Holy Cross College (Autonomous), Nagercoil-629004 Kanyakumari District, Tamil Nadu.

Nationally Re-Accredited with A+ by NAAC IV cycle - CGPA 3.35

Affiliated to

Manonmaniam Sundaranar University, Tirunelveli

DEPARTMENT OF ZOOLOGY POST-GRADUATE PROGRAMME

TEACHING PLAN EVEN SEMESTER 2023 – 2024

DEPARTMENT OF ZOOLOGY

VISION

Empower the students with Academic skills, Research aptitude and social commitment through holistic education.

MISSION

- 1. Foster knowledge and skills through innovative teaching and instill moral and ethical values.
- 2. Render opportunities for critical thinking, communication, and collaboration.
- 3. Create research ambience to promote innovations and contemporary skills relevant to local and global needs.
- 4. Inspire to explore the natural resources and connect with nature.
- 5. Promote passion to serve the local community by creating empowered women of
- 6. Commitment and social consciousness through outreach and exposure programmes.
- 7. Facilitate life-long learning, participatory leadership, and commitment to society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

POs	Upon completion of M.A./ M. Sc. /MSW Degree	Mapping with
	Programme, the graduates will be able to:	Mission
PEO1	apply scientific and computational technology to solve	M1, M2
	socio ecological issues and pursue research.	
PEO2	continue to learn and advance their career in industry	M4 & M5
	both in private and public sectors	
PEO3	develop leadership, teamwork, and professional	M2, M5 & M6
	abilities to become a more cultured and civilized	
	person and to tackle the challenges in serving the	
	country.	

РО	Upon completion of M.Sc. Degree Programme, the graduates will be able to:	Mapping with PEOs
PO1	apply their knowledge, analyze complex problems, think independently, formulate and perform quality research.	PEO1 & PEO2
PO2	carry out internship programmes and research projects to develop scientific and innovative ideas through effective communication.	PEO1, PEO 2 & PEO3
PO3	develop a multidisciplinary perspective and contribute to the knowledge capital of the globe.	PEO 2
PO4	develop innovative initiatives to sustain ecofriendly environment	PEO1, PEO 2
PO5	pursue active career, team work and using managerial skills guide people to the right destination in a smooth and efficient way.	PEO 2
PO6	employ appropriate analysis tools and ICT in a range of learning scenarios, demonstrating the capacity to find, assess, and apply relevant information sources.	PEO1, PEO 2 & PEO3
PO7	learn independently for lifelong to execute professional, social and ethical responsibilities promoting sustainable development.	PEO3

PROGRAMME OUTCOMES (POS)

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO	Upon completion of M.Sc. Programme, the graduates will be able	РО
	to:	addressed
PSO1	explain the various aspects of life sciences including Biochemistry, Cell	PO1, PO2
	and Molecular Biology, Biosystematics, Genetics, Evolution,	
	Physiology, Developmental Biology, Immunology, Microbiology,	
	Endocrinology, Bioinformatics, Biotechnology and Nanobiology.	
PSO2	carryout experimental techniques, analyze statistically, draw	PO2, PO4,
	conclusions, write report, present effectively and publish in	PO5, PO6
	indexed journals effectively	
PSO 3	develop personal and key transferable skills and entrepreneurial skills	PO2, PO3
	through industrial / field visits and internships.	
PSO 4	independently assemble facts, summarize and draw conclusions	PO1, PO2,
	from scientific text and develop competence in the design and	PO3, PO4,
	execution of research.	PO6
PSO 5	discriminate societal and environmental problems, adopt relevant	PO4, PO5,
	technology, synthesis solution and claim for IPR	PO7

Teaching plan

Class: I M.Sc. ZoologyCore Course – IIITitle of the Course: Cellular and Molecular BiologySemester: IICourse Code: ZP232CC1

No. of Hours/ Week	No. of Credits	Total Hours	Marks	
6	5	90	100	

Pre-requisite

Students should have knowledge of the basic cellular structures and their salient functions.

Learning Objectives

1. To acquire knowledge on molecular organization of the cell and cell organelles, growth, and communications.

2. To develop skills needed to innovate and contribute to the advancement in cell and molecular biology.

Course Outcomes

On t	On the successful completion of the course, students will be able to:				
1.	recall general concepts of cell biology and fundamental cellular structures and organelles.	K1			
2.	explain the various cellular components and their activities.	K2			
3.	identify the changes or losses in cell function caused by dysregulation.	К3			
4.	compare different cellular processes, their regulation, and their significance.	K4			
5.	assess the societal and environmental impacts through cellular and molecular research.	К5			

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate

Teaching modules

Total Contact hours: 90 (Including lectures, assignments, and tests)

Unit	Modul e	Торіс	Ho urs	Cogniti ve level	Pedagogy	Assessment
Ι						
		General features of the cell: Cell theory; Diversity of cell size and shapes	3	K1(R)	Brain Storming, Discussion	Slip test, MCQ
	2.	Protoplasm and deutroplasm – cell organelles;	4	K1(R)	Group discussion, Jigsaw method	Class test, just a minute

	3.	Membrane structure and functions - membrane models	4	K2(U)	Index cards,	Word splash, objective test
	4.	membrane/channel proteins, diffusion, osmosis.	3	K4(An)	Mind mapping, chalk and Board, lecture	Oral test, Mind Map
	5.	active pumps (Sodium and potassium pump). transport, ion	4	K5(E)	Peer tutoring, jigsaw	Long essay test, oral test
II	1	Cell organelles: Ultra- structure and functions of intracellular organelles – nucleus, nuclear pore complex, nucleolus,	4	K2(U)	Blended learning, Lecture, Demonstration	seminar, preparation of question bank
	2	Chromosomes, mitochondria,	5	K3(Ap)	Demonstration , lecture using videos	online Assignments, peer review
	3	Golgi bodies, lysosomes,	3	K3(Ap)	PPT, group discussion	MCQ, Group discussion
	4	Endoplasmic reticulum, centrosomes,	3	K4(An)	Review, mind map	Short essays, Quizzes
	5	Peroxisomes, ribosomes.	3	K3(Ap)	Chalk and Board, Lecture, you tube videos	Open book test, assignment
III	1	Cell cycle and cell division: Phases of Cell Cycle		K3(Ap)	Group Discussion, Interactive PPT	Objective test (Fill in the blanks), word splash
	2	Mitosis, Significance of Mitosis	3	K4(An)	Mind mapping, Debate	MCQ, mind map
	3	Meiosis, significance of meiosis.	2	K4(An)	Peer tutoring, lecture using videos	Slip test, poster making
	4	Control of the cell cycle - regulator molecules - positive regulation - negative regulation.	3	K2(U)	Flipped classroom, Peer tutoring	MCQ, Oral test
	5	Structure of DNA and RNA; Process of DNA replication,	4	K3(Ap)	PPT, Group discussion	Model making, seminar
	6	transcription, and translation in pro- and eukaryotic cells.	4	K4(An)	Brainstorming, YouTube videos, team teaching	Quizzes, panel discussion
IV	1	Cell communication and cell signaling-	2	K1(R) K2(U)	KWL, Inquiry based & PPT	Nearpod Collaborative

	2	Membrane- associated receptors for peptide and steroid hormones		K4(An)	Flipped classroom, Socratic method	Oral test
	2	Signaling through G- protein coupled receptors.	4	K3(Ap)	PPT & lecture Role play	Traffic light and Mind mapping
	3	Signal transduction pathways (RTK pathway and MAP kinase pathway).	4	K3(Ap)	PPT & lecture Role play	Four corner and Mind mapping
	4	Gap junction and tight junction, extracellular space and matrix.	3	K4(An)	Seminar, Peer group teaching, Group discussion.	Quizzes, Summarisatio n, Oral test
	5	Interaction of cells with other cells and non- cellular structures.	3	K4(An)	KWL, Interactive PPT	Think and pair, Oral test
V	1	Cancer cells: Characteristic features of normal and cancer cells.	3	K2(U)	Seminar, Collaborative learning	Ticket out the door method, Nearpod Collaborative
	2	Carcinogens: types and cancer induction. Metastasis.	4	K2(U) K4(An)	Seminar, Jigsaw, Group Discussion	Quizzes, Oral test , Summarisation
	3	Oncogenes and tumor suppressor genes.	3	K2(U)	Seminar, Interactive PPT, Index card	Short test with open ended question
	4	Therapeutic interventions of uncontrolled cell growth.	4	K4(An)	Interactive PPT, Jigsaw	Think and pair, Oral test
	5	Apoptosis – mechanism and regulation. Ageing and senescence.	4	K4(An)	Seminar & Index card, Chunking method	Four corner and Mind mapping, Quizzes

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Differentiation of various stages of Mitosis and Meiosis (Practical) and structure of DNA (Model making)

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity):

Activities related to Cross Cutting Issues :

Assignment: 1. Compare prokaryotic and eukaryotic ribosomes.

Assignment: 2. Model making: Cell signalling. (Group work)

Seminar Topics:

- 1. Protoplasm and deuteroplasm
- 2. Structure and function of Plasma membrane
- 3. Membrane proteins
- 4. Active transport
- 5. Structure and function of nucleus and nuclear pore complex
- 6. Structure and function of chromosomes
- 7. Structure and function of Golgi bodies
- 8. Structure and function of centrosome
- 9. Cell cycle and its phases
- 10. Mitosis

Sample questions

11. Structure of DNA

- 12. Structure of RNA
- 13. Cell communication
- 14. Gap junction and tight junction.
- 15. Extracellular space and matrix.
- 16. Oncogenes and tumour suppressor genes.
- 17. Characteristic features of normal and cancer cells
- 18. Types of cancer.
- 19. Carcinogens: types and cancer induction
- 20. Ageing and senescence.

Part A

1. Which of the following processes involves the movement of molecules from an area of high concentration to an area of low concentration?

a. Active transport b. Osmosis c. Diffusion d. Endocytosis

2. The nucleus is the site of protein synthesis in the cell. (State True or False)

3. In the cell cycle, the phase where the cell undergoes division of its nucleus and cytoplasm is called ______.

4 Which type of signalling molecules can cross the cell membrane to bind with intra cellular receptors

a) Steroid hormones b) Protein hormones c) Peptide hormones d) Amino acid derivatives5. Which one of the following is the oncogenes

a) APC b) p53 c) Ras d) MAPK

Part B

- 1. Discuss the fluid mosaic model and the roles of membrane proteins.
- 2. Elaborate on the structure and functions of lysosomes. Discuss how lysosomes are involved in the breakdown of cellular waste and the digestion of foreign substances.
- 3. Explain the significance of mitosis in maintaining genetic stability and ensuring proper growth, repair, and maintenance of multicellular organisms.
- 4. Discuss the role of cell adhesion molecules in mediating interactions between adjacent cells.
- 5. Discuss the role of proto-oncogenes in normal cellular functions.

Part C

- 1.Discuss the diversity of cell size and shape among different organisms. Provide examples of specialized cell shapes and their functions.
- 2.Explain the ultrastructure of mitochondria and their role in cellular respiration. Include the key steps of cellular respiration and the importance of this process in providing energy for the cell.
- 3.Explain the process of meiosis, including the key events in both meiosis I and meiosis II. Discuss the significance of meiosis in the generation of genetic diversity and the formation of haploid cells.
- 4. Explain the concept of cell- cell communication in the context of development and tissue homeostasis.
- 5. Analyse the role of angiogenesis in the process of cancer progression.

Head of the Department

Dr. A. Shyla Suganthi

Course Instructors

Dr. X. Venci Candida

Dr. F. Brisca Renuga

Class	:	II M. Sc. Zoology
Semester	:	II
Title of the Course	:	Developmental Biology
Course Code	:	ZP232CC2

No. of Hours/ Week	No. of Credits	Total Hours	Marks
6	5	90	100

Pre-requisite

A basic understanding of biology and genetics is recommended to effectively grasp the concepts in developmental biology.

Learning Objectives

- 1. Understand the principles of developmental biology to analyze and compare the embryonic development of different animal species.
- 2. Study the concepts, procedures, and uses of genes and hormones to propose strategies to improve and control the development of certain animal species.

Course Outcome

On the s	uccessful completion of the course, student will be able to:	
CO - 1	recall and summarize the chief events in animal development, recognizing their significance and historical context	K1
CO - 2	understand the different mechanisms and how extrinsic and intrinsic factors influence embryonic development in various animal embryos.	K2
CO - 3	apply their knowledge to explain the role of hormones in animal development.	К3
CO - 4	analyze the different stages of embryonic development and the genetic control mechanisms involved.	K4
CO - 5	critically evaluate ethical issues associated with cryopreservation in mammalian reproduction.	K5
CO - 6	design and propose experiments related to biochemical changes during regeneration or cryopreservation techniques.	K6

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

Modules with Teaching Plan

Total Contact hours: 90 (Including lectures, assignments, and tests)

Units	Modules	Topics	Hours	Cognitive level	Pedagogy	Assessment
Ι	Pattern	of animal development (18 Hrs	5.)			
	1	Pattern of animal development:	2	K1 (R)	Group	Quizzes
		Chief events in animal		K2 (U)	discussion,	through
		development			Open board	Google form

	2	Origin of germ cells, spermatogenesis - sperm morphology in relation to the type of fertilization	3	K1 (R) K2 (U)	Seminar by student Interactive PPT	Quizzes through poll
	3	Oogenesis - oogenesis in insects and amphibians; composition and synthesis of yolk in invertebrates (insects and crustaceans)	5	K1 (R) K2 (U)	Flipped learning	MCQ, Flow chart
	4	Oogenesis - oogenesis in vertebrates; composition and synthesis of yolk in vertebrates	4	K1 (R) K2 (U)	Seminar,	MCQ, Flow chart
	5	Genetic control of vitellogenin synthesis in amphibians.	4	K2 (U)	Jigsaw method	Mind map, MCQ, Oral test
II	Fertiliz	zation (18 Hrs.)				
	1	Fertilization: Sperm aggregation, sperm activation, chemotaxis, sperm maturation and capacitation in mammals, acrosome reaction. sperm – egg interaction	4	K1 (R) K2 (U)	Team-based learning	Quiz, Group discussion
	2	Sperm entry into the egg - egg activation - intracellular calcium release - cortical reaction	3	K1 (R) K2 (U)	Jigsaw method	Flow chart, Peer review
	3	Physiological polyspermy - fusion of male and female pronuclei post fertilization metabolic activation	5	K2 (U)	Fish bowl discussion	MCQ, Slip test
	4	parthenogenesis	6	K2 (U)	Flipped learning	Slip test, Oral test
III	Cleava	ge and gastrulation (18 Hours)			1	-
	1	Cleavage and gastrulation: Pattern of embryonic cleavage, mechanisms of cleavage	5	K4 (An)	Didactive teaching	Diagnostic Assessment Dictation, Peer review
	2	Gastrulation - morphogenic movements - gastrulation in respective animal embryos -Sea urchin	5	K4 (An)	Expository teaching	Mind map, Slip test
	3	Gastrulation - morphogenic movements - gastrulation in respective animal embryos - Amphibians	3	K4 (An)	Scaffolding	Mind map Class test
	4	Gastrulation - morphogenic movements - gastrulation in respective animal embryos - Mammals	2	K4 (An)	Fish bowl discussion	Flow chart Self- Assessment

	5	Fate maps - (Amphibian and Chick),	2	K4 (An)	Conceptual puzzels	Quizzes through menti-meter
	6	Epigenesis and preformation – Formation of primary germ layers	1	K4 (An)	Dialogue circles	Quizzes through slido
IV	1	Embryonic Development; Embryonic development of fish	3	K2 (U) K3 (Ap)	Didactive teaching YouTube Video	Illustration Open book test
	2	Embryonic development of birds,	2	K2 (U) K3 (Ap)	Expository teaching	Flowchart/ Mind map
	3	Formation of extra embryonic membranes in mammal	2	K2 (U)	Scaffolding Peer interaction	Seminar
	4	Formation and migration of neural crest cells - types of neural crest cells - primary and secondary neurulation.	2	K2 (U)	PPT, YouTube Video	Quizzes
	5	Organogenesis (mammal): Development of ectodermal derivatives (nervous system). endodermal (digestive system), mesodermal (circulator system).	2	K2 (U)	Fish bowl discussion	Conceptual puzzles,
	6	Gene and development: Anterior- posterior axis in determination in drosophila	2	K2 (U) K3 (Ap)	Didactive teaching Dialogue circles	Diagnostic Assessment
	7	Maternal effect genes - <i>Bicoid</i> and <i>Nanos</i> proteins;	2	K2 (U)	PPT Peer coaching	Online quiz: Slido
	8	Generation of dorsal - ventral polarity- Genetic control of segmentation – Gap genes	2	K2 (U)	PPT Jigsaw method	Instant test polls
	9	Pair rule genes; Homeotic genes	1	K2 (U)	Team-based learning	
V	1	Post embryonic development metamorphosis: Endocrine control of metamorphosis in insect	3	K2 (U) K3 (Ap)	Chalk and talk Peer observation	Oral question MCQ
	2	Post embryonic development metamorphosis: Endocrine control of metamorphosis in amphibian	3	K2 (U) K4 (An)	Flipped classroom Jigsaw method	Open book test Flow chart
	3	Endocrine control of moulting and growth in crustaceans and insects - Neoteny and pedogenesis	3	K2 (U) K4 (An)	PPT Fish bowl discussion	Mind map Class test

4	Regeneration: Types of regeneration, Regeneration in planaria and frog - Regenerative ability in different animal groups. Factors stimulating regeneration	2	K1 (R) K4 (An) K6 (C)	Collaborative learning Team-based learning	Online Assignment K1(R)
5	Aging and senescence: Biology of senescence- cause of aging- mechanism involved in apoptosis.	2	K1(R) K2 (U)	Real –world application Animation video	Class test Online assessments
6	Experimental Embryology: Mammalian reproduction: Mammalian reproductive cycle, Hormonal regulation	2	K1(R) K2 (U)	Fish bowl discussion Role playing	Seminar Models/ Charts
7	Endocrine changes associated with normal pregnancy, Induced ovulation in humans	2	K1(R) K2 (U) K3(Ap)	Peer coaching	Charts
8	Cryopreservation of gametes/embryos - Ethical issues in cryopreservation	1	K3(Ap) K5 (E) K6 (C)	Flipped learning	

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Clinical implications of the development, gender based reproductive disorders and intervening mechanism.

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Human Values Activities related to Cross Cutting Issues:

Assignment: Cause of aging, induced ovulation in humans, Pattern of embryonic cleavage, mechanisms of cleavage

Seminar Topic:

- 1. Sperm morphology in relation to the type of fertilization.
- 2. oogenesis in insects
- 3. oogenesis in amphibians.
- 4. synthesis of yolk in invertebrates insects and crustaceans)
- 5. synthesis of yolk in invertebrates crustaceans)
- 6. Sperm aggregation, activation, chemotaxis, maturation and capacitation in mammals
- 7. sperm egg interaction. Sperm entry into the egg egg activation
- 8. parthenogenesis
- 9. Pattern of embryonic cleavage, mechanisms of cleavage
- 10. Gastrulation: morphogenic

movement

- 11. Gastrulation in Amphibians
- 12. Gastrulation in Mammals
- 13. Formation of primary germ layers
- 14. Embryonic development of fish,
- 15. Embryonic development of birds,
- 16. Primary and secondary neurulation
- 17. Genetic control of segmentation Gap genes; pair rule genes.
- 18. Endocrine control of metamorphosis in insect.
- 19. Endocrine control of metamorphosis in amphibian.
- 20. Aging and senescence
- 21. Mammalian reproductive cycle
- 22. Ethical issues in cryopreservation.

Sample questions

Part A

- 1. In invertebrates like crustaceans, the yolk serves as a source of ______ for developing embryos.
- 2. Chemotaxis plays a role in guiding sperm towards the egg during fertilization. (True/False).
- 3. Which of the following animals is commonly used to study gastrulation processes? a. Fruit fly (Drosophila b. Sea urchin c. Zebrafish d. All of the above
- 4. What is the role of extraembryonic membranes in mammalian development?
- 5. Assertion: Thyroxine plays a crucial role in the endocrine control of metamorphosis in amphibians.
 - **Reason:** Thyroxine stimulates the breakdown of larval tissues and promotes the development of adult structures during metamorphosis.
 - a. Both assertion and reason are correct
 - b. Assertion is correct and reason is wrong
 - c. Both assertion and reason are wrong
 - d. Assertion is wrong and the reason is correct

Part B

- 1. Discuss vitellogenin synthesis in amphibians.
- 2. Analyze Parthenogenesis with example.
- 3. Differentiate the structure of blastula and gastrula.
- 4. Explain embryonic development in fish.
- 5. Summarize the ethical issues in cryopreservation.

Part C

- 1. Analyse Oogenesis in insects.
- 2. Describe the steps involved in fertilization.
- 3. Discuss gastrulation in respective to amphibian.
- 4. Differentiate Bicoid and Nanos proteins.
- 5. Summarize Endocrine control of moulting and growth in crustaceans.

Head of the Department

Dr. A. Shyla Suganthi

Course Instructor

Dr. A. Shyla Suganthi

Dr. C. Josephine Priyatharshini

Class	: I M. Sc. Zoology
Title of the Course	: (a): Economic Entomology
Semester	: II
Course Code	: ZP232EC1

Credits	Inst. Hours	Total Hours	marks
3 4		60	100

Objectives

1. To develop the ability to identify and classify insects into major orders and understand their economic importance.

2. To acquire practical skills in observing and documenting the life cycles and behaviors of beneficial and destructive insects.

Course Outcomes

со	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	recall the features of various insect orders and describe the life history, social organization, and management practices of insects.	PSO - 1	K1(R)
CO - 2	understand the biology of insects associated with medical, household, and veterinary/public health importance.	PSO - 1	K2(U)
CO - 3	apply their knowledge of pest biology to assess damage and beneficial insect life cycles to practical rearing.	PSO - 3	K3(Ap)
CO - 4	analyze the causes of pest outbreaks and the economic threshold levels.	PSO - 2	K4(An)
CO - 5	synthesize knowledge to propose effective control measures for vectors associated with medical, household, and veterinary/public health importance.	PSO - 4	K5(E)

Modules with Teaching Plan

Total Hours: 60 (Including lectures, assignments and tests)

Unit	Modu	Торіс	Hou	Cognitive	Pedagogy	Assessment
	le		rs	level		
Ι	Overv	view of insects and insect tax	onomy	v (12 hrs)		
	1	Insects and their biological	3	K1 (R)	Brainstorming	Mentimeter,
		success-Man and Insects		K2 (U)	Lecture, PPT	Mind map
					(GC	wind map
	2	Salient features of Class	3	K2 (U)	Demonstrative	Seminar
		Insecta and orders-			Lecture,	Semma
		Orthoptera, Isoptera,			Peer Teaching	
		Hemiptera, Diptera,				
		Coleoptera, Lepidoptera,				
		Dermaptera, Odonata,				
		Neuroptera, Hymenoptera.				

	3	Basic concepts in Insect Taxonomy Classification of	3	K2 (U) K3 (Ap) K3 (Ap)	Flipped learning, Collaborative teaching Interactive	Slido, Flow Chart
	4	insects	5	K3 (Ap)	Lecture, PPT (GC), Group Discussion	Seminar, Class Note
II	Benef	icial insects (12 hrs)		1		
	1	Silkworms: Types, life cycle, diseases and its management, rearing methods	3	K1 (R) K2 (U)	Brainstorming, Explicit Instruction, PPT (GC)	Mind Map Whatsapp Polls
	2	Honey bees: Types, life history, social organization (Colonies and Caste system) Honey Bee care and Management of bee hive	3	K2 (U) K3 (Ap)	Inquiry based Learning, Peer- instruction	Slido, Online assignment Seminar
	3	Lac insects: Life History, Lac cultivation	3	K2 (U)	Online Videos, Illustrative lecture, Case Study based discussion, Quiz	Quiz (Google Form)
	4	Pollinators, predators, parasitoids, scavengers, weed killers, soil-builders	3	K2 (U) K3 (Ap)	Interactive Lecture, Reasoning, Case study – sharing.	Vocabulary test, Seminar
III	Destr	uctive insects (12 hrs)				
	1	Insect pests: Definition, categories, Types of damage to plants by insects	3	K2 (U)	Collaborative Learning, Group discussion, Review of insect pests.	Open Book Test - Quiz, Seminar
	2	Causes of pest outbreak, Economic threshold level	3	K3 (Ap)	Reflective thinking, Peer teaching	Slip test Seminar
	3	Biology of the insect pests	3	K4 (An)	Illustrative lecture, PPT, WordPress	Class Note, Seminar
	4	Pests of paddy, cotton, sugarcane, vegetables, Coconut and stored grains, cereals.	3	K4 (An)	Illustrative lecture, PPT, WordPress	Class Note, Seminar

	Pest r	nanagement/Control strateg	ies (12	hrs)		
IV	1	Methods and principles of pest control	3	K3 (Ap)	Demonstrative Lecture, PPT (GC), Case study-based Learning.	Online assignment, Slip Test, Seminar
	2	Natural control, Artificial control	2	K4 (An)	Inquiry based Learning, PPT (GC), Peer teaching, Online Video links	
	3	Merits and demerits or limitations of these methods in pest control	2	K2 (U) K5 (E)	Illustrative lecture, Reflective thinking	Home Assignment
	4	Development and uses of pest resistant plant varieties	3	K3 (Ap)	Brainstorming, PPT, Peer teaching	Short test, Quiz, Seminar
	5	Integratedpestmanagement-Conceptsand practice	2	K1 (R) K3 (Ap)	Illustrative lecture, Group Discussion	Discussion, Seminar
V	Vecto	or biology (12 hrs)				
	1	Stable fly, cattle fly, Fowl- shaft louse, chicken flea	3	K1 (R) K3 (Ap)	Illustrative Lecture, presentation PPT-Video	Online assignment - Quizlet, Seminar
	2	Sheep and Goat-Head Maggot and Sheep Ked- Insects associated with medical importance and Management	3	K4 (An)	Illustration, Flipped learning, Ms- PPT	Class Note
	3	Head Louse- <i>Pediculus</i> <i>Humanus capitis</i> , mosquitos, <i>Anospheles</i> , <i>culex</i> , <i>Aedes</i> , flea- <i>xenopsylla cheopis</i> eye fly, sand fly, ticks, mites and bed bugs. Insects associated with household- cockroach, termite and silver fish	3	K2 (U) K3 (Ap)	Illustrative Lecture, Peer teaching	Quizzes
	4	Vectors of veterinary and public health importance- mosquitoes as potential vectors of human diseases – control measures.	3	K5 (E)	Brainstorming, PPT, Interactive Lecture	MCQ Seminar Short answers

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Entrepreneurship & Employability

Activities (Em/ En/SD): Rearing of honey bees, Rearing of silkworm

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Environment Sustainability

Activities related to Cross Cutting Issues:

i) Field visit Conduct field surveys to identify and quantify insect pest.

ii) Assignment Topics and Type:

Flow Chart: Classification of insects, Mind Map: Classification of pollinators

iii) **Seminar** (Invitation, Study material with reference, PPT/ Video, Possible questions, Attendance)

Topics:

- 1. Classification of insects
- 2. Silkworms: diseases
- 3. Honey bees: life history
- 4. Lac insects: Life history
- 5. Pollinators, predators,
- 6. Parasitoids, scavengers
- 7. Insect pests: Definition, categories
- 8. Causes of pest outbreak,
- 9. Economic threshold level
- 10. Biology of the insect pests
- 11. Pests of paddy, cotton,

- 12. Pests of sugarcane, vegetables
- 13. principles of pest control
- 14. Natural control, Artificial control
- 15. Merits and demerits of pest control methods
- 16. Development of pest resistant plant varieties
- 17. Integrated pest management
- 18. Stable fly, cattle fly,
- 19. Fowl-shaft louse, chicken
- 20. Vectors of veterinary animals

iv) Quizlet Topic:

Pollinators and Predators

Sample questions:

Part A

What are the key factors contributing to the biological success of insects?

- A) Warm-blooded metabolism
- B) Exoskeleton and flight capabilities
- C) High reproductive potential
- D) Social organization
- 2. Define the term "biological success" in the context of insects and provide two examples.
- 3. Match the following insect orders with their salient features:

A) Coleoptera	i. Complete metamorphosis
B) Lepidoptera	ii. Forewings modified into hard elytra
C) Diptera	iii. Two pairs of membranous wings
D) Hymenoptera	Iv. Stinging structures in females

4. Fill in the blank: Silkworms undergo ______ metamorphosis.

5. Match the following:

i. Pollinators	A. Honey bees
ii. Predators	B. Ladybugs
iii. Parasitoids	C. Wasps
iv. Scavengers	D. Dung beetles

6. Fill in the blank: Insects causing damage to vegetables are classified as ______ pests.

7. Match the following pest control methods with their characteristics:

- i. Natural control A. Use of chemical pesticides
- ii. Artificial control B. Predators and parasites
- iii. Chemical Fertilizers C. Crop rotation

8. Discuss one merit and one demerit of using pest-resistant plant varieties.

- 9. Define integrated pest management in one sentence.
- 10. Fill in the blank: Insect pests cause damage to crops by _____.

Part B

- 1. Describe two adaptations that contribute to the success of insects in diverse environments.
- 2. Explain the concept of "metamorphosis" and its significance in the life cycle of insects.
- 3. Discuss the economic importance of insects belonging to the order Hymenoptera.
- 4. Explain how the structure of elytra in Coleoptera is related to their ecological roles.
- 5. Compare and contrast the Linnaean and cladistic systems of insect classification.
- 6. Provide examples of two insect species that were initially misclassified but later corrected through molecular analysis.
- 7. Illustrate the hierarchical levels used in classifying insects, giving examples at each level.
- 8. Discuss the challenges associated with classifying insects solely based on morphological characteristics.
- 9. Evaluate the role of honey bees in pollination and its impact on crop production.
- 10. Compare the life history and cultivation methods of lac insects with silkworms.

Part C

- 1. Analyze the ecological roles of scavenger insects in various ecosystems.
- 2. Discuss the impact of social organization on the survival and reproduction of honey bees.
- 3. Evaluate the economic significance of insects belonging to the order Diptera in agriculture.
- 4. Explore the evolutionary advantages of having two pairs of wings in insects.
- 5. Develop an argument supporting the use of molecular data over morphological characteristics in modern insect taxonomy.
- 6. Construct a flowchart illustrating the process of identifying an unknown insect species using taxonomic keys.

- 7. Examine the role of molecular techniques in resolving taxonomic uncertainties within insect orders.
- 8. Justify the importance of understanding insect classification for effective pest management strategies.
- 9. Propose an integrated pest management plan for a crop of your choice, emphasizing the use of beneficial insects.
- 10. Evaluate the impact of insect pollinators on biodiversity and ecosystem stability.

Head of the Department

Dr. A. Shyla Suganthi

Course Instructors

Dr. Jeni Chandar Padua

Dr. C. Anitha

Class	: I M. Sc. Zoology
Title of the Course	: (a) - Research Methodology
Semester	: II
Course Code	: ZP232EC4

No. of Hours/ Week	No. of Credits	Total Hours	Marks	
4	3	60	100	

Elective Course IV

Objectives

1. To impart knowledge on the basic principle, methodologies and applications of instruments in biological sciences.

2. To develop essential research skills to operate and apply various biological science instruments.

Course Outcomes

СО	Upon completion of this course the students will be able to:	CL
CO - 1	recall the principles of laboratory equipment, research techniques and the process of scientific report writing.	K1(R)
CO - 2	explain the procedures involved in operating laboratory equipment, applying research techniques, and engaging in scientific writing.	K2(U)
CO - 3	apply biological techniques in laboratory settings to gain practical experience in research processes and scientific report writing.	K3(Ap)
CO - 4	analyze the principles and techniques to make wise choices in experimental design, data interpretation, and research reports in biological sciences.	K4(An)
CO - 5	evaluate the quality, reliability, and limitations of data generated by research techniques and obtained from literature for specific research goals.	K5(E)

Teaching Plan with Modules Total Hours 60 (Incl. Assignment & Test)

Un	Mod	Торіс	Ho	Cognitive	Pedagogy	Assessment
it	ule		urs	level		
Ι	Analy	tical Techniques (12 Hrs	s.)			
	1	Good laboratory	3	K1 (R)	Brainstorming,	Experiment
		practice (GLP), pH		K2 (U)	Inquiry based	– find the pH
		meter		K3 (Ap)	learning,	of the sample,
					Performance based	
					learning	Seminar
	2	Colorimeter,	5	K1 (R)	Illustrative lecture,	Flow chart,
		Spectrophotometer -		K2 (U)	Reflective Thinking	Experiment –
		UV-Visible, Atomic		K3 (Ap)	- Slido,	find the OD
		Absorption		K4 (An))	Performance based	of the sample,
				K5 (E)	learning.	Seminar

	3	Flame photometer	2	K1 (R) K2(U)	Reasoning, Demonstrative	Open Book Test, Flow
				K2(0) K4 (An)	lecture	chart
	4	FTIR spectrometry	2	K1 (R) K2 (U) K4 (An)	Interactive lecture, Cooperative learning, Nearpod	Class note, Preparation of MCQs
II	Micro	scopy & Micro techniqu	1es (1	2 Hrs.)	· · · · · ·	
	1	Principle, Working mechanism and applications of Bright field, Phase contrast microscope.	4	K1 (R) K2 (U) K3 (Ap) K4 (An) K5 (E)	Collaborative teaching, Peer teaching, Ms-PPT Video	Oral test, Seminar, Preparation of study materials
	2	Principle, Working mechanism and applications of Electron, Confocal Microscope and Atomic force microscope.	3	K1 (R) K2 (U) K4(An)	Interactive lecture, Blended learning,	Illustrative Diagrams, Online Assignment
	3	Histology – Fixation, Sectioning and Staining.	2	K1 (R) K1 (R) K3 (Ap) K4 (An)	Illustrative Lecture, Ms-PPT, Prezi video, Peer teaching	Quiz, Experiment – staining the sample, Student presentations
	4	Histochemistry for carbohydrates, proteins, lipids.	3	K1, K2, K3, K5	Brainstorming, Reasoning, Demonstrations, WordPress	Class test - Slip Test, Preparation of Questions, Presentations
III	Separ	ation Techniques (12 Hr	rs.)			
	1	Centrifugation – Differential and Density gradient, types and applications of Centrifuges.	3	K1 (R) K2 (U) K3 (Ap)	Open ended questioning Demonstration Video lecture	Mind map on centrifuge types and applications Seminar
	2	Chromatography - Principle, HPLC and Affinity chromatography.	3	K1 (R) K2 (U) K3 (Ap) K4 (An)	Demonstration, PPT	Seminar
	3	GAS Chromatography Mass Spectrometry.	2	K1 (R) K2 (U) K3 (Ap) K4 (An)	PPT	Oral questioning
	4	Electrophoresis - Principle, Agarose gel electrophoresis and PAGE.	4	K1 (R) K2 (U) K3 (Ap) K4 (An)	virtual demo of electrophoresis Interactive lecture	Seminar

IV	Trace	er techniques (12 Hrs.)				
	1	Radioactive isotopes.	2	K1 (R) K2 (U) K3 (Ap) K4 (An)	Discussion on radioisotopes	Quiz using Mentimeter
	2	Radiolabeling.	2	K1 (R) K2 (U) K3 (Ap) K4 (An)	Lecture	Slip test
	3	Radiocarbon dating.	2	K1 (R) K2 (U) K3 (Ap) K4 (An)	Lecture-video	Assignment
	4	Radioactivity counters - Scintillation Counter, Geiger Muller Counter.	6	K1 (R) K2 (U) K3 (Ap) K4 (An)	Lecture -ppt Demonstration	Quiz Short test
V	Scien	tific Writing (12 Hrs.)				- F
	1	Essential steps in research, Review of literature, Literature citation.	3	K1 (R) K4 (An) K5 (E)	Prepare a review of an article - lecture Flash card	Plan a research and write a proposal
	2	Research report – Abstract, Tables - Figures - Formatting and typing.	3	K1 (R) K4 (An) K5 (E)	Preparation of a report using MS- word	Write a research report for a journal without plagiarism
	3	Open access journals, Predatory journals.	2	K1 (R) K3 (Ap) K4 (An) K5 (E)	Brainstorming, Interactive Lecture, Study with examples	Quizlet, MCQ, Peer Review
	4	Impact factor, Citation index, H-index, Plagiarism, Copy Right.	4	K3 (Ap) K4 (An) K5 (E)	Illustrative lecture, Theme based Interaction	Google Forms, Panel Discussion

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities for Skill development

- i) Operation of pH meter, colorimeter, UV-Vis Spectrophotometer, Flame Photometer, Microscope, Centrifuge.
- ii) Preparation of common Fixative 10% formalin and Stain methylene blue
- iii) Group discussion: Open access journals and Predatory journals

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/ Environment Sustainability/ Gender Equity): *Professional ethics*

Activities related to Cross Cutting Issues: Professional ethics

i) Assignment: Prepare a research review with less than 20% plagiarism.

ii) Group discussion: Plagiarism and Copyright

Seminar: (Invitation, Study material with reference, PPT/ Video, Possible questions, Attendance)

- 1. Principle, Working mechanism and applications of pH meter
- 2. Principle, Working mechanism and applications of Colorimeter
- Principle, Working mechanism and applications of UV-Visible Spectrophotometer
- 4. Principle, Working mechanism and applications of Bright field microscope
- 5. Principle, Working mechanism and applications of Phase contrast microscope
- 6. Principle, Working mechanism and applications of EM

- 7. Fixation and Fixatives
- 8. Sectioning and Microtome
- 9. Staining and Stains
- 10. Histochemistry for carbohydrates
- 11. Types of centrifuges
- 12. Density gradient centrifugation
- 13. HPLC
- 14. Affinity chromatography
- 15. Agarose gel electrophoresis
- 16. PAGE
- 17. Scintillation Counter
- 18. Geiger Muller Counter
- 19. Essential steps in research
- 20. Tables and figures, Formatting

Sample questions

Part A

- 1. Beer Lambert's law gives the relation between which of the following?
- a) Reflection of light and concentration
 - b) Scattered light radiation and concentration
 - c) Light energy absorption and concentration
 - d) Heat energy absorption and concentration
- 2. Assertion (A): Atomic Absorption Spectroscopy is an analytical technique used to determine how much of certain elements are in a sample.
 - **Reason** (**R**): It uses the principle that atoms (and ions) can absorb light at a specific, unique wavelength.
 - a) Statement 'A' is correct and 'R' is the correct explanation of 'A'.
 - b) Statement 'A' and 'R' are wrong
 - c) Statement 'A' is correct, but 'R' is wrong.
 - d) Statement 'A' is wrong and 'R' is correct.
- 3. Which part of the compound microscope helps in gathering and focusing light rays on The specimen to be viewed?
 - 1. Paraffin embedded sections of tissues are cut by Laser. (State True or False)

- 5. Which of the following statements is correct?
 - i) Centrifugation works on the principle of sedimentation.
 - ii) Large particles settle faster.
 - iii) The unit is rpm.
 - iv) Optimum pH is required for centrifugation.

a) i, ii and iii b) i, iii and iv c) ii, iii and iv d) All of the above

- 6. HPLC works on the principle of —-----.
- 7. Which of the following techniques is used to identify the molecular weight of the sample?
 - a) pH b) Electrophoresis c) Affinity chromatography d) GM counter
- 8. Kanyakumari is prone to radiation problems. Name an instrument which can be used to identify the radiation.
- 9. A title must be first fixed before deciding the area of research. (State True or False)
- 10. Match the following

Impact factor - number of publications for which an author has been	cited
Citation index - unethical practice of an author	
H-index - relative importance of a journal	
Plagiarism - legal protection provided to the author	

Part B (6 marks)

- 1. Appraise good laboratory practice.
- 2. Evaluate FTIR spectrometry.
- 3. Explain the structure and function of the confocal microscope.
- 4. Explain the histochemistry for carbohydrates.
- 5. Differentiate density from differential centrifugation.
- 6. Explain the principle of centrifugation.
- 7. Comment on the principle and procedure of affinity chromatography.
- 8. How is the molecular weight of DNA identified? Explain.
- 9. Highlight on the methods of review of literature.
- 10. Differentiate Open access journals from Predatory journals.

Part C (12 marks)

- 1. Inspect the principle, instrumentation, and application of pH meter.
- 2. Analyse the role of the Flame photometer in the biological field.
- 3. Illustrate the principle and working mechanism of Electron microscope.
- 4. Classify stains and narrate the staining of histological specimens.
- 5. Discuss the types of centrifuges in view of its application.
- 6. A researcher would like to separate a protein from a tissue. Which method would give 99% purity? Discuss the method.
- 7. Discuss the protocol applied in PAGE.
- 8. Explain the principle and working procedure of GCMS.
- 9. Discuss the essential steps in research.
- 10. Analyse the importance of i) Impact factor, ii) Citation index, iii) H-index

Head of the Department

Course Instructor

Dr. A. Shyla Suganthi

Dr. S. Mary Mettilda Bai

Dr. J. Vinoliya Josephine Mary

Class	: I M.Sc. Zoology
Title of the Course	: Poultry Farming
Semester	: II
Course Code	: ZP232SE1

No. of Hours/ Week	No. of Credits	Total Hours	Marks	
4	3	60	100	

Pre-requisite

Students should be aware of economic and cultural importance of Poultry farming.

Learning Objectives:

- To know the needs for Poultry farming and the status of India in global market.
- Acquire the skills to apply the techniques and practices needed or Poultry farming.

Course Outcomes

СО	Upon completion of this course, the students will be able to:	Cogniti ve level
CO - 1	recall the key components of a poultry house to ensure optimal living conditions for poultry.	K1 (R)
CO - 2	explain the different methods of rearing and the significance of proper vaccination programs in poultry farming.	K2 (U)
CO - 3	develop a practical feeding plan for a specific stage of poultry considering their nutritional requirements.	K3 (Ap)
CO - 4	analyze the impact of different housing systems on poultry welfare and productivity,	K4 (An)
CO - 5	critically assess the effectiveness of poultry feeds and the disease control measures in poultry farming,	K5 (E)
CO - 6	design a comprehensive waste management and recycling system for poultry farms.	K6 (C)

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6-Creative

Teaching Plan with Modules Total Hours 60 (Incl. Assignment & Test)

Uni ts	Mo dul e	Торіс	Hou rs	Cogniti ve level	Pedagogy	Assessment
Ι	1.	General introduction to	2	K1 (R)	Brain storming,	MCQ, Slip test
		poultry farming -			Cooperative	
		Definition of Poultry -			learning	
	2.	Past and present	4	K2 (U)	Lecture, Group	Seminar,
		scenario of poultry			discussion	Summarisation,
		industry in India				Class test
	3.	Principles of poultry	4	K3 (Ap)	PPT & Lecture	Model making,
		housing - Poultry				Oral test
		houses				

	4.	Systems of poultry farming	2	K4 (An)	Blended learning	Mind mapping, Open Book test
II	1	Management of chicks - growers	5	K3 (Ap)	Flipped classroom	Seminar, Quiz using Mentee metre
	2	Management of layers, Broilers.	5	K3 (Ap)	Peer tutoring, lecture using videos	Seminar, Class test
	3	Preparation of project report for banking and insurance.	2	K6 (C)	Project based	Slip test, Slido - MCQ
III	1	Poultry feed management-Principles of feeding	4	K4 (An)	Collaborative learning	Oral presentation
	2	Nutrient requirements for different stages of layers and broilers	4	K3 (Ap)	Mind mapping, Debate	Assignment, mind mapping
	3	Feed formulation and Methods of feeding.	4	K4 (An)	Peer tutoring, lecture using videos	Slip test, poster making
IV	1	Poultry diseases-viral, bacterial	4	K5 (E)	KWL, Inquiry based & PPT	Nearpod Collaborative
	2	fungal and parasitic (two each); symptoms, control and management	4	K5 (E)	Flipped classroom, Socratic method	Oral test, Slido - MCQ
	3	Vaccination programme.	4	K3 (Ap)	PPT & lecture	Seminar, Mind mapping
V	1	Selection, care and handling of hatching eggs - Egg testing	4	K2 (U)	Seminar, Collaborative learning	Seminar, Socrative, Collaborative
	2	Methods of hatching. - Brooding and rearing Sexing of chicks.	4	K2 (U)	Seminar, Jigsaw, Group Discussion	Quizzes, Oral test Summarisation
	3	Farm and Water Hygiene - Recycling of poultry waste.	4	K5 (E)	Seminar, Interactive PPT, Index card	Short test with open ended question

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Entrepreneurship

Activities (Em/ En/SD): Poultry houses (Model making)

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Environment Sustainability Activities related to Cross Cutting Issues: Group Discussion on "Poultry Farming in relation to Environment Sustainability"

Assignment: Nutrient requirement for different stages of broilers (online assignment)

Seminar Topics

- 1. Past and present scenario of poultry industry in India
- 2. Principles of poultry housing.
- 3. Systems of poultry farming.
- 4. Management of chicks.
- 5. Management of grower.
- 6. Management of layer.
- 7. Management of Broiler.
- 8. Principles of feeding.
- 9. Nutrient requirements for different stages of layers.

- 10. Nutrient requirements for different stages of Broilers.
- 11. Feed formulations.
- 12. Methods of feeding.
- 13. Fungal diseases.
- 14. Bacterial diseases.
- 15. Viral diseases.
- 16. Parasitic diseases.
- 17. Brooding of chicks.
- 18. Sexing of chicks.
- 19. Farm and Water Hygiene.
- 20. Recycling of poultry waste.

Sample questions

Part A

- 1. Droppings Pit is a raised platform constructed inside the _____ house.
- 2. The chick rearing is the most difficult of all the operations in poultry farming (**State True or False**).
- 3. Which nutrient is essential for promoting rapid growth and muscle development in broilers?
- a) Fiber b) Phosphorus c) Vitamin K d) Sodium
- 4. External parasites like mites and lice can cause skin and feather problems in poultry (**State True or False**).
- 5. Assertion (A): Recycling poultry waste is an effective strategy for sustainable farming practices.

Reason (**R**): Poultry waste, when properly managed, can be converted into valuable fertilizers or bioenergy, contributing to environmental sustainability.

- a) Both A and R are correct
- b) Both A and R are wrong
- c) A is correct and R is wrong
- d) A is wrong and R is correct

Part B

- 1. List the factors to be considered while selecting a site for a poultry farm.
- 2. What is the optimal temperature range for a brooder house to ensure the health and well-

being of chicks during the early stages of their development?

- 3. Identify the different methods of feeding poultry birds.
- 4. Elaborate on the key components of an effective poultry vaccination program.
- 5. Explain the steps involved in the selection, care, and handling of hatching eggs for successful incubation.

Part C

- 1. Describe the optimal layout strategies for designing an efficient and productive broiler farm.
- 2. Explain the management techniques that contribute to successful broiler farming.
- 3. Examine the challenges faced in feed formulation for poultry production.
- 4. Discuss the lifecycle, clinical manifestations, and economic impact of any two bacterial infestations in poultry. Evaluate different methods of control and treatment.
- 5. Explore the significance of maintaining high levels of farm and water hygiene in poultry production.

Head of the Department

Dr. A. Shyla Suganthi

Course Instructors

Dr. P.T. Arokya Glory

Dr. X. Venci Candida

No. of hours/ week	No. of credits	Total number of hours	Marks
6	4	90	100

Objectives

1. To facilitate the students to understand the microbes and their significance.

2. To develop skills in microbial techniques relevant to industries, environment and disease management.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	describe the structure, distribution and life cycle of microorganisms and their role in human welfare.	PSO - 1	R
CO - 2	explain culture techniques, growth, fermentation and microbial products.	PSO - 2	U
CO - 3	Apply the microbiological laboratory skills in clinical research, food industries and environmental management.	PSO - 3	Ар
CO - 4	analyze beneficial and harmful microbes	PSO - 3	An
CO - 5	evaluate the microbial importance and applications in various fields.	PSO - 4	Е

Teaching plan with Modules Total Hours: 90 (Incl. Seminar & Test)

Uni ts	Mod ule	Торіс	Ho urs	Cognitive level	Pedagogy	Assessment
Ι	Virus	, Fungi and Protists (18 hrs)				
	1	History and scope of microbiology. Classification of microorganisms - Whittaker's five kingdoms and three domain	3	K1 (R) K2(U)	Brainstormin g, Lecture, PPT	Class test, Flow chart, Seminar
	2	classification. Virus - General properties, viral taxonomy.	2	K1(R),	Brainstormin g, Discussion	Assignment, Flow chart

	3	Bacteriophages – life cycle – Lytic and Lysogenic.	4	K1 (R),	Inquiry based learning, Peer teaching, Flipped learning, Illustration	Seminar, Home assignment, Slip test, Illustration
	4	Sub viral agents – viroid, virusoids, prions and satellite viruses.	2	K1 (R), K4(An)	Interactive lecture, Group Discussion,	Study material preparation, Seminar
	5	Cultivation of viruses and purification assays. Virus- host interactions.	4	K1 (R), K2(U)	PPT, Video class, Collaborative learning	Seminar, Open book test, short test, class test
	6	Fungi: classification – morphology - filamentous, non-filamentous and dimorphic fungus. Apicomplexa– <i>Toxoplasma</i> .	3	K1(R), K2 (U), K3(Ap)	Interactive teaching, PPT, Partnering teaching	MCQ, Seminar, Online assignment, Class interaction
II	Bacte	ria and culture techniques (18	8 hrs)	I		
	1.	Bacteria -classification – Bergey's system.	2	K1 (R)	Collaborative teaching, Peer teaching (Seminar), PPT	Mind map, Oral test
	2.	Morphology, structure and functions of cell walls (Gram positive & Gram negative), flagella, fimbriae and pili.	3	K1(R)K3 (Ap)	Interactive lecture, Group discussion, Illustration	Diagrams, Online Assignment Seminar, MCQ
	3.	Fine structure of <i>Escherichia coli</i> .	2	K3(Ap) K4(An)	Illustration, Peer teaching	Illustration, Assignment
	4.	Bacterial nutrition - nutrient requirements, nutritional classes, uptake of nutrients.	3	K3(Ap) K4(An) K5 (E)	Brainstormi ng, Mind map, peer teaching	Class test, Seminar, Flow chart
	5.	Bacterial growth and measurements.	3	K3(Ap) K4(An)	Video teaching, Demonstrati on Interactive class	Practical, Discussion, Quiz
	6	Types of culture media	2	K2(U)	Partnering, Collaborati ve learning	Quiz, Class test

	7	Pure culture and isolation techniques - Streak plate and pour- plate technique.	3	K3(Ap)	Interactive class, Video class Demonstrati on	Quiz, Seminar, Slip test, Online assignment
III	Indus	trial Microbiology (18 hrs)	1		1 -	
	1	Fermentation - microbial products - alcohol (ethanol), antibiotics (penicillin),	3	K3(Ap)	Video, Group Discussion, Interactive PPT	Mind mapping, Portfolio review.
	2	Production of vitamin B_2 and Vitamin B_{12} .	3	K2(U)	Role reversal, Interactive PPT	Slido - MCQ, Oral test
	3	Biofertilizers - steps for preparing bacterial biofertilizers	3	K2(U)	Debate, Jigsaw	Four corner Slip test
	4	Mass cultivation of <i>Cyanobacteria, Azolla</i> and <i>Trichoderma</i>	3	K3(Ap)	Flipped classroom, Peer tutoring	Oral test, Summarizati on
		Production of mycorrhizal fungi– Vesicular Arbuscular Mycorrhiza (VAM) and yeast.	3	K2(U)	Seminar, Think – pair share	Presentation assessment, Traffic light.
		Industrial uses of yeast and moulds.Probiotics- andLactobacillusandSaccharomyces.	2	K2(U)	Flipped classroom.	Thumps up / down, Listing out important steps
		Bacterial insecticides – <i>Bacillus</i> species.	1	K2(U)	Peer group teaching Listing out important terms.	Test using Padlet
IV	Envir	onmental Microbiology (18 H	lrs)		Γ	
IV	1	Microbiological analysis of water - Coliform test, Most Probable Number (MPN) test, and Membrane Filter (MF) test	4	K4(An) K5 (E)	KWL, Inquiry based PPT	Nearpod Collaborative Slido
	2	Sewage treatment – small scale and large-scale treatment. Biogas production– solubilization, acetogenesis and methanogenesis	3	K4(An)	Seminar, Flipped classroom, Socratic method	Oral test Quizzes, panel discussion
	2	Microbial leaching – copper and uranium leaching.	3	K2(U)	Interactive PPT & lecture gallery Walk	Traffic light and Mind mapping

	3	Biogas production – solubilization, acetogenesis and methanogenesis	3	K2(U)	Seminar Interactive PPT & lecture Role reversal	Four corner and Mind mapping
	4	Biodegradation of petroleum and xenobiotics, bioremediation and biosorption.	2	K2(U)	Seminar, Peer group teaching, Group discussion.	Quizzes, Summarizati on, Oral test
	5	Microbes as biofilms, biosensors, nanomaterials.	3	K4(An)	KWL, Interactive PPT	Think and pair, Oral test
V	Medi	cal Microbiology (18 hrs)				
	1	Gnotobiotic animals, distribution of normal microbiota of the human body	2	K2(U)	Seminar, Collaborative learning	Ticket out the door method, Nearpod Collaborative
	2	Nosocomial infections. Fungal diseases - Candidiasis and Aspergillosis	3	K2(U))	Seminar, Jigsaw, Group Discussion	Quizzes, Oral test, Summarizati on
	3	Bacterial diseases - Streptococcal pneumonia, Typhoid, Tetanus.	2	K2(U)	Seminar, Interactive PPT, Index card	Short test with open ended question
	4	Viral diseases – SARS, MERS, Covid-19, Ebola, Hepatitis-B, Rabies.	2	K2(U)	Seminar Interactive PPT, Jigsaw	Think and pair, Oral test
	5	Sexually transmitted diseases – Gonorrhea, Syphilis.,	1	K2(U)	Seminar Chunking method- Padlet	Quiz - Slido
	6	Microbial drugs - Drug administration, determination of antimicrobial activity, mechanism of antimicrobial agents' effectiveness of antimicrobial drugs.	4	K4(An)	Seminar & Index card,	Four corner and Mind mapping, Quizzes
	6	Methods of controlling microbes. Current problems of antibiotic resistance in man.	4	K4(An) K5 (E)	Interactive PPT, Collaborative learning, Reciprocal teaching	Ticket out the door method, Oral test

Course Focussing on Employability/ Entrepreneurship/ Skill Development:

Activities (Em/ En/SD):

Employability – Learn the culture techniques.

Entrepreneurship: Visit to a clinical laboratory.

Skill Development: Prepare fermented products and isolate and identify bacteria.

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human

Values/Environment Sustainability/ Gender Equity):

Professional Ethics and Environment Sustainability

Activities related to Cross Cutting Issues:

Professional Ethics – Killing bacteria after the study Environment Sustainability – Analyse water sample to find out microbial load and apply bioremediation.

Assignment

1. Exhibition on Protozoan, Bacterial, Fungal, and Viral diseases sexually transmitted.

2.Culture of bacteria and measurement of growth.

Seminar Topics

- 1. History and Scope of Microbiology.
- 2. Viruses General properties. Structure of viruses.
- 3. Viruses and cancer.
- 4. Viroid and Prions.
- 5. Bergey's system of bacterial classification.
- 6. Fine structure of *Escherichia coli*.
- 7. Bacterial nutrition Common nutrient requirements.
- Mass cultivation of Cyanobacteria, Azolla and Trichoderma
- 9. Production of mycorrhizal fungi– Vesicular Arbuscular Mycorrhiza (VAM) and yeast.
- 10. Industrial uses of yeast and moulds.

Sewage treatment – small scale, large scale Biogeographic dustion – scalubilization

- 12. Biogas production- solubilization, acetogenesis and methanogenesis
- 13. Biodegradation of petroleum and xenobiotics.
- 14. Viral diseases SARS, MERS, and Covid-19
- 15. Fungal diseases- Candidiasis and Aspergillosis.
- 16. Bacterial diseases Streptococcal pneumonia, Typhoid, Tetanus.
- 17. Classification of Drug administration.
- 18. Current problems of antibiotic resistance in man.
- 19. Sexually transmitted diseases.

Sample Questions

Part A

- 1. Virus is a living material True/ False
- 2. Choose the dimorphic fungus from the following.
 - a. Basidiomycota b. Afflatoxin
 - c. Toxoplasma gondii d. Histoplasma capsulatum

- 3. What is a key step in preparing bacterial biofertilizers
 - a. Chemical synthesis b. Autoclaving
 - c. Encapsulation d. Inoculation with beneficial bacteria
- 4. Name the process which is commonly used in small scale sewage treatment
 - a. Activated sludge process b. Trickling filter
 - c. Septic tank d. Aeration Pond derivatives
- 5. Which chemical agent is commonly used for hand hygiene in medical settings
 - a) Hydrogen peroxide b) Chlorine bleach
 - c) Isopropyl alcohol d) Iodine tincture

Part B

- 1. Point out the general characteristic features of viruses.
- 2. Choose the suitable culture media for bacterial growth.
- 3. Differentiate the symbiotic relationship between Azolla and cyanobacteria
- 4. Briefly explain the purpose of the Coliform test in microbiological water analysis.
- 5. Discuss three regions of the human body where normal microbiota found add a note on the role of normal microbiota in these areas.

Part C

- 1. Explain the culture methods of viruses. Add a note on its purification assay.
- 2. Explain the culture and isolation techniques of bacteria. How will you measure their growth?
- 3. Elaborate the steps involved in the production of Vitamin B12 through fermentation. Include the microorganisms and key processes.
- 4. Discuss the role of microbes in biofilms, biosensors, and nanomaterials, highlighting their applications in various fields.
- 5. Discuss the challenges in diagnosing and treating these fungal diseases, and their significance in immunocompromised individuals.

Head of the Department

Dr. A. Shyla Suganthi

Course Instructors

Dr. F. Brisca Renuga Dr. C. Anitha

Class	: II M.Sc. Zoology
Semester	: IV
Name of the Course	: Biotechnology & Nanobiology
Course code	: PZ2042

Hours/ Week	Credits	Total Hours	Marks	
6	4	90	100	

Objectives

- 1. To enable the students to understand the essence of biotechnology and become aware of the advances in Nanobiology.
- 2. To develop skills to apply biotechnological principles in research related to genetic manipulations, industrial and environmental biotechnology.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO address ed	CL
CO - 1	explain the various techniques used in modern biotechnology.	PSO - 1	U
CO - 2	outline the basic concepts of Biotechnology and Nanobiology, its application and threat to the society.	PSO - 2	R
CO - 3	apply the biotechnological principles in research and judicial use of bio- and nanotechnology to solve societal problems.	PSO - 2	Ар
CO - 4	analyze the impact of biotechnological products and genetically modified organisms in bioremediation.	PSO - 3	An
CO - 5	evaluate the function, gene modulation and their effects on improvement of crops and animals after the applications of cloned genes.	PSO - 4	E
CO - 6	design simple experiments on biotechnology and communicate the results through publication.	PSO - 3	C

Teaching Plan with Modules Total Hours: 90 (Incl. Seminar & Test)

Unit	Sectio n	Topics	Hours	Cognitive level	Pedagogy	Assessme nt
Ι	Gene c	cloning (18 hrs)				
	1	Basic steps of gene	4	K1 (R)	Lecture,	Class
		cloning, restriction and		K5 (C)	Video class	test:
		modifying enzymes,				MCQ
		linkers and adaptors.				

	2 3 4 5	Cloning and expression vectors, construction of chimeric DNA Nucleic acid probes, DNA libraries. Polymerase chain reaction, blotting techniques, molecular markers. DNA sequencing, synthesis of oligonucleotides, DNA fingerprinting, Human Genome Project.	4 3 3 4	K1 (R) K2 (U) K4 (An) K1 (R) K3 (Ap) K1 (R) K5 (C) K1 (R) K5 (C)	Brainstorming, Discussion Group discussion, Jigsaw method Mind mapping, chalk and Board, lecture Index cards, Chalk and board	Seminar Assignm ent: Flow chart/ Mind map/ Drawings / Class notes Internal Test I & Quiz I
II	Anima	l Biotechnology (18 hrs)				
	1	Culture media, primary culture and cell lines; pluripotent stem cell lines; tissue engineering.	4	K1 (R) K2 (U)	Interactive Lecture, PPT, Video	Class test: Short test Assignm
	2	<i>In vitro</i> fertilization and embryo transfer in animals; gene transfer methods.	4	K1 (R) K3 (Ap)	Story telling Lecture, Video, Group discussion	ent: Flow chart/ Mind map/
	3	Primary explanation techniques – organ and embryo culture.	4	K1 (R) K3 (Ap)	Group discussion, Jigsaw method	Drawings / Class notes
	4	Transgenic animals - cattle, sheep, fish and pigs transgenic animals as models of human disease. Ethical issues in transgenesis.	6	K1 (R), K2 (U), K3 (Ap), K5 (An) K5 (C)	Peer tutoring, jigsaw	Internal test I & Quiz I (1,2) Seminar Internal test II & Quiz II (3,4)
III	Medica	l Biotechnology (18 hrs.)		-		
	1	Hybridoma technology and Monoclonal antibodies.	4	K1 (U) K3 (Ap)	Blended learning, Lecture	Internal test II & Quiz II
	2	Applications of biotechnology in medicine, Vaccines, diagnostics, and forensics. Gene therapy – pharmacogenomics.	5	K3 (Ap), K4 (An) K5 (C)	Interactive Lecture, PPT, Debate	Class test: MCQ Seminar
	3	Enzyme biotechnology: Isolation and purification	4	K1 (R)	Formal Lecture,	

		of any mag uses of		$K_{2}(\Lambda n)$	DDT Door group	Aggionm
		of enzymes, uses of enzymes in industries,		K3 (Ap) K5 (C)	PPT, Peer group discussion	Assignm ent: Flow
		immobilization of		KJ (C)	uiscussion	chart/
		enzymes and their uses.				Mind
	4	Biosensors. Terminator	3	K1 (R)	Toom toophing	map/
	4		3		Team teaching,	Drawings
		and traitor technology.		K3 (Ap)	mind map	/ Class
	5	La talla atas al Dua na artas	2	K4 (An)	Challe and Decad	
	5	Intellectual Property	2	K2(U)	Chalk and Board,	notes
		Rights.		K4 (An)	Lecture, you tube	Internal
				K5 (C)	videos	test II &
IV	T J4					Quiz II
1V		trial and Environmental B				T . 1
	1	Industrial Biotechnology	4	K1 (R)	Peer tutoring,	Internal
		-design of fermenter,		K2 (U)	lecture using	test II &
		sterilization, media		K3 (Ap)	videos	Quiz II
		design, production of				
		metabolites -				
		Downstream processing				Open
		and in situ recovery of				book test:
		products.				Objective
	2	Microbial	3	K1 (R)	Interactive	5
		biotransformation,		K2 (U),	Lecture, PPT	type
		microbial biomass		K3 (Ap)		
		production (SCP).		K5 (C)		Seminar
	3	Environmental	3	K1 (R)	Flipped	
		Biotechnology -		K2 (U)	classroom, Peer	Assignm
		Bioremediation and		K4 (An)	tutoring	ent: Flow
		Phytoremediation.				chart/
	4	Genetically engineered	5	K2 (U)	Storytelling	Mind
		microorganisms (GEMs)		K4 (An)	Lecture,	map/
		- treating oil spills,		K5 (C)	PPT, videos	Drawings
		detection of pesticide in				/ Class
		soil and their				notes
		degradation,				
		sequestering heavy				
		metals.				
	5	Biomining and Biofuels.	3	K3 (Ap)	Mind mapping,	
				K4 (An)	PPT	
V	Nanom	aterials (18 hrs.)	•			Internal
	1	Types and properties,	3	K1 (R)	Peer tutoring,	test I &
		DNA and protein		K2 (U)	jigsaw	Quiz I
		nanoarrays				_
	2	Biosystems (microbes)	3	K1 (R)	Flipped	Class
		as nanofactories.		K2 (Ú)	classroom, Peer	test: Slip
				, í	tutoring	test
					tutoring	test

3	Application of nanotechnology - medical diagnostics, imaging contact lenses, dental implants, Scaffolds for tissue engineering, cosmetics and drug delivery, agro- practices and nano food products.	5	K1 (R), K2 (U) & K3 (Ap)	Chalk and Board, Lecture, you tube videos	Seminar Assignm ent: Flow chart/ Mind map/ Drawings / Class
4	Environmental remediation - prevention of contamination, maintenance, and quality enhancement.		K1 (R), K4 (An)	Team teaching, mind map	notes
5	Risks and threats of nanoparticles in environment.	3	K1 (R) K2 (U) & K3 (Ap)	Lecture, Discussion, Debate	

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Polymerase chain reaction (Mind Map) Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Human values

Activities related to Cross Cutting Issues: Debate on "Huma values." Assignment: DNA sequencing, dental implants

Seminar

- 1. DNA libraries
- 2. Polymerase chain reaction
- 3. Molecular markers
- 4. DNA fingerprinting
- 5. Human genome project
- 6. Primary culture and cell lines
- 7. In vitro fertilization and embryo transfer in animals, gene transfer methods.
- 8. Transgenic animals
- 9. Ethical issues in transgenesis
- 10. Hybridoma Technol. & Monoclonal antibodies

- Applications of Biotechnology in medicine, vaccines, diagnostics & forensics
- 12. Gene therapy
- 13. Microbial biomass production
- 14. Environmental remediation
- 15. Genetically Engineered Microorganisms
- 16. Biomining and Biofuels
- 17. Nanomaterials: Types and properties
- 18. Application of nanotechnology
- 19. Environmental remediation
- 20. Risk and threats of nanoparticles in environment

Sample questions

Part A

1. Technique of DNA fingerprinting involves _____

a) ELISA b) Northern blotting c) Southern blotting d) PAGE

2. Which one of the following is used commonly to disaggregate epithelial cells?

- a) EDTA b) Amylase c) Peptidase d) Collagenase
- 3. Immobilization of enzymes protect the enzymes from degradation.

4. Identify the correct sequence during the industrial production of substances.

- a) Inoculation, screening, fermentation, downstream processing, removal of waste
- b) Screening, Inoculation, fermentation, downstream processing, removal of waste
- c) Fermentation, screening, inoculation, removal of waste, downstream processing
- d) Fermentation, inoculation, removal of waste, downstream processing

5. A particular molecule of carbon made up of sixty carbon atoms has received some press as

a structure that shows promise as a basic building block in the area of molecular manufacturing. What is the whimsical nontechnical name for these molecules?

a) Fullerrods b) Nanonodes c) Buckyballs d) Nanocubes

Part B

- 1. Briefly describe the desirable characters of cloning vectors.
- 2. Evaluate the various types of gene transfer methods.
- 3. Demonstrate immobilization of enzymes and their uses.
- 4. How could biotechnology help in the treatment of oil spills?
- 5. What are nanomaterials? Explain the types and applications of nanomaterials.

Part C

- 1. What is PCR? Explain the stages of PCR and its applications.
- 2. Appraise in vitro fertilization and embryo transfer in animals.
- 3. Elaborate hybridoma technology and monoclonal antibodies production.
- 4. Describe microbial biomass production with special reference to SCP
- 5. Microbes are used as nanofactories' Justify.

Head of the Department

Dr. Shyla Suganthi

Course instructor Dr. A. Punitha

Dr. Jeni Chandar Padua

Class	:	II M. Sc. Zoology
Semester	:	IV
Title of the Course	:	Immunology
Course Code	:	PZ2043

Hours/ Week	Credits	Total Hours	Marks
5	4	75	100

Objectives

- 1. To facilitate the students to appreciate the defense functions of the immune system.
- 2. To develop the skill to determine the immunomodulatory strategies used to enhance or suppress the immune response.

Course Outcomes

СО	Upon completion of this course the students will be ableto:	PSO address ed	CL
CO - 1	recall the importance of immunity, immune response, MHC,BCR and TCR, antigen –antibody interaction.	PSO - 1	R
CO - 2	relate the evolution of immune molecules in different groups of animals, immunodeficiency diseases and immunotechniques.	PSO - 1	U
CO - 3	make use of immunization schedules, differentiate the typesof hypersensitive allergic reactions and symptoms.	PSO - 2	Ар
CO - 4	analyse the immune response in relation to toxicants, vaccines, tumour, and infectious diseases.	PSO - 3	An
CO - 5	evaluate the role of immune cells and humoral factors inimmune response	PSO - 3	E
CO - 6	predictimmuno-nano materials for immunodiagnostic, therapeutic techniques and research.	PSO - 4	С

Teaching Plan with Modules Total Hours: 75 (Incl. Assignment & Test)

Units	Modul es	Topics	Hours	Cognitive level	Pedagogy	Assessment
Ι	Immune system in invertebrates and vertebrates (15 hrs.)					
	1	Immunity - Innate and acquired, TypesK4 (An)	3		PPT, Lecture Method, Flipped Class room, Group discussion	MCQ, Short test,

	2	Lymphoid organs and immune cells Antigens,	2 3	K1 (R)	Peer teaching, you tube links, PPT, Lecture Method PPT, Blended	Slip test Assignment MCQ, Flow
	5	Immunoglobulins – characteristics Haptens and types.			learning, Lecture method, Group discussion	chart
	4	ImmuneResponse:Humoralimmuneresponse,Cellimmuneresponse	4	K5 (E)	PPT, Inquiry based learning, Lecture method	Mind map, MCQ, Oral test
	5	Immunological memory (Anamnesis).	2	K5 (E)	Flipped Class room, Group discussion	MCQ, Short test,
	6	Immunization: immunization schedule and vaccines.	1	K3 (Ap)	PPT, Inquiry based learning, Lecture method	Mind map, MCQ, Oral test
	B and '	T cell (12 hrs.)	<u> </u>			<u> </u>
	1	B cells – Development, Maturation, activation, differentiation, B cell receptor (BCR) and B cell co- receptor complex. Signal transduction from B cell antigen receptor and Major pathways of BCR signaling.	6	K1 (R) K2 (U)	Lecture, ppt, Group discussion, Role play	Flow chart, Mind map
II	2	T cells – maturation, T cells - activation and differentiation, T cell receptor (TCR). T cell co-receptor complex, Formation of T and B cell conjugates. Co- stimulation in T cell response and signal transduction, Clonal anergy.	6	K1 (R) K2 (U)	Lecture, Blended learning	MCQ - mentimeter Short answer test
	3	Antigen processing and presentation. Role of antigen presenting cells, cytosolic pathway and endocytic pathway		K1 (R) K2 (U)	Lecture, Reflective PPT	Model making

	Major	and minor histocompatibility	comple	ex (15 hrs	.)	
	1	MHC class I and II molecules, cellular distribution and regulation of MHC expression	5	K1 (R)	Blended learning, Lecture method, Group discussion, PPT	Quiz, Slip test
ш	2	MHC in immune responsiveness, MHC and susceptibility to infectious diseases.	4	K1 (R)	PPT, Lecture Method, Flipped Class room, Group discussion	Mind map, Flow chart
	3	Minor histocompatibility (H) antigens. Immune effector mechanisms:	2	K1 (R)	PPT, Inquiry based learning, Lecture method	Flow chart, Peer review
	4	Cytokines and their functions	2	K1 (R)	PPT, You tube Video, Collaborative learning.	Quiz, Group discussion
	5	Complement system – classical and alternative pathways, biological functions		K1 (R)	Lecture using PPT, Cooperative learning	MCQ, Flow chart
	Immur	ne system in health and diseas	es (15 ł	nrs.)	1	1
	1	Tumour immunology- tumour antigens, immune response to tumour and immune surveillance. Immunodiagnosis of tumour antigens and immuno therapy of tumour.	4	K4 (An)	Lecture -ppt, Discussion	Assignment
IV	2	Hypersensitivity: factors causing hypersensitivity, Type I, II, III, and IV reactions	2	K3 (Ap)	Seminar, PPT/Video lecture	Preparation of chart
	3	Immunodeficiency – primary and secondary Autoimmune diseases - characteristics, causes, classification. Autoimmune diseases - localized (Diabetes mellitus); systemic (rheumatoid arthritis).	5	K3 (Ap) K4 (An) K5 (E)	<u> </u>	Seminar

	Antige	Immune response to infectious diseases and treatment - Protozoan disease (Malaria), Bacterial disease (Tuberculosis) and Viral disease (AIDS). n-antibody interaction (15 hrs	4	K4 (An) K5 (E)	Seminar-PPT, Inquiry based learning	Mind map, Quiz through quizzes
	1	Antigen-antibody	1	K1 (R)	Seminar,	Oral test
	1	interaction, Complement fixation test- precipitation reaction in fluids and precipitin curve.		K2 (U)	Demonstration.	
	2	Radial immunodiffusion and Double immunodiffusion.		K2 (U) K3 (Ap)	Lecture, Demonstration PPT, Experimental learning	Practical
V	3	Agglutination reaction– hemagglutination and bacterial agglutination. Agglutination reaction- coated particle agglutination and agglutination inhibition.	3	K2 (U) K3 (Ap)	Seminar, Lecture and Video	Video presentations Observe and deliver the concept
	4	Radio immuno assay, ELISA and Western blotting, Immunofluorescence. Flow cytometry.		K2 (U) K3 (Ap)	Seminar, Virtual demo, Experimental learning	
	5	Transplantation: classification of grafts, mechanism of graft rejection, graft versus host reaction, immunosuppressive therapy during transplantation		K3 and K4	Seminar, YouTube Lecture, Case studies	Group discussion

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Perform experiment to understand antigen antibody interaction and record the results

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Environmental sustainability

Activities related to Cross Cutting Issues: Analyze the impact of pathogens and other pollutants on the immune response of human beings and prepare a report.

Assignment: Complement system - classical and alternative pathways, biological functions

Seminar Topic:

- 1. Immunity Innate
- 2. Immunity acquired
- 3. Lymphoid organs Primary
- 4. Lymphoid organs Secondary
- 5. Immunotherapy of tumor
- 6. Autoimmune diseases characteristics, causes, classification
- 7. Classification of Autoimmune diseases- localized (Diabetes mellitus)
- 8. Classification of Autoimmune disease systemic (rheumatoid arthritis).
- 9. Structure MHC Class I
- 10. Structure MHC Class II

Sample Questions:

- 11. Structure Minor Histocompatibility Antigen
- 12. Transplantation: classification of grafts
- 13. Hypersensitivity: factors causing hypersensitivity
- 14. Radial immunodiffusion and Double immunodiffusion
- 15. Radio immuno assay
- 16. ELISA
- 17. Western blotting
- 18. Immunofluorescence
- 19. Flow cytometry

Part A

- 1. Immunity by birth is innate immunity. (State
- 2. Match the following:

- (State True or False)
- T_H cells
 -a. Lethal to tissue cells.
 T_S cells
 -b. T-delayed type Hypersensitivity
 T_k cells
 -c. Immune tolerance
 T_D cells
 -d. Phagocytosis
 a) 1a, 2b,3c, 4d
 b) 1b, 2c, 3d, 4a
 c) 1c, 2d, 3a, 4b
 d) 1d, 2c, 3a, 4b.
- 3. Which of the following cytokines promote the development and differentiation of T and B cells?

a) IL b) Interferon c) FADD d) TRADD.

4. Give an example for auto-immune disease.

5. An interlocking of antigen and Antibody is called ______.

Part B

1. Discuss Immunization schedule.

1.

- 2. Illustrate B cell receptor (BCR) and B cell co-receptor complex.
- 3. Differentiate the structure of class I and II MHC molecules.
- 4. How does our immune system respond to protozoan disease?
- 5. Explain the principle and procedure of flow cytometry.

Part C

- 1. Analyse Humoral and cell-mediated immune response with example each.
- 2. Correlate the development of B and T cells.
- 3. Discuss minor histocompatibility antigen.
- 4. Explain the characteristics and types of autoimmune disease.
- 5. Discuss the types of agglutination reaction.
- 6. Explain the mechanism of graft rejection and immunosuppressive therapy adopted during
- 7. transplantation.

Head of the Department

Dr, A. Shyla Suganthi

Dr. J. Vinoliya Josephine Mary

Course Instructor

Dr, C. Josephine Priyatharshini

Class	: II M. Sc. Zoology
Semester	: IV
Title of the Course	: Medical Laboratory Technology
Course Code	: ZC2051

Credits	Inst. Hours	Total Hours	Marks
4	75	75	100

Learning Objectives

1. To impart knowledge on laboratory principles, clinical analysis and safety measures in handling samples.

Core XV

2. To develop skills on laboratory investigations adopted in medical diagnostic laboratories

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addresse d	Cognitiv e level
CO - 1	outline the laboratory principles applied in diagnosis of	PSO - 1	K1 (R)
	disease and methods of biomedical waste disposal.		
CO - 2	explain the type of specimens, collection, and use of appropriate diagnostic techniques.	PSO - 2	K2 (U)
CO - 3	prepare reagents, handle instruments, and perform clinical analysis.	PSO - 3	K3 (Ap)
CO - 4	interpret and validate the results.	PSO - 4	K4 (An)

Teaching Plan with modules

Total Contact hours: 75 (Including lecture, assignment, seminar assignment & test)

Units	Modu les	Topics	Hou rs	Cognit ive level	Pedagogy	Assessment
	Labora	atory instruments and safety meas	sures	(15 Hrs.)		
Ι	1	Scope of Medical laboratory	3	K1 (R),	PPT, Lecture	Slip test
		technology. Laboratory		K2 (U),	Method,	Assignment
		principles - Organization of		K3 (Ap)	Flipped Class	8
		clinical laboratory - Role of			room,	
		medical laboratory technician.			Demonstration	
	2	Laboratory instruments:	5	K1 (R),	Lecture,	MCQ, Quiz,
		Common glass wares in clinical		K3 (Ap)	PPT, Flow	Oral test
		laboratory - Centrifuges - Water			Chart,	
		bath – Refrigerator – Autoclave			Demonstration	
		- Hot air oven.				
	3	Mixer – Laminar air flow –	4	K2 (U),	Lecture,	Mind map,
		Microscope – Analyser –		K3		MCQ,
		Spectrometer - Cell counter -		(Ap)		, v

		Blood bank.			PPT, Blended	Open Book
					learning,	test
					Demonstration	
	4	Safety measures - Cleaning and	3	K2 (U),	Lecture,	Flow chart,
		sterilization methods -		K3 (Ap)	PPT, Inquiry	Oral test
		antiseptics and disinfectants -			based	
		hospital and clinic borne			learning,	
		infection and personnel hygiene.			Demonstration	
	Clinica	al sample collection, processing an	d sto	rage (15 Hr	s.)	
II	1	Specimen collection and	4	K2 (U),	Lecture,	Flow chart
		processing of blood, urine and		K3 (Ap)	PPT, Group	MCQ
		cerebrospinal fluid, separation of		_	discussion,	
		serum and plasma.			Flipped Class	
		L L			room	
	2	Handling of specimens for	3	K2 (U),	Cooperative	Oral test
		testing, preservation and		K3 (Ap)	learning,	Assignment,
		transport of specimen, factors			iourning,	mind map
		affecting the clinical results,			learning,	P
		effect of storage on sample.			C,	
					Lecture method,	
					Group	
					discussion,	
					PPT	
	3	Anticoagulants: EDTA, Di-	4	K3 (Ap),	Lecture, PPT	Mind map
		potassium salts of EDTA,		K4 (An)	Inquiry	True or
		oxalate, sodium citrate and			based	False
		sodium fluoride.			learning,	
	4	Techniques of sample	4	K3 (Ap),		Slip test
		processing: Throat Swab,		K4 (An)	PPT,	Assignment
		Sputum, blood, urine, stool, pus,			Collaborativ	
		CSF, other body fluids, other			e learning	
		swabs like from wounds, skin				
		clipping, spore strips.				
	Dodry (
	e e	luid analysis (15 Hrs.)	4	$V1(\mathbf{D})$	Lastura	Mindmon
	1	Physical, chemical and	4	K1 (R),	DDT	Mind map,
		microscopical examination of		K2 (U),	PPT, Interactive	MCQ,
		cerebrospinal fluid, pleural fluid,		K3 (Ap)	class	Oral test
	2	synovial fluid.	3	$K^{2}(\mathbf{I})$		Flow about
	2	Haematological techniques -	3	$K_{2}(U),$	~	Flow chart,
		Haemoglobin estimation,		K3 (Ap),		Oral test
		Erythrocyte Sedimentation Rate.		K4 (An)	PPT,	
					Demonstrat ion	
	3	Differential count, Total Red	4	K3 (Ap),	Lecture	Slip test, Peer
	5	Blood cell count, Total White	т	K3 (Ap), K4 (An)		review
		blood cell count, Platelet count.		IX+ (AII)	Demonstrativ	
					e learning	
	1	Plood honking technology Dired	Λ			Droin
	4	Blood banking technology - Blood		K2(U),		Brain
		typing, collection and storage and		K3 (Ap)	storming,	storming,

		plasma separation. Diagnosis of Covid-19.			Lecture using videos	MCQ
	Histop	oathology (15 Hrs.)				•
IV	1	Introduction of histopathology, labelling and transportation of tissue specimens.	4	K1 (R), K3 (Ap)	Flipped classroom	Open Book test, Slido - MCQ
	2	Tissue processing - fixation, sectioning, staining, and mounting, manual and automated method.	5	K3 (Ap), K4 (An)	Demonstrative learning	MCQ, mind mapping
	3	Cryostat, frozen sections of fresh, fixed and unfixed tissue.	3	K3 (Ap), K4 (An)	Cooperative learning, Lecture using videos	Oral test, Summarizatio n
	4	Freeze drying, rapid frozen sections and staining for emergency diagnosis.	3	K3 (Ap), K4 (An)	Blended learning	
V	Clini	cal sample analysis and biomedical	l was	te managen	nent (15 Hrs.)	
	1	Physical, chemical and microscopical examination of sputum, urine and stool.	4	K3 (Ap), K4 (An)	Mind mapping, Inquiry based	Short test with open ended question
	2	Routine examination of urine and their clinical significance. Pregnancy test.	3	K3 (Ap), K4 (An)	PPT & lecture	Quiz using Mentee meter
	3	Semen: Sample collection and microscopic examination for count and morphology.	3	K3 (Ap), K4 (An)	Brain storming, Flipped classroom	Socrative, Collaborative
	4	Bio-medical waste – waste generation, segregation, disposal. Management of Bio-medical Waste, Technologies for Treatment for Bio-medical waste, Legal Aspects and Environment Concern.	5	K3 (Ap), K4 (An)	Lecture using videos	Oral test, Summarization

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Handle laboratory instruments and perform clinical analysis.

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Professional Ethics

Activities related to Cross Cutting Issues: Debate on "Professional ethics of a lab technician"

Assignment: ECG and Blood pressure, Legal Aspects and Environment Concern related to Biomedical wastes. (Online Assignment).

Seminar Topic:

- 1. Centrifuges
- 2. Water bath and Refrigerator
- 3. Autoclave and Hot air oven
- 4. Mixer and Laminar air flow
- 5. Microscope
- 6. Analyser and Spectrometer
- 7. Cell counter Blood bank
- 8. Haemoglobin estimation
- 9. Erythrocyte Sedimentation Rate
- 10. Blood typing
- 11. Diagnosis of Covid-19.
- 12. tissue processing- fixation, sectioning.
- 13. tissue processing- staining and mounting.

- 14. Frozen Section Technique.
- 15. Physical, chemical and microscopical examination of sputum.
- 16. Physical, chemical and microscopical examination of Urine.
- 17. Physical, chemical and microscopical examination of stool.
- 18. Routine examination of urine and their clinical significance.
- 19. Semen: Sample collection and microscopic examination for count and morphology.
- 20. Technologies for Treatment for Biomedical Waste.

Sample questions

Part A

- 1. Formaldehyde is an example for sterilizing agent in clinical laboratory technology. (State **True or False**)
- Assertion (A): Stool examination is a basic method for getting clues of illness.
 Reason (R): It used to get the health issues like inflammation, bleeding, obstruction, tumor and parasitic infections in GIT.
 - a) Both A and R are correct
 - b) Both A and R are wrong
 - c) A is correct and R is wrong
 - d) A is wrong and R is correct

3. Match and choose the correct answer:

A. C	erebros	pinal fl	uid	1) Arthritis
B. Sy	ynovial	fluid		2) Transudate and exudate
C. Pl	eural fl	uid		3) Pericardial and peritoneal fluids
D. Se	erous fl	uid		4) Meningitis
	Α	B	С	D
a)	2	3	4	1
b)	1	4	3	2
c)	3	2	1	4
d)	4	1	2	3

- 4. Xylene is used as the clearing agent in tissue processing. (State True or False)
- 5. Which of the following is not a biomedical waste?
 - a) Animal waste b) Microbiological waste
 - c) Chemical waste d) Domestic waste

Part B

- 1. Describe the scope and importance of medical laboratory technology.
- 2. Enumerate the factors affecting the clinical test results.
- 3. How will you estimate the haemoglobin content of blood?
- 4. What is the role of histology laboratory in clinical diagnosis?
- 5. Examine urine and their clinical significance

Part C

- 1. Enumerate the hospital and clinical borne infection.
- 2. Explain the specimen collection and processing of blood
- 3. Describe the physical, chemical and microscopic examination of synovial fluid.
- 4. Discuss the major steps in the processing of tissues in histopathology.
- 5. Explain the different technologies for the treatment of biomedical waste management.

Head of the Department

Dr. A. Shyla Suganthi

Course Instructor

Dr. P.T. Arokya Glory Dr. S. Prakash Shoba

Elective IV

Class: II M. Sc. ZoologyTitle of the Course : (a) - ParasitologySemester: IVCourse Code: PZ2045

Credits	Inst. Hours	Total Hours	Marks
3	4	75	100

Objectives

- 1. To enable the students to be aware of the cosmopolitan distribution of parasites, vectors and their control measures.
- 2. To develop skills for employment in clinical laboratories and health departments.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	define the basic biology and life cycle of parasites including epidemiology, diagnosis and treatment.	PSO - 1	K1(R)
CO - 2	explain morphological characters of parasites, developmental stages and their infestation.	PSO - 1	K2(U)
CO - 3	identify appropriate techniques and develop basic skills for detection of parasites.	PSO - 3	K3(Ap)
CO - 4	analyse the medical and public health aspects of human parasitic infections.	PSO - 2	K4(An)
CO - 5	compare the diagnostic methods of parasitic infestation in veterinary hospitals, clinics and research laboratories.	PSO - 4	K5(E)

Teaching plan with modules

Total Hours: 75	(Including)	lectures, assignm	ents and tests)

Un	Modu	Торіс	Hou	Cognitive	Pedagogy	Assessment
it	le		rs	level		
Ι	Intro	luction: (12 hrs)				
	1	Taxonomy and classification of parasites.	2	K1 (R)	Brainstorming Lecture, PPT (GC)	Mind map
	2	Origin and evolution of parasitism.	2	K1 (R)	Demonstrative Lecture, Peer Teaching	Seminar
	3	Host parasite relationship, classification of parasites and hosts.	3	K1 (R) K3 (Ap)	Flipped learning, Collaborative teaching	Flow Chart

	4	Parasitic zoonoses	3	K2 (U)	Interactive	
	4	– pathogenesis.	5	K2 (0)	Lecture, PPT (GC), Group Discussion	Seminar, Class Note
	5	Clinical manifestations of parasitic diseases.	2	K1 (R) K4 (An)	Illustrative Lecture, Collaborative learning	Oral test
II	Proto	zoan parasites: (12 hrs)				
	1	Introduction and classification.	2	K1 (R) K2 (U)	Brainstorming, Explicit Instruction, PPT (GC)	Mind Map
	2	Intestinal Amoeba - Pathogenic free- living amoeba.	2	K2 (U) K3 (Ap)	Inquiry based Learning, Peer- instruction	Online assignment Seminar
	3	Intestinal flagellates - Trypanosomiasis, Leishmaniasis, Balantoidiasis, Malaria, Isosporiasis, Toxoplasmosis, Cryptosporidiosis, Pneumocystis.	6	K2 (U)	Illustrative lecture, Case Study based discussion, Quizlet	Quiz (Google Form)
	4	Protozoans of minor medical importance.	2	K2 (U) K3 (Ap)	Interactive Lecture, Reasoning, Case study – sharing.	Vocabulary test, Seminar
III	Helm	inth parasites (12 hrs)				
	1	Trichuriasis, Trichinellosis, Strongyloidiasis, Ascariasis, Enterobiasis, Filariasis, hookworm diseases, Dracunculiasis, Onchocerciasis, Loiasis - Larva migrants.			Collaborative Learning, Group discussion, Review of the diseases.	Open Book Test - Quiz, Seminar
	2	Nematodes of lesser medical importance - Diphyllobothriasis, Taeniasis, Echinococcosis, Sparganosis, Schistosomiasis, Fascioliasis, Fasciolopsiasis, Paragonimiasis, Clonorchiasis	5	K2 (U) K4 (An) K5 (E)	Reflective thinking, Peer teaching	Slip test Seminar

	3	Trematodes of minor medical importance.	2	K2 (U) K3 (Ap)	Illustrative lecture, PPT,	Class Note, Seminar
IV	Donoc	sitic Insects (12 hrs)			WordPress	
1	1	Prevalence, transmission and control of parasitic infections.	3	K3 (Ap) K5 (E)	Demonstrative Lecture, PPT (GC), Case study- based Learning.	Online assignment, Slip Test, Seminar
	2	Parasitic infection in a compromised host.	2	K2 (U) K3 (Ap) K4 (An)	Inquiry based Learning, PPT (GC), Peer teaching, Prezi Video	Semma
	3	Applied Parasitology - Eosinophilia in parasitic infections, Nosocomial parasitic infections.	2	K3 (Ap) K4 (An) K5 (E)	Illustrative lecture, Reflective thinking	Home Assignment
	4	Evasion and parasitic mode of life - morphological, biochemical and ethological adaptations.	3	K2 (U) K3 (Ap) K4 (An)	Brainstorming, PPT, Peer teaching	Short test, Quiz
	5	Quality assurance and laboratory safety.	2	K1, K3	Illustrative lecture, Group Discussion	Discussion
V	Diagr	nostic methods in parasit	tology ((12 hrs)		
	1	General rules for microscopical examination. Microscopical examination of blood, stool, urine, sputum, and biopsy material for parasites.	3	K1 (R) K3 (Ap) K4 (An)	Illustrative Lecture, Prezi presentation PPT- Video	Online assignment - Quizlet, Seminar,
	2	Cultural examination - preparation of media - techniques for cultivation of <i>E.</i> <i>histolytica</i> , Leishmania, Plasmodium.	3	K2 (U) K5 (E)	Illustration, Flipped learning, Ms-PPT	Class Note
	3	Immunodiagnostic methods - IFA, AGD, IHA, IFAT, CFT, DAT, BF, DFAT.	3	K3 (Ap) K4 (An)	Illustrative Lecture, Peer teaching	Quizzes

4	Molecular characterization of stage specific antigen nucleotide probes for diagnosis of protozoan	3	K2 (U) K4 (An) K5 (E)	Brainstorming, PPT, Interactive Lecture	MCQ Seminar Short answers
	diseases.				

Course Focusing on / Entrepreneurship/ Skill Development: Skill Development & **Employability**

Activities (Em/ En/SD): Handle laboratory instruments and perform clinical analysis.

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Human values

Activities related to Cross Cutting Issues: Awareness on Health aspects of human parasitic infections.

Assignment: ECG and Blood pressure, Legal Aspects and Environment Concern related to Biomedical wastes. (Online Assignment). **Activities:** Seminar, Assignment, Quizlet

i) Seminar (Invitation, Study material with reference, PPT/ Video, Possible questions, Attendance) Topics:

- 1. Trypanosomiasis
- 2. Leishmaniasis
- 3. Malaria
- 4. Trichuriasis
- 5. Trichinellosis
- 6. Ascariasis
- 7. Enterobiasis,
- 8. Filariasis
- 9. Dracunculiasis
- 10. Taeniasis
- 11. Fascioliasis

- 12. Microscopical examination of blood
- 13. Microscopical examination of stool
- 14. Microscopical examination of sputum
- 15. Microscopical examination of urine
- 16. Parasitic zoonoses
- 17. Pathogenic free-living amoeba
- 18. Control of parasitic infections
- 19. Techniques for cultivation of *E. histolytica*

ii) Assignment Topics and Type:

Flow Chart: Classification of parasites and hosts Mind Map: Classification of parasitic protozoans

iii) Quizlet Topic:

Microscopical examination of blood, stool, urine, sputum and biopsy material for parasites **Sample questions:**

Part A (1 mark)

- 1. How are parasites classified based on their location within the host?
 - a) Intracellular and extracellular b) Small and large
 - c) Surface and internal d) Fast and slow

- 2. What term is used to describe the process by which a parasite causes disease in its host?a) Transmissionb) Pathogenesisc) Evolutiond) Classification
- 3. Mosquito bite is the primary mode of transmission for malaria. (State **True** or **False**)
- 4. Which vector is responsible for the transmission of Leishmania parasites?
- Assertion (A): *Enterobius vermicularis* is the causative agent of enterobiasis.
 Reason (R): *Enterobius vermicularis* primarily infects liver of the human body.
 - a) Assertion (A) is correct and Reason (R) is wrong
 - b) Assertion (A) is wrong and Reason (R) is correct
 - c) Both Assertion (A) and Reason (R) is wrong
 - d) Both Assertion (A) and Reason (R) is correct

6. Match the following:

a) Whipworm	- Taeniasis
b) Pinworm	- Ascariasis
c) Roundworm	- Trichuriasis
d) Tapeworm	- enterobiasis

7. Eosinophilia is commonly associated with Parasitic infections. (State True or False)

- 8. Assertion (A): Evasion adaptation is commonly observed in parasitic organisms. Reason (R): Hyperactivity is to avoid the host's immune system?
 - a) Assertion (A) is correct and Reason (R) is wrong
 - b) Assertion (A) is wrong and Reason (R) is correct
 - c) Both Assertion (A) and Reason (R) is wrong
 - d) Both Assertion (A) and Reason (R) is correct

9. Expand IFA and AGD

10. In immunofluorescence assays (IFA), the detection of antibodies is based on

Part B

1. List the key characteristics used in the classification of parasites.

- 2. Analyze the impact of environmental factors on the transmission of waterborne parasites.
- 3. Classify protozoan parasites.
- 4. Describe two protozoans of minor medical importance.
- 5. Examine the life cycle of Ascaris lumbricoides.
- 6. Discuss the different clinical manifestations associated with filariasis.
- 7. Assess the role of quality assurance and laboratory safety in parasitology laboratories.
- 8. Interpret nosocomial parasitic infections.
- 9. Highlight the importance of using stained slides in parasitology.

10. Explain the preparation of media and techniques for cultivating Leishmania.

Part C

1. Evaluate the role of parasitic zoonoses in public health.

2. Discuss how the evolution of parasitism might be influenced by ecological factors, host specificity, and the diversity of host organisms.

3. Compare the life cycles and epidemiological factors associated with trypanosomiasis, leishmaniasis, and balantoidiasis.

4. Appraise the specific challenges in the diagnosis and treatment of the protozoan diseases.

5. Describe the epidemiology, pathogenesis, and treatment options for Trichuriasis.

6. Analyse the characteristics, epidemiology, and control strategies of Ancylostoma duodenale.

7. Identify parasitic infections carried by insects, covering aspects of prevalence, transmission, and control strategies.

8. Pinpoint the morphological, biochemical, and ethological adaptations of parasites that contribute to their success as parasites.

9. Illustrate the specific parasites that can be identified in blood, stool, urine, sputum, and biopsy material.

10. Interpret the various immunodiagnostic methods such as IFA, AGD, IHA, IFAT, CFT, DAT, BF, and DFAT.

Head of the Department

Dr. A. Shyla Suganthi

Course Instructor

Dr. S. Mary Mettilda Bai