion,	solving short questions Descriptive answers MCQ, True/False, Short essays,
		Advantages and disadvantages of wind energy			PPT	Concept explanations, Short
	4	Conversion systems (WECS) - Energy storage–Applications of wind energy.	4	K4(An)	PPT, Illustration	summary or overview Formative assessment I/II
IV	ENERGY	FROM BIOMASS				
	1	Biomass conversion Technologies– wet and dry process–	4	K1(R)	Discussion	Evaluation through: Online quiz, Problem solving short questions
	2	Photosynthesis - Biogas Generation: Introduction–basic process:	4	K3(Ap)	Group discussion, PPT	Descriptive answers MCQ, True/False,
	3	Aerobic and anaerobic digestion – Advantages of anaerobic digestion–	3	K5(E)	Group Discussion	Short essays, Concept explanations, Short
	4	Factors affecting bio digestion and generation of gas- bio gas from waste fuel– properties of biogas-utilization of biogas.	4	K6(C)	Group Discussion	summary or overview Formative assessment II
V	SOLAR E	ENERGY SOURCES			1	1
	1	Solar radiation and its measurements	4	K2(U)	PPT	Evaluation through: Online quiz, Problem
	2	solar cells: Solar cells for direct conversion of solar energy to electric powers	4	K1(R)	Group discussion, PPT	solving short questions Descriptive answers MCQ,

3	solar cell parameter-	3	K3(Ap)	Group	True/False,
	solar cell electrical			Discussion	Short essays,
	characteristics-				Concept
	Efficiency-solar				explanations,
	water Heater				Short
4	Solar distillation-	4	K5(E)	Group	summary or
	solar cooking-solar			discussion,	overview
	greenhouse – Solar			PPT	
	pond and its				Formative
	applications				assessment II

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Project, Exhibition, Field visit

Course Focussing onCross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability**

Activities related to Cross Cutting Issues: - Industrial Visit

Assignment: (Mention Topic and Type): Current global issues – Submission through Google Classroom

Seminar Topic: (if applicable): Sustainable Energy for Future

Sample questions (minimum one question from each unit)

Part A (1 mark)

1. What is the correct sequence of energy change from one form to another in a thermal power station when coal is used for generating electricity? (**K2-U, CO 1**)

a) Heat energy > Chemical energy >Electrical energy

- b) Mechanical energy >Electrical energy > Heat energy
- c) Heat energy >Mechanical energy >Electrical energy
- d) Chemical energy >Heat energy >Mechanical energy
- Energy Conservation Day is celebrated on _____(K4- An, CO 5)

 a)January 14th
 b)March 14th
 c)August 14th
 d)December 14th

a) January 14 D) March 14 C) August 14 d) December 14th

- 3. Choose the right answer: Wind is the form of _____ energy. (K5- E, CO3)a)Renewable energy b) Non-renewable energy
- 4. To convert sound energy into electrical energy, which device is used? (K6- C, CO 4)a)Micro oven b)Refrigerator c) Microphones d) Compact Fluorescent Lamps (CFLs)

5. The SI unit of energy is _____(K2- U, CO 1)

a) Volts b) Watts c) Joule d) Radians

Part B (3 marks)

6. Explain the chemical energy. (K5- E, CO 3)

7. Discuss the basic principle of tidal power (K2- U, CO 1)

8. List the advantages and disadvantages of wind energy conversion systems (K2-U, CO 1)

9. Distinguish aerobic and anaerobic digestion. (K6- C, CO 4)

10. Write a note on characteristics of solar cell (K4- An, CO 5)

Part C (7 marks)

11. Describe the prospects of Renewable energy sources. (K6- C, CO 4)

12. Explain the principle of ocean thermal energy and its conversion systems. (K5- E, CO 3)

13. Explain the basic principles and working of wind energy conversion (K6- C, CO 4)

14. Discuss the factors affecting the biodigestion and generation of gas (K4- An, CO 5)

15.Describe the working of solar water Heater (K5- E, CO 3)

Ms .V. Shally & Sr. Sebastianmal

Head of the Department

Course Instructor

Department	: Physics
Class	: I M.Sc Physics
Title of the Course	: Elective II A: Advanced Optics
Semester	: I
Course Code	: PP231GE1

	т	т	n	C PA	Inst. Hours	Total		Marks		
Course Code	L	I	P	Credits		Hours	CIA	External	Total	
PP231GE1	5	-	-	3	5	75	25	75	100	

Objectives

- 1. To impart an extensive understanding of the optical phenomenon of various optical strategies like laser, fibre optics, non -linear optics and electro magneto optics.
- 2. To study the working of different types of Lasers and optical fibers

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	Discuss the transverse character of light waves and different polarization phenomenon	PSO-1	K1
CO 2	Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices	PSO-3	K2
CO 3	Demonstrate the basic configuration of a fiber optic – communication system and advantages	PSO-4	K3, K4
CO 4	Identify the properties of nonlinear interactions of light and matter	PSO-3	K4
CO 5	Interpret the group of experiments which depend for their action on an applied magnetics and electric field	PSO-2	K5

			Teachin	Cognitive		Assessment/Evaluation
Unit	Module	Торіс	g Hours	level	Pedagogy	
Ι	POLAR	IZATION AND D		EFRACTION		
	1	Classification of polarization – Transverse character of light waves – Polarizer and analyzer – Malu's law Production of	3	K2(U) K4(An)	Lecture, Derivation and Group discussion, PPT Concept	Evaluation through: Online quiz, short questions Descriptive answers MCQ, True/False, Concept explanations, Short summary or overview
	2	polarized light – Wire grid polarizer and the polaroid – Polarization by reflection	-	K4(All)	Explanatio n, group discussion	Formative assessment I
	3	Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence	4	K3(Ap)	Derivation, Theoretical formulation , Concept Explanatio n	
	4	Interference of polarized light: Quarter and half wave plates – Analysis of polarized light – Optical activity	4	K4(An)	Derivation, Theoretical formulation , Concept Explanatio n	
II	LASER					
	1	Basic principles – Spontaneous and stimulated		K2(U)	Theoretical formulation, Concept	

Total Contact hours: 60 (Including lectures, assignments and tests)

	2	emissions – Components of the laser – Resonator and lasing action Types of lasers and its applications Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers	3	K2(U) K2(U)	Explanation, group discussion Concept Explanation, group discussion Concept Explanation, group discussion, PPT	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	4	He-Ne laser – CO ₂ laser – Chemical lasers – HCl laser – Semiconductor laser	4	K2(U)	Concept Explanation, group discussion, PPT	
III	FIBER					
	1	Introduction – Total internal reflection – The optical fiber – Glass fibers – The coherent bundle	3	K2(U)	Derivation and Group discussion, Problem Solving	Evaluation through: Online quiz, Problem solving short questions Descriptive answers MCQ, True/False,
	2	The numerical aperture – Attenuation in optical fibers – Single and multi-mode fibers	4	K3(Ap)	Derivation, Theoretical formulation Problem Solving	Concept explanations, Short summary or overview Formative assessment I/II
	3	Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers	4	K4(An)	Concept Explanatio n, group discussion, PPT	
	4	Parabolic-index fibers – Fiber- optic sensors: precision displacement sensor –	4	K4(An)	PPT, Theoretical formulation , Concept Explanatio n	

		Precision				
		vibration sensor				
IV	NON-L	INEAR OPTICS		1	1	1
	1	Basic principles – Harmonic generation	3	K2(U)	Derivation discussion, Concept Explanatio n	Evaluation through: Online quiz, short questions Descriptive answers
	2	Second harmonic generation – Phase matching	4	K4(An)	Derivation discussion, Concept Explanatio n	MCQ, True/False, Concept explanations, Short summary or overview
	3	Third harmonic generation – Optical mixing	4	K4(An)	Derivation discussion, Concept Explanatio n	Formative assessment II
	4	Parametric generation of light – Self- focusing of light	4	K4(An)	Derivation discussion, Concept Explanatio n	
V	MAGNI	ETO OPTICS AND	ELECTI	RO OPTICS		
	1	Magneto-optical effects – Zeeman effect – Inverse Zeeman effect – Faraday effect	4	K5(E)	Derivation discussion, Concept Explanatio n	Evaluation through: Online quiz, short questions Descriptive answers
	2	Voigt effect – Cotton-mouton effect – Kerr magneto-optic effect	4	K4(An)	PPT, Theoretical formulation , Concept Explanatio n	MCQ, True/False, Concept explanations, Short summary or overview Formative
	3	Electro-optical effects – Stark effect – Inverse stark effect – Electric double refraction	4	K5(E)	PPT, Theoretical formulation , Concept Explanatio n	assessment II
	4	Kerr electro- optic effect –	3	K4(An)	Theoretical formulation	

Pockels electro- optic effect		, Concept Explanatio	
		n	

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Project

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: (Mention Topic and Type): Comparing the polarisation by reflection and by double refraction- Through google classrooms

Seminar Topic: (if applicable): **Problem Solving in Fibre Optics- descriptions through Google Classroom**

Sample questions (minimum one question from each unit)

Part A (1 mark)

1.	Which of the following light waves fluctuate in one specific plane?									
	(K2- U, CO 1)									
	a) polarized	b) unpolarized	c) both	d) none of these						

2. What will be the wavelength of the Ruby laser source? (K1- R, CO 2)

a) 6943 Å	b) 6493 Å
c) 6333 Å	d) 6867 Å

3. Condition for total internal reflection is (**K2- U, CO 3**)

(a) μ₁ > μ₂
(b) μ₁ < μ₂
(c) μ₁ = μ₂
(d) none of these
4. When the light was made to traverse the quartz crystal, Franken and his Co workers observed that the frequency of the UV light is ______the frequency of the ruby laser light (K2- U, CO 4)

a) twice	b) thrice
c) four times	d) halves

5. The stark effect is the splitting of spectral lines due to the action of an external electric field on the radiating substance. Say True or False (**K2-U, CO 5**)

Part B (3 marks)

- 1. How did a Nicol prism can act as a polarizer? (K2- U, CO 1)
- 2. Compare Spontaneous and stimulated emission process. (K4- An, CO 2)
- 3. Differentiate single mode and multimode fibre .(K4- An, CO 3)
- 4. Explain about parametric generation of light (K4- An, CO 4)

5. Calculate the wavelength separation between the unmodified line of wavelength 6000Å and the modified lines when a magnetic induction of 1 Wb/m^2 is applied in normal Zeeman effect.

(K3- Ap, CO 5)

Part C (7 marks)

1. What is plane polarised light? Explain the phenomenon of double refraction. Describe the construction and working of a nicol prism. Discuss how you obtain a plane polarized beam with it (**K2-U**, **CO 1**)

2. Discuss the principle, construction and working of the Carbon di oxide Laser.

(K2- U, CO 2)

3. Discuss about the ray dispersion in multimode optical fibres. (K4- An, CO 3)

4.Explain the generation of second and third optical harmonic in crystals. (K4- An, CO 4)

5.Discuss the quantum mechanical explanation of the inverse Zeeman effect. (K5- E, CO 5)

Dr. R. Krishna Priya, Ms. S. Virgin Jeba, Dr. Jenepha Mary

Course Instructor

Dr. C. Nirmala Louis

Head of the Department

Department :PhysicsClass :II M.Sc PhysicsTitle of the Course :Core VII: ElectronicsSemester :IIICourse Code :: PP2031

Comme Code	т	т	р	Credita	s Inst. Hours	Total		Marks	
Course Code	L	I	r	Creatts		Hours	CIA	External	Total
PP2031	6	-	-	5	6	90	40	60	100

Objectives

- To impart in depth knowledge about Semiconductors, diodes, Transistors, Operational Amplifiers, Memories and converters etc
- To provide knowledge in the basic structure and working concepts of electronic devices.
- To acquire application skills involving digital integrated circuit.

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	Understand the basic operation, and features related to diodes, transistor, op-amps, converter and interpret their applications	PSO-1	U
CO 2	Explain about the internal circuitry and logic behind semiconductor memory devices.	PSO-2	U
CO 3	Assess the working of diodes, transistor, op-amps and converters.	PSO-3	Ε
CO 4	Design various filter circuits.	PSO-6	С
CO 5	Interpret the Internal Architecture of memory devices	PSO-4	An

Unit	Module	Торіс	Teachin	Cognitive	Pedagogy	Assessment/Evaluation
Omt	With	Topic	g Hours	level	Teuagogy	
Ι	Semic	onductorDiode	S			
	1	Introduction to	4	K1(R)	PPT,	
		Semiconductor			Illustration	Evaluation through:
		- Intrinsic			and	Online quiz,
		Semiconductor			theoretical	Problem solving
		- Extrinsic			derivation,	short questions
		Semiconductor			Circuit	Descriptive answers
					designing	MCQ, True/False,
	2	P-type- N-Type	5	K3(Ap)	Derivation	Short essays,
		- PN Junction			and group	Concept
		diode – Crystal			discussion,	explanations, Short
		Diode			Circuit	summary or
					designing	overview
	3	Zener diode-	5	K5(E)	PPT,	
	_	LED –			Illustration,	Formative
		Varactor Diode			Theoretical	assessment I
		-Tunnel diode			formulation	
					Circuit	
					designing	
	4	Photo diode -	4	K6(C)	Derivation	
	-	schottky diode	-	(-)	and group	
		– Impatt diode-			discussion	
		Characteristics			Circuit	
		and			designing	
		Applications.			<i></i> 8	
II	Trans	istor Biasing an	d opto]	Electronic]	Devices	
	1	Thevenin's and	5		PPT,	
		Norton's		K2(U)	Derivation	Evaluation
		theorems			discussion	through: Online
					Circuit	quiz,
					designing	Problem solving
	2	Transistor	4	K3(A)	Derivation	short questions
		action- PNP-			and group	Descriptive
		NPN transistors			discussion	answers
		– Transistor			problem	Formative
		biasing and			solving	assessment I
		stabilization			Circuit	
					designing	
	3	Need for	5	K4(An)	Illustration,	
		biasing- DC			Theoretical	
		load line-			formulation	

Total Contact hours: 90 (Including lectures, assignments and tests)

		operating point-			Circuit	
		Bias stability-			designing	
	4		4	K5(E)	Derivation	
	4	Two port Network -	4	KJ(E)		
					and group discussion	
		Hybrid model –				
		h parameters —			problem	
		JFET – UJT-			solving	
		SCR			Circuit	
					designing	
III	0	4 1 . A 1. 6	· A 1*			
111		tional Amplifier				
	1	Operational	5	K2(U)		Evaluation
		Amplifier-			discussion	through: Online
		CMRR-Slew			Circuit	quiz,
		rate -			designing	Problem solving
		Instrumentation				short questions
		amplifier – V to				Descriptive
		I and I to V				answers MCQ,
		converter – Op-				True/False, Short
		amp stages				essays, Concept
	2	Equivalent	5	K3(Ap)	Illustration,	explanations, Short
		circuits - Sample			Theoretical	summary or
		and Hold			formulation	overview
		circuits.			Circuit	
		Applications of			designing	Formative
		Op-Amp:				assessment I/II
		Inverting, Non-				
		inverting				
		Amplifiers-				
		circuits				
	3	Adder-	4	K6(C)	Derivation	
		Subtractor-			and group	
		Differentiator-			discussion,	
		Integrator-			PPT	
		Electronic			Circuit	
		analog			designing	
		Computation				
		solving				
		simultaneous				
		and differential				
		equation –.				
		Schmitt Trigger				
		– Triangular				
		wave generator				
		– Sine wave				
		generator				
	4	Active filters:	4	K4(An)	PPT,	
		Low, High and	-	(Illustration,	
		Band pass first			Theoretical	
		and second			formulation	
	1				1011101011	

		andan			Circuit	
		order Dutterrugeth				
		Butterworth filters – wide			designing	
		and narrow band				
TX 7	G •	reject filters.	•			
IV		onductor Memo				
	1	Classification of	4	K1(R)	Derivation	Evaluation
		memories and			discussion	through: Online
		sequential			Circuit	quiz,
		memory – Static			designing	Problem solving
		Shift Register				short questions
		and Dynamic				Descriptive
	2	Shift Register	_		Devicestien	answers
	2	ROM, PROM and EPROM	5	K3(Ap)	Derivation	MCQ, True/False,
					and group	Short essays,
		principle and			discussion, PPT	Concept
		operation Read & Write			Circuit	explanations, Short
						summary or overview
		memory - Static RAM, dynamic			designing	Overview
		RAM, dynamic RAM, Content				Formative
		Addressable				assessment II
		Memory				dssessment n
	3	Content	5	K5(E)	Derivation	
	5	Addressable	J	NS(L)	and group	
		Memory -			discussion	
		principle, block			Circuit	
		diagram and			designing	
		operation.				
		Programmable				
		Logic Array				
		(PLA) -				
		Operation,				
		Internal				
		Architecture				
	4	Charge Couple	4	K6(C)	Derivation	
		Device (CCD) -			and group	
		Principle,			discussion	
		Construction,			Circuit	
		Working and			designing	
		Data transfer				
		mechanism.				
V	A/D ai	nd D/A Convert	er	T		
	1	Sampling	4	K2(U)	Discussion	Evaluation
		theorem-Time			PPT	through: Online
		division			Circuit	quiz,
		multiplexing –			designing	Problem solving
		Quantization –				short questions

2	DAC-Weighted	5	K1(R)	Derivation	Descriptive
	resistor method			and group	answers
	– Binary Ladder			discussion,	MCQ, True/False,
	network - ADC			PPT	Short essays,
	- successive			Circuit	Concept
	approximation,			designing	explanations, Short
3		5	K3(Ap)	Derivation	summary or
				and group	overview
	ADC Dual			discussion	
	slope and			Circuit	Formative
	Counter method			designing	assessment II
4	Voltage to	4	K5(E)	Derivation	
	Frequency			and group	
	conversion and			discussion,	
	Voltage to Time			PPT	
	conversion .			Circuit	
				designing	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability

Activities (Em/ En/SD): Project

Course Focussing onCross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : (Mention Topic and Type): Voltage to Time conversion – Circuit descriptions through Google Classroom

Seminar Topic: (if applicable): Exercise Problem solving and circuit designing

Sample questions (minimum one question from each unit)

Part A (1 mark)

- 1. A semiconductor has _____ temperature coefficient of resistance. (K2- U, CO 1)
 - a) positive b) negative
 - c) zero d) infinite
- The most commonly used transistor arrangement is _____arrangement. (K4- An, CO 5)
 - a) common emitter b) common base
 - c) common collector d) none of these
- 3. The OP-amp can amplify _____.(K5- E, CO 3)
 a) a.c. signals only
 b) d.c. signals only
 c) both a a and d a signals
 d) poither d a port a a signals
 - c) both a.c. and d.c. signals d) neither d.c. nor a.c. signals
- 4. Current cannot flow to ground through _____.(K5- E, CO 3)
 - a) a mechanical ground b) an a.c. ground
 - c)a virtual ground d) an ordinary ground

5. The number of resisters required for a five bit resister divider D/A Converter are 5. Say True or False (**K2-U, CO 1**)

Part B (3 marks)

- 6. What do you understand by intrinsic and extrinsic semiconductors? (K5-E, CO 3)
- 7. Write a note on DC load line (K2- U, CO 1)
- 8. Explain with diagram the working of an op-amp as an Integrator (K2-U, CO 1)
- 9. Explain the working of anAdder and Subtractorusing op-amp. (K6- C, CO 4)
- 10. Write a note on voltage to time conversion (**K4- An, CO 5**)

Part C(7 marks)

- 11. With proper diagram describe the principle, construction and working of Tunnel diode (K6- C, CO 4)
- 12. State and prove the Thevenin's theorem. (K5- E, CO 3)
- 13. With suitable circuit explain the construction and working of SCR (K6- C, CO 4)

14.Explain the working of active filters as low, high and band pass first and second order filters. (K4- An, CO 5)

15. Explain the construction and working of dual slope A/D Converter (K5- E, CO 3)

Ms.C.Nirmala Louis & Ms.Jenepha Mary

Head of the Department

Course Instructor

Department	: Physics
Class	: II M.Sc Physics
Title of the Course	: Core VI: Condensed Matter Physics
Semester	: III
Course Code	: PP2032

Course Code	т		Р	Credits	Inst. Hours Total Hours	Marks			
Course Code	L	I				Hours	CIA	External	Total
PP2032	6	-	-	4	6	90	40	60	100

Objectives

To develop analytical thinking to understand the phenomenon that decide various properties of solids thereby equip students to pursue higher learning confidently.

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	Understand the theory of dielectrics and analyze the dielectric properties of materials.	PSO - 1	An
CO - 2	Explain various types of magnetic phenomenon and their properties and applications.	PSO - 4	E
CO - 3	Elaborate the properties and applications of superconductors.	PSO - 4	С
CO - 4	Apply the obtained concepts to challenges in condensed matter physics	PSO - 6	Ар

Total Contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Торіс	TopicTeaching HoursCognitive level		Pedagogy	Assessment/Evaluation
Ι	Theor	y of Dielectrics:				
	1	Dipole moment - Polarization - The electric field of a dipole - Local electric field at an atom - Clausius - Mosottiequation - Dielectric constants and its measurements	4	K1(R)	Lecture Discussion with PPT illustration	Evaluation through: Online quiz, Class test, Formative assessment I
	2	Polarizability - The Classical theory of electronic polarizability - Ionic polarizabilities - Orientational polarizabilities - The polarizability catastrophe	4	K2(U)	Lecture discussion with illustration, Derivation and group discussion	
	3	Dipole orientation in solids - Dipole relaxation and dielectric losses - Debye Relaxation time - Relaxation in solids	4	K3(Ap)	PPT Illustration	
	4	Complex dielectric constants and the loss angle - Frequency and temperature effects on Polarization - Dielectric breakdown and dielectric loss	3	K4(An)	Derivation and group discussion	

II	Theor	y of Ferroelectri	ics and Pi	ezo Elect	rics	
	1	Ferroelectric Crystals - Classifications of Ferroelectric crystals - Dipole theory offerroelectricity - Landau Theory of the phase transition	3	K2(U)	Lecture discussion with illustration	Evaluation through: Online quiz, Short questions, Descriptive answers, Formative assessment I
	2	Second order Transition - First Order Transition - Ferroelectric Transition - One- Dimensional Model of the Soft Mode of Ferroelectric Transitions	4	K4(An)	Derivation and group discussion problem solving Circuit designing	
	3	Antiferroelectric ity - Ferroelectric domains - Ferroelectric domain wall motion - Piezoelectricity	3	K2(U)	Lecture Illustration,	
	4	Phenomenologic al Approach to Piezoelectric Effects - Piezoelectric Parameters and Their Measurements - Piezoelectric Materials	4	K5(E)	Lecture Discussion	
III	Magn	tic properties o	f Materia	s:		
	1	Terms and definitions used in magnetism - Classification of magnetic materials - Atomic theory of magnetism - The quantum	4	K2(U)	Illustration, discussion	Evaluation through: Online quiz, Short questions, Descriptive answers, Formative assessment I/II

		numbers				
	2	The origin of	3	K3(Ap)	Derivation	
	4		5	K3(Ap)	and group	
		permanent magnetic			discussion	
		moments -			uiscussion	
		Langevin's				
		classical theory				
		of diamagnetism - Sources of				
		paramagnetism - Langevin's				
		-				
		classical theory of				
		-				
		paramagnetism -				
		Quantum theory of				
		paramagnetism				
	3	Paramagnetism	4	K4(An)	Derivation	
	3	of freeelectrons	4	N4 (All)	and group	
					discussion,	
		- Ferromagnetism			PPT	
		- The Weiss			Illustration	
		molecular field -			mustration	
		Temperature				
		dependence of				
		Spontaneous				
		magnetization				
	4	The physical	3	K6(C)	Derivation	
	-	origin of Weiss	5	10(0)	And	
		Molecular field -			Lecture	
		Ferromagnetic			Illustration	
		domains -				
		Domain theory -				
		Antiferromagnet				
		ism -				
		Ferrimagnetism				
		- Structure				
		ofFerrite				
IV	Super	conductivity:				
	1	Occurrence of	4		Derivation	Evaluation
		super		K1(R)	and	through: Online
		conductivity -			discussion	quiz,
		Destruction of				short questions,
		super				Descriptive
		conductivity by				answers,
		magnetic fields -				Formative
		Meissner Effect				assessment II
		- Type I and				
		Type II Super				
		conductors				
	2	Heat Capacity -	3	K2(U)	Derivation	

	r			r		1
		Energy gap -			and PPT	
		Microwave and				
		infrared				
		properties -				
		Isotope effect -				
		Thermodynamic				
		s of the				
		superconducting				
		transition				
	3	London equation	4	K3(Ap)	Derivation	
	_	- Coherence		× 17	and group	
		Length - BCS			discussion	
		theory of			alseassion	
		superconductivit				
		y, BCS				
		groundstate-				
		Fluxquantization				
		inasuperconduct				
		-				
	4	ionring	4	V ₆ (C)	Derivation	
	4	Durationofpersis	4	K6(C)		
		tencecurrents-			and group	
		Single particle			discussion	
		tunnelling - DC				
		Josephson effect				
		- AC Josephson				
		effect -				
		Macroscopic				
		quantum				
		interference -				
		High				
		temperature				
		super conductors				
		- Applications				
V	Physic	s of Nanosolids:				
	1	Definition of	3	K2(U)	Discussion	Evaluation
		nanoscience and			And	through: Online
		nanotechnology			Illustration	quiz,
		- Preparation of			with PPT	Problem solving
		nanomaterials -				short questions
		Surface to				Descriptive
		volume ratio				answers
	2	Quantum	4	K3(Ap)	Derivation	MCQ, True/False,
		confinement -		× r/	and group	Short essays,
		Qualitative and			discussion	Concept
		Quantitative				explanations, Short
		description -				summary or
		Density of states				overview
		of				0 101 10 10
		nanostructures				Formative
	3	Excitons in	4	K2(U)	Lecture	assessment II
	3	Nano	-	K2(U)	Illustration	assessment II
	l	TNAHO			mustration	

	semiconductors - Carbon in nanotechnology - Buckminsterfull erene - Carbon nanotubes						
4	Nano diamond - BN nano tubes - Nanoelectronics - Single electron transistor - Molecular machine - Nanobiometrics	4	K3(Ap)	Lecture discussion with illustration			

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability

Activities (Em/ En/SD): Practical and Project

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues : Nil

Assignment : (Mention Topic and Type): Frequency and temperature effects on Polarization

Seminar Topic: (if applicable):

Sample questions (minimum one question from each unit)

Part A (1 mark)

- 1. The expression for induced dipole moment is _____ (K4- An, CO1)
- 2. The alpha graphene has the crystal structure of _____. (K3 Ap, CO4)
 - (a) Cubic (b) Rhombohedral (c) Triclinic (d) Hexagonal
- Antiferromagnetic substance has the dipoles with equal moments, but the alternate dipoles point in opposite directions. (True/False) (K5 E, CO2)
- In all superconductors the entropy ______ on cooling below the critical temperature Tc. (K6 C, CO4)
- 5. The two approaches used in the preparation of nanomaterials are _____ and ____.(K3 Ap, CO)

Part B (3 marks)

- Differentiate thermal and electrochemical breakdown with suitable example. (K4 An, CO1)
- Summarize the classification of ferroelectric crystals with suitable examples. (K5 E, CO2)
- 8. Criticize the classification of magnetic materials based on their χ value. (K5- E, CO2)
- 9. Design DC Josephson effect in superconductors Tunneling. (K6- C, CO4)
- 10. Illustrate the concept surface to volume ratio in nanomaterils. (K3 Ap, CO4)

Part C (7 marks)

- 11. Interpret the classical theory of electronic polarizability. (K3 Ap, CO4)
- Predict the concept of One-Dimensional Model of the soft mode of Ferroelectric Transitions. (K5 – E, CO2)
- 13. Write in detail the BCS theory of Superconductivity and Ground State. (K6- C, CO4)
- 14. Derive an expression for density of states of 3D bulk solid and idealized quantum wells. (K3 Ap, CO4)
- 15. Explain in detail about paramagnetism of free electrons. (K5- E, CO2)

Sr.Sebastiammal & Ms.A.Lesly Fathima Course Instructor

Head of the Department

Department	:	Physics
Class	:	II M.Sc. Physics
Title of the Course Semester Course Code		Elective III b: MICROPROCESSORS AND MICROCONTROLLER III PP2035
	•	

Comme Code	т	т	р	Cara dita	T	Total	Marks		
Course Code	L	I	P	Creatts	Inst. Hours	Hours	CIA	External	Total
PP2035	6	•	•	4	6	90	40	60	100

Learning Objectives

- 1. To provide an extensive knowledge about the architecture and assembly language programming of microprocessors 8085 & 8086 and microcontroller 8051.
- 2. To gain hands on experience in interfacing of 8085 microprocessor.

Course Outcomes

COs	Upon completion of this course, students will be able to	PSOs addressed	CL
CO-1	Identify/ Explain the operation of various components of the	PSO-1	K3(An)
	microprocessor 8085 and microprocessor 8086		
CO-2	Relate and explain the various addressing modes and the	PSO-1	K1(R)
	instruction set of 8085 microprocessor		
CO-3	Develop skill in writing simple programs for 8085	PSO-2	K6(C)
	microprocessor		
CO-4	Explain the architecture of 8051 microcontroller	PSO-1	K2(U)
CO-5	Understand the various interrupts of 8085 microprocessor	PSO-2	K2(U)

	Modules
Credits: 4	Total contact hours: 90 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Cognit ive Level	Pedagogy	Assessment/ Evaluation
Ι	Microp	rocessors 8085 Arc	hitecture	1	-	
	1 2	Intel 8085 microprocessor : Introduction – Pin configuration- Architecture and its operations Machine cycles of 8085- Interfacing of	5	K1 (R) K4 (An)	Lecture using chalk and talk, Discussion with PPT, mind mapping Lecture using videos,	Evaluation through: short test Class Test Multiple choice questions
	-	memory and I/O devices	4		Problem solving	Quiz Formative assessment Short Summary or
	3	Instruction classification: number of bytes, nature of operations-	5	K2 (U)	Demonstrati on, Peer tutoring, Problem solving, Review	Overview
	4	Instruction format- Vectored and non- vectored interrupts	3	K2 (U)	Demonstrati on, Peer tutoring, Problem solving, Review	
II	8085 As	ssembly Language			-	
	1	Instruction set: Data transfer operations - Arithmetic operations	4	K4 (An)	Demonstration, Peer tutoring, Problem	Evaluation through: Short test
					solving,	Quiz

					Review	Assistent
					Discussion	Assignment
					with PPT, mind	Formative assessment
					mapping	Class test
	2	Logical operations- Branching and machine control operations -	4	K4 (An)	Demonstrati on, Peer tutoring, Problem	Open book test, Practical.
					solving, Review, Discussion with PPT, mind mapping	
	3	Addressing modes Writing assembly language programs: Looping, counting and indexing	5	K6 (C)	Demonstration, Peer tutoring, Problem	
					solving,	
					Review, mind	
					mapping	
	4	Stack – subroutine-		K6 (C)	Demonstration,	
		Translation from assembly language to			Peer tutoring,	
		machine language			Problem	
					solving,	
					Review	
III	Microp	rocessor 8086				

	2	Intel 8086 microprocessor: Introduction – Architecture - Pin configuration Operating modes: Minimum mode, Maximum mode.	5 3	K2 (U) K2 (U)	Lecture using chalk and talk, Discussion with PPT, mind mapping Lecture using videos, Problem	Evaluation through: Class test Quiz Multiple choice questions Formative
	3	Memory addressing: 8- bit data from even and odd address bank, 16- bit data from even and odd address bank- Addressing modes	5	K4 (An)	solving Lecture using videos, Demonstrat ion, Peer tutoring, Problem solving, Review.	assessment Practical
	4	Interrupts: Hardware interrupts – Software interrupts –Interrupt priorities- Simple programs.	5	K4 (An)	Demonstrat ion, Peer tutoring, Problem solving, Review	
IV	Microc	ontroller 8051 Arch		U	0	
	1	Introduction to microcontroller and embedded system- Difference between microprocessor and microcontroller	4	K4 (An)	Lecture using chalk and talk, Discussion with PPT, mind mapping	Evaluation through: Class test Quiz Short test Formative assessment II Practical

	2	8051 microcontroller: Pin configuration, Architecture and Key features. 8051 Data types and directives	5	K1 (R)	Lecture using videos, Problem solving	
	3	Instruction set: Data transfer instructions - Arithmetic instructions – Logical instructions-	4	K4 (An)	Demonstrati on, Peer tutoring, Problem solving, Review	
	4	Branching instructions- Single bit instructions. Addressing modes- Simple programs using 8051 instruction set.	5	K4 (An)	Demonstrati on, Peer tutoring, Problem solving, Review	
V	Interfa	cing of Microproces	ssor 8085			
	1	Basic concepts of programmable device - 8255 Programmable Peripheral Interface (PPI)	6	K2 (U)	Lecture using chalk and talk, Discussion with PPT, mind mapping	Evaluation through: Short test Class test Open book test
	2	interface of ADC and DAC-8257 Direct Memory Access (DMA) controller	6	K6 (C)	Lecture using videos, Problem solving	Quiz Assignment Formative assessment III

Basic concepts of serial 6 I/O and data communication – interface of 8251 Universal Synchronous Asynchronous Receiver Transmitter	5	K4 (An)	Demonstrati on, Peer tutoring, Problem solving, Review, Lecture
Receiver Transmitter (USART)			using videos.

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability

Activities (Em/ En/SD): **Project**

Course Focussing onCross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : (Mention Topic and Type): Application of Microprocessor in day to day Life – Google

Docs and Sheets

Seminar Topic: (if applicable): Difference between Microprocessor and Microcontroller

Sample questions

Part A (1 mark)

Answer all the questions

- 1. Classify the 8085 instruction set according to the word size.(K2-U, CO 3)
- 2. The _____ is an area of memory identified by the programmer for temporary storage of information.(**K1- R, CO 2**)
 - (a) Stack (b) subroutine (c) opcode (d) operand
- 3. Which pin has to be made low for the maximum mode of operation to occur in 8086 microprocessor?(K1-

R, CO 2)

4. Choose the correct function of the instruction "JNC target" in 8051 microcontrollers.

(K2-U, CO 4)

- (a) Jump to target if zero flag is set (b) Jump to target if zero flag is reset
- (c)Jump to target if carry flag is set (d) Jump to target if carry flag is reset
- 5. Expansion of USART is _____ (K1- R, CO 2)
 - (a) Universal Set And Reset Transmitter
 - (b) Universal Synchronous Asynchronous Receiver Transmitter
 - (c) United Set And Reset Transmitter

(d) United Synchronous Asynchronous Receiver Transmitter

Part B (3 marks)

- 1. Analyze the operation of the Subroutine with a neat diagram.(K4-An, CO 1)
- 2. Construct a program to do the following.(K6- C, CO 3)
 - (i) Load the number 30H in register B and 39H in register C.
 - (ii) Subtract 39H from 30H.
 - (iii) Display the answer at PORT 1.
- 3. Explain the minimum mode operation of 8086.(K1-R, CO 2)
- 4. Explain the following instructions of 8051 with example. (K2-U, CO 4)
 - (i) ADDC (ii) SUBB
- 5. Distinguish different operating modes of 8255.(K4-An, CO 1)

Part C (7 marks)

- 1. Analyze the architecture of 8085 microprocessor with a schematic diagram.(K4-An, CO1)
- Formulate assembly language programs to set time delay using one register and a register pair. Also calculate the time delay using one register if the register is loaded with the count FFH.(K6- C, CO 3)
- 3. With a neat diagram explain the pin description of 8086. (K2-U, CO 1)
- 4. Discuss the different addressing modes of 8051 microcontroller with examples.(K6- C, CO 3)
- 5. Examine in detail about the principle and working of USART.(K4-An, CO 1)

Ms. S. Virgin Jeba & Dr. P.Aji Udhaya Course Instructor

Head of the Department