Semester – II Major Core – II: GENERAL CHEMISTRY - II Course Code: CC2021

Hours Per week	Credits	Total Hours	Marks
4	4	60	100

Objectives

- 1. To learn the preparation, properties and importance of aliphatic hydrocarbons and alicyclic compounds.
- 2. To understand the principles and theories of chemical bonding metallurgical processes.
- 3. To study the gas laws , physical properties of liquids and the classification of liquid crystals

Course Outcome

COs	Upon completion of this course, students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the preparation, properties of organic compounds	PSO-1	U
CO - 2	apply the theories in the preparation of compounds	PSO-6	А
CO - 3	prepare and evaluate compounds based on their application and structure	PSO-4	Ε
CO - 4	predict the properties of elements and the principles of volumetric analysis	PSO-6	Y
CO - 5	analyse the properties of matter	PSO-2	Y
CO - 6	learn the basics of metallurgy and the theories about gases	PSO-1	U

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Aliphati	c Compounds				
	1	Alkanes - preparation, physical properties, reactions, reactions with radical mechanism for substitution reaction	3	Understand the preparation and properties of alkanes	Lecture and discussion	Evaluation through Multiple choice questions,
	2	Alkenes: Preparation from alcohol, haloalkane, dihaloalkanes and alkynes - reactions of alkenes	3	Know about alkenes and the reactions	Lecture and discussion	short test, quiz and class test

	3	Hydroboration, hydroxylation, ozonolysis and epoxidation - peroxide effect - allylic substitution, oxidation by KMnO4 and polymerization	2	Gain knowledge about the reactions of alkenes	Lecture	Formative assessment I
	4	Synthesis of - Dibenzyl, cis and trans 2-butene, propanal and 1-methyl cyclohexanol	2	Prepare various compounds from alkenes	Lecture	
	5	Akynes: preparation, reactions - addition of hydrogen, halogen, hydrogen halide, water, HCN, CH ₃ COOH - dimerisation and cyclisation - acidity of terminal alkynes	2	Understand the preparation and properties of alkynes	Question answer session and lecture	
II	Alicyclic	Compounds				
	1	Cycloalkanes: Preparation - reactions -cycloaddition, dehalogenation, pyrolysis of calcium salt of dicarboxylic acid	3	Know about preparation and reactions of cycloalkanes	Lecture with power point presentation	Evaluation through Multiple choice questions, short test.
	2	Wurtz reaction -stability of cycloalkanes - Baeyer's strain theory. Cycloalkenes: Preparation and reactions	3	Know the stability of cycloalkanes	Lecture with illustration	quiz Formative assessment I
	3	Preparation of conjugate dienes - reactions - 1,2 and 1,4 addition and Diels- Alder reaction, Synthesis of trans 2-chloro cyclopentanol	3	Understand clearly about the reactions and synthesis of compounds	Lecture, Discussion	
	4	Synthesis trans-2 methylcyclopentanol, cis and trans 1,2cyclohexanediol, cyclohexene, 2,3- butanedione and adipic acid	2	Study the synthesis of compounds	Lecture, Discussion	

III	Chemical bonding							
	1	Ionic bond - Properties of ionic compounds, factors favoring the ionic bond formation - ionization potential - electron affinity - electronegativity - Lattice energy - Born-Haber Cycle - Polarizing power and Polarizability	3	Understand clearly about ionic bond and lattice energy	Lecture with illustration	Evaluation through Multiple choice questions, short test, quiz		
	2	Transition from ionic to covalent character and vice versa - Fajan's rules - Covalent bond - Properties of covalent compounds - structure and bonding of homo and heteronuclear molecules	3	Learn covalent bonding	Lecture with illustration	Formative assessment II		
	3	Hydrogen bonding - types, effect on properties - Hybridisation - sp ³ ,sp ² , sp,dsp ² ,d ² sp ³ ,d ³ sp ³ - Examples - BeCl ₂ , BF ₃ , SiCl ₄ , PCl ₅ , SF ₆ , IF ₇ ,H ₂ O, NH ₃ , XeF ₆	3	Analyze the effects of hydrogen bonding and types of hybridization	Lecture			
	4	VSEPR Theory – Postulates – MO Theory – Bonding and anti-bonding orbitals – Applications of MO theory H ₂ , He, N ₂ , O ₂ , HF and CO molecules – Comparison of VB and MO theories	3	Know about VSEPR and MO theories	Lecture with power point presentation and illustration			
IV	Metallur	gy						
	1	Occurrence of metals – basic metallurgical operations and metallurgy process – General methods involved in extraction of metals	2	Know about various metallurgical processes	Lecture	Evaluation through Multiple choice questions, short test,		
	2	Concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process	1	Understand about different concentration methods	Lecture and discussion	quiz Formative assessment II		
	3	Extraction processes– Chemical reduction – electrolytic reduction – metal displacement	2	Acquire knowledge about extraction processes	Lecture			

	4	Refining methods -	1	Know about	Lecture and	
		distillation - fractional		various	discussion	
		crystallization -		refining		
		electrolysis. Zone refining		methods		
		van Arkel de Boer				
		methods				
	5	Electrolytic refining - ion	4	Study the	Lecture with	
		exchange method -		extraction and	power point	
		extraction - chemical		properties of	presentation	
		properties and uses of Ti,		different		
		W, Mo, V, and Ni		metals		
V	Gas and	Liquid state				
	1	Ideal gas: Kinetic theory	3	Know about	Lecture and	Evaluation
		of gases - Postulates and		the theory of	discussion	through
		derivation of kinetic gas		gases and		Multiple
		equation, derivation of gas		derivation of		choice
		laws-Maxwell's		gas equation		questions,
		distribution of molecular				short test,
		velocities				quiz
	2	Types of molecular	2	Know about	Lecture	
		velocities - collision		molecular		Formative
		diameter - collision		velocities		assessment I
		frequency - mean free path				
	3	Degrees of freedom -	3	Understand the	Lecture with	
		translational, rotational		different	Illustration	
		and vibrational - Principle		degrees of		
		of equipartition of energy -		freedom and		
		Behaviour of real gas -		behaviour of		
		Vander Waals equation of		real gases		
		state - derivation				
	4	Liquid state: Physical	2	Learn about	Lecture and	
		properties - Trouton's rule		liquid state	discussion	
		- surface tension - Effect				
		of temperature on surface				
		tension - viscocity - effect				
		of pressure and				
		temperature - refraction -				
		refractive index - specific				
		and molar refraction				
	5	Liquid crystals: Vapour	2	Know about	Lecture and	
		pressure temperature		different types	discussion	
		diagram – thermography –		of liquid		
		classification of		crystals.		
		thermotropic liquid				
		crystals – nematic, smetic				
		and cholesteric liquid				
		crystals with examples.				

Course Instructor: Ms. L. Deva Vijila

Allied Chemistry - Botany and Zoology Major Chemistry of Biomolecules Course Code: CA2021

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
4	3	60	100

Objectives:

- 1. To acquire knowledge about the chemistry of biomolecules
- 2. To understand the structure and functions of biomolecules

	Course Outcome								
COs	<i>Upon completion of this course, students will be able to</i>	PSO Addressed	Cognitive Level						
CO-1	remember the classification of biomolecules	PSO-1	R						
CO-2	understand the structure, function and metabolism of biomolecules	PSO-1	U						
CO-3	apply the chemistry of biomolecules in industry and medicine	PSO-6	А						
CO-4	analyse and identify biomolecules	PSO-2	Y						

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Carbohy	drates				
	1	Introduction - sources of carbohydrates in the diet - classification and functions	2	Understand the sources, classification and functions of carbohydrates in the diet	Lecture with illustration	Evaluation through Multiple choice questions,
	2	Glucose and fructose - reactions - interconversions and mutarotation	1	Gather knowledge on the reaction interconversions and mutarotation of glucose and fructose	Lecture and discussion	short test, quiz Formative assessment I
	3	Tests for carbohydrates - Molisch's, Benedict and Fehlings tests	1	Know the tests for carbohydrates	Lecture with power point presentation	
	4	Digestion - absorption - metabolism of carbohydrates	3	Understand the metabolism of carbohydrates.	Lecture and discussion	
	5	Regulation of blood sugar - diabetes mellitus	1	Study the regulation of blood sugar	Lecture and discussion	

	6	Properties and uses of	2	Know the properties	Lecture with	
		sucrose, starch and		and uses of sucrose,	power point	
		cellulose		starch and cellulose.	discussion	
	7	Differences	2	Differentiate	Lecture with	
		between starch and		between starch and	power point	
		cellulose		cellulose	discussion	
II	Amino A	cids and Proteins				
	1	Amino acids -	2	Understand the	Lecture and	Evaluation
		classification -		classification of amino	discussion	through
		isolation from proteins		acids		Multiple
		- Zwitter ion formation				choice
		and isoelectric				questions,
		point				short test,
	2	Synthesis of glycine,	2	Study the synthesis of	Lecture and	quiz
		alanine and phenyl		amino acids	discussion	
		alanine				Formative
	3	Peptides - peptide	2	Know the synthesis of	Lecture with	assessment I
		bond - synthesis of		peptides	power point	
		dipeptides			discussion	
	4	Proteins -	2	Study the classification	Lecture with	
		classification based on		of proteins	power point	
		structure and functions			discussion	
	5	Primary, secondary,	2	Acquire knowledge on	Lecture and	
		tertiary and		structure of proteins.	discussion	
		quaternary structure of				
	(proteins	2	TT 1 4 1	T (11	
	6	Denaturation of	2	Understand	Lecture with	
		proteins - Tests for		denaturation of proteins	power point	
		proteins - Minnyurin			discussion	
		and bluret tests				
III	Nucleic A	Acids and Enzymes			•	
	1	Nucleic acids -	3	Know the structure of	Lecture and	Evaluation
		nucleosides and		DNA	discussion	through
		nucleotides. Structure				Multiple
		of DNA - denaturation				choice
		and renaturation of				questions,
		DNA - replication of				short test,
		DNA	-			quiz
	2	Hydrogen bonding in	2	Study the bonding in	Lecture with	
		DNA. Stabilizing		DNA molecules	power point	Formative
		forces in protein and			discussion	assessment
		DNA - Vander waal's				11
		forces, dipole-dipole				
		and dipole-induced				
	2	Structure of DNA	2	A a grading 1-11 1 - 1	Laster '1	
	5	Structure of KNA -	2	Acquire knowledge on	Lecture with	
		Types OI KINA.		SIFUCIULE OF KINA	power point	
		DNA and RNA			discussion	
	1	DINA aliu KINA			1	

	4	Enzymes -	2	Understand the	Lecture and	
		classification and		classification of	discussion	
		characteristics -		enzymes		
		Mechanism of enzyme				
		action -factors				
		influencing				
		enzyme activity				
	5	Cofactors and	2	Know the importance	Lecture with	
		coenzymes. Enzyme		of cofactors and	power point	
		inhibitors - reversible		coenzymes	discussion	
		and non-reversible				
		inhibitors				
	6	Industrial and medical	1	Study the application	Lecture and	
		application of enzymes		of enzymes	discussion	
IV	Lipids, (Dils and Fats			·	
	1	Lipids - classification -	1	Classify lipids and its	Lecture with	Evaluation
		properties - biological		properties	power point	through
		functions			discussion	Multiple
	2	Biological functions of	2	Understand the	Lecture and	choice
		phospholipids		functions of	power point	questions,
		and glycolipids		phospholipids	discussion	short test,
				and glycolipids		quız
	3	Oils and fats -	1	Describe the	Lecture and	г .:
		definition -		characteristics and uses	discussion	Formative
		characteristics and		of oils and fats		assessment
		Uses Common fotty opids in	2	Understand the process	I goturo with	11
	4	collimon ratty actus in	2	of extraction and	Lecture with	
		extraction and refining		refining of oils	discussion	
		of oils		Terming of ons	discussion	
	5	Estimation of fats and	3	Determine the	Lecture and	
		oils - acid value,		saponification and	discussion	
		saponification		iodine value of fats and		
		value and Iodine value		oils		
	6	Distinction between	3	Differentiate animal	Lecture with	
		animal and vegetable		and vegetable fats	power point	
		fats. Hydrogenation			presentation	
		and Rancidity				
V	Vitamin	s and Hormones	2	TT 1 . 1 .	.	
	1	Vitamins -introduction	3	Understand the	Lecture with	Evaluation
		- classification -		classification and	power point	through
		Sources - Diological		biological functions of	presentation	williple
	2	Deficiency discoses	2	Vitalillis Decognize the discourse	L a ature	choice
	۷	of Vitamin A P C D	Z	Recognize the diseases	Lecture with	short test
		E and K		deficiency	power point presentation	aniz
	3	Hormones introduction	2	Classify hormones	I ecture with	Yuiz
	5	and classification	4	Classify normones	nower point	Formative
					presentation	assessment I

4	Structure and functions of thyroxin, adrenaline, bile acids, progesterone, testosterone and oestrone	3	Explain the structure and functions of hormones	Lecture	
5	Effect of hormone activity on biological functions.	2	Understand the effect of hormone on biological functions	Lecture	

Course Instructor: Dr. M. Anitha Malbi

Semester - II

Part IV: NME

Applied Chemistry - II

Course Code: CNM202

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
2	2	30	100

Objectives:

1. To acquire knowledge on petroleum and petroleum products

2. To know about the preparation of cosmetics and perfumes

3. To understand the manufacture of matches and characteristics of paints and pigments

COs	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	remember the refining of petroleum and manufacture of petroleum products	PSO-4	R
CO-2	analyse the therapeutic uses of pharmaceuticals	PSO-7	Y
CO-3	understand the process of manufacture of cosmetics and perfumes	PSO-8	U
CO-4	analyse the characteristics of matches, explosives, paints and pigments	PSO-2	Y

Course Outcome

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning outcome	Pedagogy	Assessment / Evaluation
Ι	Petroleum	1				
	1	Petroleum - refining of petroleum - fractional distillation - cracking - thermal and catalytic cracking - advantages of catalytic cracking - octane rating - anti knock agents - cetane rating	3	Know the process of refining of petroleum and the importance of cracking	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Petrochemicals - direct and indirect petrochemicals - methods involved in manufacture of petrochemicals - alkylation - pyrolysis	3	Understand the methods involved in the manufacture of petrochemicals	Lecture and discussion	Formative assessment I

II	Pharmaceuticals					
	1	Preparation and therapeutic uses of the following: Antiseptics - alum - zinc oxide - boric acid. Mouth wash - hydrogen peroxide. Antacid - aluminium hydroxide. Analgesics - aspirin - paracetamol. Haematinics - ferrous fumerate - ferrous gluconate. Laxatives - epsom salt - milk of magnesia	6	Acquire knowledge about the therapeutic uses of pharmaceuticals	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
III	Cosmetics	and Perfumes		1	1	1
	1	Preparation and uses - shampoo - hair dye - face cream - sun screen lotion - nail polish - nail polish removers - lipsticks	3	Acquire knowledge about cosmetics	Lecture with power point presentation	Evaluation through Multiple choice questions, short test
	2	Perfumes - ingredients - isolation of essential oils - preparation of odorous substances - vanillin - diphenyl oxide	3	Remember the preparation of perfumes	Lecture and discussion	quiz Formative assessment II
IV	Matches a	nd Explosives				<u> </u>
	1	Safety matches - classification - composition - manufacture of safety matches. Pyrotechny - composition of fireworks	3	Understand the process of manufacture and uses of safety matches and fire works	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Explosives - characteristics - classification - low explosives - gun powder - smokeless powder - primary explosives - preparation and uses of lead azide - mercury fulminate - high explosives - picric acid -dynamite	3	Gain knowledge about the classification of explosives	Lecture and discussion	Formative assessment II

V	Paints and	Paints and Pigments						
	1	Paints - general characteristics - constituents - pigment - vehicle - thinners - driers - plasticizers - fillers - anti- skinning agents - mechanism of film formation - paint removers - constituents.	3	Gain knowledge about the characteristics and constituents of paints.	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative		
	2	Pigments - manufacture of white lead - lithopone - titanium dioxide - ultra marine blue - red lead - chrome yellow- Prussian blue.	3	Know the methods of manufacturing pigments.	Peer group teaching	assessment I		

Course Instructor: Dr. S. Ajith Sinthuja

Core IV: General Chemistry IV Course Code: CC2041

Hours / week	Credits	Total hours	Marks
4	4	60	100

Objectives

- To study the preparation and chemical reactions of alkyl and aryl halides, alcohols, phenols, ethers and epoxides with mechanism
- To know the chemistry of halogens and noble gases.
- To understand the basics of first and second law of thermodynamics and related relationship.

Course outcome

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	know the mechanism of important name reactions	PSO - 1	U
CO - 2	apply the reaction mechanisms in the synthesis of components used in industrial and medicinal fields	PSO - 2	An
CO - 3	evaluate the characteristics of halogens and noble gases	PSO - 3	E
CO - 4	classify the non-aqueous solvents and know the theories of acids and bases	PSO - 3	Ε
CO - 5	list out the applications of first and second law of thermodynamics	PSO - 3	R

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Haloalka	anes and Haloarenes				
	1	Classification of alkyl halides, methods of formation from alcohols, alkanes, alkenes. Allylic/ benzylic bromination and chlorination	2	Understand the preparation and properties of alkyl halides	Lecture and discussion	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Hundiecker reaction, Finkelstein reaction and Swart's reaction	2	Know about the mechanisms of the reactions	Lecture and discussion	

	3	Nucleophilic substitution reactions and its mechanisms. S_N2 and S_N1 reactions with energy profile diagrams and its difference	2	Gain knowledge about the nucleophilic substitution reactions	Lecture	
	4	Dehydrohalogenation with mechanism, Hoffmann and Saytzeff's rules, Reaction with metals, Wurtz reaction and formation of Grignard reagent	2	Understand the mechanisms of named reactions and formation of Grignard reagent	Lecture	
	5	Methods of formation of aryl halides - nucleophilc substitution reactions of aryl halides - addition-elimination and the elimination- addition mechanisms	2	Understand the preparation and properties of alkynes	Question answer session and lecture	
	6	Electrophilic substitution - Ullmann reaction and Wurtz-Fittig reaction. Relative reactivities of alkyl, allyl, vinyl and aryl halides	1	Study the synthesis of compounds	Lecture and discussion	
	7	Synthesis and uses of DDT and BHC	1	Know the synthesis and uses of some compounds	Lecture and discussion	
II	Alcohols	, Phenols and Ethers				
	1	Preparation of alcohols through reduction, hydroboration, hydration, oxymercuration and Grignard reaction	2	Know about preparation and reactions of alcohols	Lecture with illustration	Evaluation through Multiple choice questions, short test, quiz Formative assessment I

	2	Reactions of alcohol with metals, esterification with mechanism, oxidation, dehydration, conversion to alkyl halides	2	Understand the reactions of alcohol with metals	Lecture with illustration	
	3	Preparation of Phenols its acidity and relative acid strength of substituted phenols	2	Understand clearly about the reactions and synthesis of compounds	Lecture and discussion	
	4	Reactions of phenols - esterification, oxidation, Kolbe's, Reimer-Tiemann, Gattermann, electrophilic substitution reactions	2	Study the reactions of phenols	Lecture and discussion	
	5	Dihydric and trihydric phenols- preparation and properties	2	Know about the preparation and properties of dihydric and trihydric phenols	Lecture and illustration	
	6	Preparation of ethers, reactions with epoxide. Synthesis of aspirin, 3 and 4-nitro phenol nd t- butylmethyl ether	2	Learn the preparation of ethers and its reactions with epoxide	Lecture and discussion	
III	Halogen	family and Noble gase	S			
	1.	General characteristics of halogen with reference of electro negativity, electron affinity, oxidation states, and oxidizing power	2	Understand clearly about the general characteristics of halogen	Lecture with illustration	Evaluation through Multiple choice questions, short test, quiz Formative assessment II
	2.	Peculiarities of fluorine its hydrides and oxides oxo acids of halogens	2	Learn about peculiarities of fluorine compounds	Lecture with illustration	

	3.	Interhalogen compounds, polyhalide ions, pseudohalogens, preparation, properties and structure of interhalogen compounds	2	Analyse the properties and structure of interhalogen compounds	Lecture	
	4.	Inert gases , position in the periodic table , isolation from atmosphere , General characteristics, Structure and shape of xenon compounds XeF ₂ ,XeF ₄ , XeF ₆ , XeOF ₂ , XeOF ₄ its uses of noble gases	2	Know the characteristics, structure and shape of Inert gases	Lecture with power point presentation	
	5.	Protic & Aprotic solvents, non- aqueous solvents, Classification of solvents, General properties of ionizing solvents-chemical reactions. Liquid ammonia and liquid SO ₂ as solvents	2	Learn about protic & aprotic solvents its classification and general properties	Lecture and discussion	
	6.	Acid Base Chemistry, Theories of acids and bases, Arrhenius, Bronsted, Lowry theory proton donor - acceptor system. HSAB principle and Usanovich concept	2	Know the various theories of acids and bases	Lecture and discussion	
IV	First Lav	v of Thermodynamics	and Hess's	s law		
	1.	Chemical thermodynamics, importance of thermodynamics, basic terms- system, boundary and surroundings. Types of systems - open, closed and isolated	2	Know the importance of thermodynamics	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment II

2.	Types of processes - isothermal, adiabatic, isobaric and isochoric, reversible and irreversible process. Difference between reversible and irreversible process. First law of thermodynamics- mathematical form	2	Understand the different types of processes	Lecture and discussion	
3.	Heat capacity of a system, heat capacity at constant volume (Cv) and heat capacity at constant pressure (Cp), relationship between Cp and Cv. Calculations of w, q, dE and dH for the reversible expansion of ideal gases under isothermal and adiabatic conditions	2	Acquire knowledge heat capacity of a system	Lecture	
4.	Joule- Thomson effect, derivation of Joule- Thomson coefficient for ideal gases and real gases, inversion temperatures	2	Derive Joule- Thomson coefficient	Lecture and discussion	
5.	Hess's law and its applications. Variation of enthalpy change of reaction with temperature (Kirchoff's equation)	2	Understand the variation of enthalpy	Lecture	
6.	Second law of thermodynamics, Need for second law, statements of Second law, Carnot theorem, Carnot cycle, Efficiency of heat engine	2	Study the need for second law of thermodynamics	Lecture and power point presentation	

V	Thermo	lynamics – II				
	1.	Third law of thermodynamics, concept of entropy, State function, entropy change in isothermal expansion of ideal gas, entropy change in reversible and irreversible process	2	Know about the Third law of thermodynamics and the concept of entropy	Lecture, Discussion	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2.	Entropy change accompanying by change of phase, calculation of entropy change of an ideal gas with changes in pressure, volume and temperature, Entropy of mixing	2	Gather knowledge on entropy change accompanying change of phase	Lecture	
	3.	Physical significance of entropy. Gibbs free energy, Work function, Variation of free energy change with temperature and pressure, Criteria for spontaneity, Gibbs Helmholtz equation	2	Understand the physical significance of entropy	Lecture, Illustration	
	4	Partial molar properties, Clapeyron Clausius equation and its applications. Van't Hoff reaction isotherm and its significance	2	Learn Clapeyron Clausius equation, Van't Hoff reaction and its applications.	Lecture, Discussion	
	5	Van't Hoff isochore and significance. Fugacity, concept, determination of fugacity of real gases	2	Gain knowledge on Van't Hoff isochore and fugacity	Lecture	

6	Variation of fugacity with temperature and pressure. Physical significance of fugacity. Activity, activity coefficient Nernst Heat theorem and its applications. Zeroth law of thermodynamics	2	Understand the variation of fugacity with temperature and pressure	Lecture, Discussion		
---	--	---	--	------------------------	--	--

Course Instructor: Sr. K. Francy

Semester – IV Elective II a - Green Chemistry Course Code: CC2042

Hours / week	Credits	Total hours	Marks
4	3	60	100

Objectives

- 1. To know the principles of green chemistry.
- 2. To study the important techniques and green synthesis of compounds.
- 3. To study the concept of atom economy in chemical synthesis.

Course outcome

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	know the principles of green chemistry	PSO - 1	R
CO - 2	design green synthesis	PSO - 5	С
CO - 3	interpret green method for organic synthesis	PSO - 3	E
CO - 4	synthesize various compounds by microwave and ultrasound assisted methods	PSO - 4	С
CO - 5	analyze the important techniques and directions in practicing green chemistry	PSO - 2	An
<u>CO</u> - 6	identify the importance of Green chemistry in day to day life	PSO - 8	Ар

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning	Pedagogy	Assessment/
				Outcome		Evaluation
Ι	Introduc	tion to green chemistry				
	1	Definition, need for	2	Know the need	Lecture with	Evaluation through
		green chemistry and		for green	power point	Multiple choice
		scope of green		chemistry	presentation and	questions, short
		chemistry			group discussion	test, quiz
	2	Concept of atom	4	Calculate the	Seminar	
		economy, yield, mass		atom economy,		Formative
		intensity and atom		mass intensity,		assessment I
		economy. Calculation of		mass		
		atom economy, mass		productivity		
		intensity, mass		and carbon		
		productivity and carbon		efficiency		
		efficiency				
	3	Different types of	2	Differentiate	Illustration and	
		reactions and atom		the types of	seminar	
		economy, addition,		reactions		
		substitution, elimination				
		and rearrangements				

r					1	1
	4	Concept of selectivity,	2	Understand the	Lecture with	
		enantioselectivity and		concept of	power point	
	5	Chemoselectivity	2	selectivity	presentation	
	5	diastereosalactivity and	Z	Know the	Lecture and	
		diastereoselectivity		of selectivity	group discussion	
II	Green so	blvent				
	1	Super critical fluids, Introduction, extraction of super critical fluids, solvents of super critical fluid, advantages and applications Carbon dioxide as a super critical fluid	4	Learn the extraction and advantages of super critical fluids	Question answer session	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Features of technique for using super critical carbon dioxide, advantages and application. Chemical reaction in supercritical water and Near, Critical Water (NCW), Region	4	Understand the features of technique for using super critical carbon dioxide	Lecture	
	3	Extraction natural products, dry cleaning, supercritical polymerization, hydrogenation and hydroformylation. Ionic liquid as green solvent: Introduction, synthesis of ionic liquids, acidic ionic liquid and neutral ionic liquids, applications in organic synthesis	4	Know the process of extraction of natural products and applications	Lecture with power point presentation and group discussion	
III	Green ca	atalyst				
	1	Catalysis over view, acid catalyst, basic catalyst, oxidation catalyst, polymer supported catalyst, photosensitized super acid catalyst and Tetra Amido Macrocylic Ligand (TAML) catalyst	3	Understand the different types of catalyst	Seminar	Evaluation through Multiple choice questions, short test, quiz Formative assessment II

	2	Biocatalyst, microbial	4	Know the	Assignment	
	-	oxidation microbial		action of	1 10018-1110-110	
		reduction enzyme		Biocatalyst		
		catalyzed hydrolytic		Diobataryst		
		process, per fluorinated				
		catalyst and modified				
		biocatalyst				
	3	Development of	5	Compare the	Lecture with	
	-	mesoporous supports by	-	Development	power point	
		liquid crystal		of mesoporous	presentation and	
		templating, neutral		supports by	group discussion	
		templating methods.		various	0 1	
		heterogeneous catalyst,		methods		
		solid supported catalyst				
IV	Green sy	nthesis				
	1	Green synthesis of the	3	Synthesize	Illustration and	Evaluation through
		following compounds,		different	seminar	Multiple choice
		Adipic acid, Catechol,		compounds by		questions, short
		Benzoyl bromide,		Green		test, quiz
		Acetaldehyde, Citral,		synthesis		
		Ibruprofen and		method		Formative
		Paracetamol				assessment II
	2	Microwave assisted	3	Learn the	Lecture and	
		reactions in water,		different	group discussion	
		Hoffmann Elimination,		microwave		
		Hydrolysis of benzyl		assisted		
		chloride and methyl		reactions in		
		benzoate, oxidation of		water		
		toluene and alcohols				
	3	Microwave assisted	3	Understand	Lecture with	
		reactions in organic		the different	power point	
		solvents, Esterification,		microwave	presentation	
		Fries rearrangement,		assisted		
		Clasien Rearrangement,		reactions in		
		Diels - Alder Reaction		organic		
	4	and Decarboxylation	2	solvents	T . 1	
	4	Ultra sound assisted	3	Learn the	Lecture and	
		reactions, Esterification,		different ultra	illustration	
		Saponification,		sound assisted		
		alkylation, oxidation,		reactions		
		reduction, coupling				
		reactions				
V	Croon re	pactions involving basic nr	incinle of a	roon chomistry		
•	1	Twelve principles of		Know the	Lecture	Evaluation through
	I	green chemistry - choice	+	twelve	Ouiz	Multiple choice
		of starting materials -		principles of		questions short
		biomimitic		green		test aniz
		multifunctional reagents		chemistry		1051, Yuiz
		materials reagents.				Formative

2	Combinatorial green chemistry, Green Chemistry in sustainable developments	4	Understand the importance of Green Chemistry in sustainable developments	Lecture with power point presentation	assessment I
3	Importance of Green chemistry in day to day life, versatile bleaching agents and analgesic drugs	4	Learn the Importance of Green chemistry in day to day life	Lecture and group discussion	

Course Instructor: Dr. S. Ajith Sinthuja

Allied Chemistry for Physics Major Semester IV Physical Chemistry Course Code: CA2032

Hours / week	Credits	Total hours	Marks
4	4	60	100

Objectives

- 1. To understand the basic concepts of thermodynamics and nano chemistry
- 2. To enable them to apply concepts related to chemistry in their careers
- 3. To know the basic principles of kinetics and photochemistry

Course Outcome

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO-1	remember the theories and the factors influencing rate of reaction	PSO-1	R
CO-2	understand the laws and theories that govern photochemistry	PSO-1	U
CO-3	apply the principles of physical properties for structural determination	PSO-6	А
CO-4	understand the different laws of thermodynamics	PSO-1	U
CO-5	analyse the importance of nano chemistry in various fields	PSO-2	Y

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Thermo	dynamics				
	1	Thermodynamics - importance - basic terms - system, boundary and surroundings - types of systems - open - closed - isolated - homogeneous and heterogeneous	2	Know about the basics in thermodynamics	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Types of processes - isothermal, adiabatic, isobaric, isochoric, reversible and irreversible process- difference between reversible and irreversible process - state and path functions	2	Differentiate the different processes	Lecture with power point presentation	Formative assessment I

Image: second law of thermodynamics - definition - inversion lemperature - kirchoff's equation, joule Thomson effect expressions for heat capacity at constant volume (C _x) - heat capacity at constant values (C _x) - heat capacity at constant values (C _x) - heat capacity at constant values (C _x) - heat capacity		3	First law of	2	Derive the	Lecture and	
Image: statements - mathematical derivation - heat capacity of a system - heat capacity at constant volume (C ₀) - hat capacity at constant pressure (C ₀) - htermodynamic relationship between C _p and C _v heat capacity at constant pressure (C ₀) - htermodynamic relationship between C _p and C _v Learn about Jode Thomson effect Lecture and seminar 4 Variation of enthalpy of a reaction with temperature - Kirchoff's cquation, Joule Thomson effect 2 Learn about Jode Thomson effect Lecture with seminar 5 Expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - derivation - inversion temperature - significance Lecture with power point presentation vanderwaal's gas - different statements - Carnot's cycle Lecture with power point presentation 6 Second law of thermodynamics - need for second law of raction - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's carnot			thermodynamics -		expressions for	power point	
Imathematical derivation - heat capacity of a system - heat capacity at constant volume (C ₂) - heat capacity at constant pressure (C ₇) - thermodynamic relationship between C _p and C _v 2 Learn about Joule Thomson effect Lecture and seminar 4 Variation of enthalpy of a reaction with temperature - Kirchoff's equation, Joule Thomson effect 2 Learn about Joule Thomson effect Lecture with power point presentation coefficient for an ideal gas and vanderwaal's gas 5 Expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas 2 Learn Carnot's cycle Lecture with power point presentation 6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation 1 Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction rate and factors influencing rate of reaction - definition and examples 2 Difference between order and molecularity - zero, first and second order reaction - se examples derivation of rate constant and half-life period 3 Learn about differentiat - integral - half-life method and Ostwalf's methods Lecture with power point presentation and molecularity			different statements -		heat capacities	presentation	
Image:			mathematical derivation -			-	
Image:			heat capacity of a system -				
Image: second			heat capacity at constant				
Image: capacity at constant pressure (C _p) - thermodynamic relationship between C _p and C _v Learn about Joule Thomson effect Lecture and seminar 4 Variation of enthalpy of a reaction with temperature - Kirchoff's equation, Joule Thomson effect 2 Learn about Joule Thomson effect Lecture and seminar 5 Expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - derivation - inversion temperature - significance 2 Learn Carnot's coefficient for an ideal gas and vanderwaal's gas Lecture with presentation 6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation 1 Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction rate and factors influencing rate of reaction Evaluation and worder reaction 2 Difference between order and molecularity - zero, first and second order reaction - definition and examples derivation of rate constant and half-life period 3 Differentiate order and molecularity Lecture with presentation and molecularity - zero, first and second order reaction Lecture with prower point presentation and half-life methods of determining order of reaction - use of different methods 3 Methods of determining order of reaction - use of di			volume (C_v) - heat				
Image: Intermediation of enthalpy of a reaction with temperature - kirchoff's equation, Joule Thomson effect Learn about Joule Thomson effect 5 Expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - ideal derivation - inversion temperature - significance 2 Know to derive expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - ideal derivation - inversion temperature - significance 2 Learn Carnot's coefficient for an ideal gas and vanderwaal's gas 6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's coefficient or and influencing rate of reaction - order and molecularity of a reaction necession influencing rate of reaction - order and molecularity of a reaction and second order reaction - definition and examples derivation of rate constant and half-life period 3 Know about reaction and second order reaction and second order reaction and second order reaction and second order reaction and half-life period 3 Lecture with power point presentation 3 Methods of determining half-life methods and balf-life methods and balf-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction and second order 3			capacity at constant				
Image: Intermodynamic relationship between Cp and C. Learn about Joule Journamic relationship between Cp and C. 4 Variation of enthalpy of a reaction with temperature - Kirchoff's equation, Joule Thomson effect 2 Learn about Joule Seminar 5 Expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - derivation - inversion ideal gas and temperature - significance 2 Know to derive expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - derivation - inversion itemportance ideal gas and vanderwaal's gas Lecture with power point presentation 6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle Lecture with power point presentation 1 Rate of reaction - carnot influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction answer session drate - factors influencing rate of reaction - order and molecularity or area. 3 Know about reaction and session Evaluation through Multiple choice questions, short test, quiz 2 Difference between order and molecularity - zero, first and second order reaction - estimate derivation of rate constant and half-life period 3 Lecture with power point presentation and wards and balf-life methods of determining order of reaction - use of different methods of determining half-life method and Ostwald's methods 3 Lecture with power point presentation and second order reaction - use of differen			pressure (C_p) -				
Image: second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different and second order reaction - definition and examples Second law of thermodynamics - different and second order reaction - definition and examples Second law of thermodynamics - different and second order reaction - definition and second order reaction - definition and second order Second law of thermodynamics - different and second order reaction - definition and examples Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - different statements - Carnot's cycle Second law of thermodynamics - Reaction - definition and examples			thermodynamic				
and C, and C, 4 Variation of enthalpy of a reaction with temperature - Kirchoff's equation, Joule Thomson effect Learn about Joule Thomson effect seminar 5 Expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - ideal gas and temperature - significance 2 Know to derive expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas Lecture with power point presentation 6 Second law of thermodynamics - need for second law of thermodynamics - addifferent statements - Carnot's cycle Lecture with power point presentation 1 Chemical kinetics 3 Know about reaction reaction reaction reaction rate and factors influencing rate of reaction - edifinerent statements - Carnot's cycle Question answer session Evaluation through Multiple choice questions, short test, quiz 2 Different statements - Carnot's corder and molecularity of a reaction - edinition and examples 3 Differentiate of reaction or reaction direct and molecularity of a reaction reaction reaction or first and second order reaction or ate constant and half-life period 3 Lecture with power point presentation power point presentation and and group between order hand molecularity of a reaction reaction reaction reaction reaction reaction reaction or reaction different ate period Power point prove and molecularity of a reaction reaction reaction reaction reaction reaction sestem molecularity of a reaction reaction sestem reaction ses			relationship between C _p				
4 Variation of enthalpy of a reaction with temperature - Kirchoff's equation, Joule Thomson effect Lecture and seminar 5 Expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - derivation - inversion temperature - significance 2 Know to derive expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas 6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation II Chemical kinetics 3 Know about reaction rate and factors influencing rate of reaction - expression of rate - factors influencing rate of reaction - definition and examples 3 Differentiate order and molecularity of a reaction - definition and examples 3 Differentiate order and molecularity or a reaction - definition and examples 3 Learn about different methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 4 Learn about different methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction and argoup			and C _v				
Image: second		4	Variation of enthalpy of a	2	Learn about Joule	Lecture and	
Image: second law of thermodynamics - need for second law of thermodynamics - lifterent statements - Carnot's cycle 2 Know to derive expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas Image: second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle 2 Learn Carnot's cycle Image: second law of thermodynamics - carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation Image: second law of thermodynamics - carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation Image: second law of thermodynamics - Carnot's cycle 3 Know about reaction rate and factors influencing rate of reaction - order and molecularity of a reaction - order and molecularity of a reaction - definition and examples 3 Differentiate dorder and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period 3 Lecture with power point presentation 3 Methods of determining order of reaction - examples defined and half-life method and Ostwald's methods 3 Lecture with power point presentation and sessment l			reaction with temperature		Thomson effect	seminar	
Ioule Thomson effect Ioule Thomson coefficient for an ideal gas and vanderwaal's gas - derivation - inversion temperature - significance 2 Know to derive expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas Lecture with power point presentation 6 Second law of thermodynamics - need for second law of thermodynamics - a different statements - Carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation 1 Chemical kinetics 3 Know about reaction - carnot's cycle Session Evaluation answer session Evaluation through multiple choice questions, short test, quiz 2 Difference between order and molecularity of a reaction - definition and examples 3 Know about reaction rate and factors influencing rate of reaction Evaluation answer session 2 Difference between order and molecularity of a reaction - definition and examples 3 Differentiate order and molecularity Formative assessment I 3 Methods of determining order of reaction - use of different i - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction and group Lecture with power point presentation and group			- Kirchoff's equation,				
5 Expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas - derivation - inversion temperature - significance 2 Know to derive expression for Joule Thomson coefficient for an ideal gas and vanderwaal's gas Lecture with power point presentation 6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation I Chemical kinetics 1 Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction reaction Question answer session Evaluation through Multiple choice questions, short test, quiz 2 Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period 3 Differentiate order and molecularity Lecture with power point for second rate and molecularity - zero, first and second order reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction and group			Joule Thomson effect				
Image: Second law of thermodynamics - need for second law of thermodynamics - carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation Image: Carnot's cycle 1 Rate of reaction - cycle 3 Know about reaction answer session of reaction - definition and examples 9 Evaluation through multiple choice questions, short test, order and molecularity - zero, first and second order reaction - cdefinition and malecularity - zero, first and second order reaction - carnot of reaction - certain and half-life period 3 Methods of determining order of reaction - use of different integral - half-life method and Oxstad's methods 3 Learn about different methods of determining order of reaction and molecularity of a reaction and molecularity or area constant and half-life period 3 Learn about different methods of determining order of reaction - reaction and molecularity or area constant and half-life period 3 Learn about different methods of determining order of reaction - use of different integral - half-life method and Oxstwald's methods 3 Learn about different methods of determining order of reaction - use of different integral - half-life method and Oxstwald's methods 3 Learn about different methods of determining order of reaction and group order of reaction - use of different integral - half-life method and Oxstwald's methods 3 Learn about different methods of determining order of reaction - use of different methods of determining order of reaction - use of different methods of determining order of reaction - use of different methods of determining order of reaction - use of different methods of determining		5	Expression for Joule	2	Know to derive	Lecture with	
an ideal gas and vanderwaal's gas - derivation - inversion temperature - significance Joule Thomson coefficient for an ideal gas and vanderwaal's gas presentation 6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation II Chemical kinetics 3 Know about reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction influencing rate of reaction - definition and examples Built Person (choice questions, short test, quiz 2 Difference between order and molecularity - zero, first and second order reactions - examples 3 Differentiate order and molecularity Lecture Formative assessment I 3 Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction and group			Thomson coefficient for		expression for	power point	
Image: state of the second law of thermodynamics - need for second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle Learn Carnot's cycle Lecture with power point presentation Image: state of the second law of thermodynamics - different statements - Carnot's cycle Image: state of the second law of thermodynamics - different statements - Carnot's cycle Image: state of the second law of thermodynamics - different statements - Carnot's cycle Image: state of the second law of the secon			an ideal gas and		Joule Thomson	presentation	
a derivation - inversion temperature - significance ideal gas and vanderwaal's gas 6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation II Chemical kinetics 1 Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction for eaction - etail influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Differentiate order and molecularity Evaluation answer session 2 Difference between order and molecularity - zero, first and second order reaction s - examples derivation of rate constant and half-life period 3 Different mabout different methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction 4			vanderwaal's gas -		coefficient for an		
Image: temperature - significance vanderwaal's gas 6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation II Chemical kinetics 1 Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction rate and factors influencing rate of reaction Question answer session Evaluation through Multiple choice questions, short test, quiz 2 Difference between order and molecularity - zero, first and second order reaction of rate constant and half-life period 3 Lecture 3 Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction Lecture with power point presentation and and power point			derivation - inversion		ideal gas and		
6 Second law of thermodynamics - need for second law of thermodynamics - different statements - Carnot's cycle 2 Learn Carnot's cycle Lecture with power point presentation I Chemical kinetics 1 Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction rate and factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 5 Know about reaction rate and factors Question answer session Evaluation through Multiple choice questions, short test, quiz 2 Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period 3 Differentiate order and molecularity Lecture Formative assessment I 3 Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction and group			temperature - significance		vanderwaal's gas		
Image: Image: second law of thermodynamics - different statements - Carnot's cyclecyclepower point presentationImage: Image: second law of thermodynamics - different statements - Carnot's cycleImage: second law of thermodynamics - different statements - Carnot's cycleSecond law of thermodynamics - different statements - Carnot's cycleImage: Image: second law of thermodynamics - different statements - Carnot's cycleImage: second law of thermodynamics - different statements - Carnot's cycleSecond law of thermodynamics - different statements - Carnot's cycleSecond law of thermodynamics - different statements - Carnot's cycleImage: Image: second law of thermodynamics - different and second or reaction - order and molecularity of a reaction - definition and examplesSecond law and the second reaction - definition and examplesSecond law of the second reaction - definition and examplesSecond law and the second reaction - definition and examplesSecond law and the second reaction - definition and examplesSecond law and the second reaction - definition and examplesSecond law and molecularityFormative assessment I2Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period3Learn about different methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about different methods of determining order of reaction and group		6	Second law of	2	Learn Carnot's	Lecture with	
Image:			thermodynamics - need		cycle	power point	
Image: thermodynamics - different statements - Carnot's cycle Image: thermodynamics - different statements - Carnot's cycle Image: thermodynamics - Carnot's cycle Image: thermodynamics - Carnot's cycle Image: thermodynamics - Carnot's cycle Image:			for second law of			presentation	
Image:			thermodynamics -				
IICarnot's cycleImage: cycleImage: cycleIIChemical kinetics1Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples3Know about reaction rate and factors influencing rate of reactionQuestion answer sessionEvaluation through Multiple choice questions, short test, quiz2Difference between order and molecularity - zero, first and second order reaction of rate constant and half-life period3Differentiate order and molecularityLecturequiz3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about different methods of determining order of reaction and group1			different statements -				
II Chemical kinetics 1 Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction rate and factors influencing rate of reaction Question answer session Evaluation through Multiple choice questions, short test, quiz 2 Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period 3 Differentiate order and molecularity Lecture Formative assessment I 3 Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods order of reaction and group			Carnot's cycle				
II Chemical kinetics 1 Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples 3 Know about reaction rate and factors influencing rate of reaction reaction Question answer Evaluation through Multiple choice questions, short test, quiz 2 Difference between order and molecularity - zero, first and second order reaction of rate constant and half-life period 3 Differentiate order and molecularity Lecture Formative assessment I 3 Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods order of reaction and group Lecture with power point presentation and group							
1Rate of reaction - expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examples3Know about reaction rate and factors influencing rate of reactionQuestion answer sessionEvaluation through Multiple choice questions, short test, quiz2Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period3Differentiate order and molecularityLectureFormative assessment I3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about order of reaction order of reactionLecture with power point presentation and group	11	Chemica	l kinetics				
expression of rate - factors influencing rate of reaction - order and molecularity of a reaction - definition and examplesreaction rate and factors influencing rate of reactionanswer sessionthrough Multiple choice questions, short test, quiz2Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period3Differentiate order and molecularityLectureFormative assessment I3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about order of reaction and order of reactionLecture with power point presentation and group		1	Rate of reaction -	3	Know about	Question	Evaluation
influencing rate of reaction - order and molecularity of a reaction - definition and examplesfactors influencing rate of reactionsessionMultiple choice questions, short test, quiz2Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period3Differentiate order and molecularityLecturequiz3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about order of reaction and order of reactionLecture with power point presentation and group			expression of rate - factors		reaction rate and	answer	through
reaction - order and molecularity of a reaction - definition and examplesinfluencing rate of reactionchoice questions, short test, quiz2Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period3Differentiate order and molecularityLecture3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about order of reaction and order of reactionLecture with power point presentation and group			influencing rate of		factors	session	Multiple
molecularity of a reaction - definition and examplesreactionquestions, short test, quiz2Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period3Differentiate order and molecularityLecturequiz3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about order of reactionLecture with power point presentation and group			reaction - order and		influencing rate of		choice
- definition and examples- definition and examplesshort test, quiz2Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period3Differentiate order and molecularityLectureFormative assessment I3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about different methods order of reactionLecture with power point presentation and group			molecularity of a reaction		reaction		questions,
2Difference between order and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life period3Differentiate order and molecularityLecturequiz Formative assessment I3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about different methods order of reactionLecture with power point presentation and group			- definition and examples				short test,
and molecularity - zero, first and second order reactions - examples derivation of rate constant and half-life periodorder and molecularityFormative assessment I3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about different methods order of reaction and groupLearn about groupLecture with power point presentation and group		2	Difference between order	3	Differentiate	Lecture	quiz
first and second order reactions - examples derivation of rate constant and half-life periodmolecularityFormative assessment I3Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods3Learn about different methods order of reactionLecture with power point presentation and group			and molecularity - zero,		order and		
reactions - examples derivation of rate constant and half-life period assessment I 3 Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods order of reaction Lecture with power point presentation and group			first and second order		molecularity		Formative
derivation of rate constant and half-life period 3 Learn about differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction Learn about different methods of determining order of reaction			reactions - examples				assessment I
and half-life period and half-life period 3 Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction 0 Methods of determining differential - integral - half-life method and Ostwald's methods 3 Learn about different methods order of reaction			derivation of rate constant				
3 Methods of determining order of reaction - use of differential - integral - half-life method and Ostwald's methods 3 Learn about different methods of determining order of reaction and group			and half-life period				
S Methods of determining S Learn about Lecture with order of reaction - use of different methods power point differential - integral - of determining presentation half-life method and order of reaction and Ostwald's methods group		2	Mathada of datamainin-	2	Loom about	Lasture	
order of reaction - use of differential - integral - half-life method and Ostwald's methodsof determining order of reaction grouppower point presentation and group		3	order of reaction was of	3	different methods	Lecture with	
half-life method and Ostwald's methods			differential integral		of determining	power point	
Ostwald's methods order of reaction and group			half life method and		order of reaction	presentation	
			Ostwald's methods			anu	
discussion			Ostwaru s meurous			discussion	

	4	Arrhenius theory -concept of activation energy - effect of catalyst - calculation of energy of activation. Theories of reaction rates - collision theory of bimolecular gaseous reactions - activated complex theory	3	Know about activation energy	Lecture with power point presentation	
III	Physical	properties and structure de	eterminati	on		
	1	Dipole moment - definition and expression for dipole moment - applications - molecular geometry - cis-trans isomerism and disubstituted benzene derivatives	2	Know about dipole moment and isomerism	Seminar and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Dia, para and ferro magnetism - magnetic susceptibility and magnetic moment - measurement using Guoy balance - application of magnetic properties	2	Learn about dia , para and ferro magnetism	Lecture and power point presentation	Formative assessment II
	3	Thermogravimetric analysis - principles - applications. Chromatography - classification	2	Know about thermogravimetric analysis	Lecture and power point presentation	
	4	Column chromatography - principle - experimental techniques - factors affecting column efficiency and applications	2	Gather knowledge regarding column chromatography	Power point presentation with videos	
	5	TLC principle - experimental techniques - advantages - limitations - applications. GC - principle - experimental techniques - applications	2	Distinguish between TLC and GC	Illustration, seminar and power point presentation	
	6	HPLC - principle and experimental techniques	2	Know about the principles of HPLC	Lecture and power point presentation	

IV	Photochemistry								
	1	Importance of photochemistry - difference between thermal and photochemical reactions - laws of photo chemistry - Beer-Lambert's Law - Grother's - Drapers law - Stark-Einstein's law	3	Understand about photo chemical laws.	Power point presentation with videos	Evaluation through Multiple choice questions, short test, quiz Formative			
	2	Quantum efficiency - electronic excitations - singlet and triplet states - Jablonski diagram - internal conversion - intersystem crossing	3	Know about electronic excitations	Lecture	assessment II			
	3	Fluorescence - phosphorescence - difference between fluorescence and phosphorescence	2	Differentiate between fluorescence and phosphorescence	Lecture				
	4	Types of photo chemical reactions based on quantum efficiency ($\phi =$ 1, $\phi < 1$ and $\phi > 1$) - primary and secondary process of photo chemical reaction - photo chemical rate law	2	Learn the types of photo chemical reactions	Lecture and power point presentation				
	5	Kinetics of photo chemical reactions - combination of H ₂ and Cl ₂ - decomposition of HI- photosensitization - photosensitizers - Chemiluminescence – bioluminescence. Lazers - principle - uses	2	Understand the kinetics of photo chemical reactions	Lecture and power point presentation				
V	Chemist	ry of Nanomaterials		1	1	1			
	1	Nanotechnology - introduction, fundamental principles - nano particles - size - nano particles of metals - semiconductors and oxides	3	Understand the fundamental principles of nanochemistry	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz			

2	Synthesis of nano sized compounds - reduction methods by sodium citrate and borohydride - Sol-gel method and chemical vapour deposition method - properties - optical and electrical	3	Gather knowledge regarding synthesis of nano particles	Lecture with videos	F or m at iv e as se	
3	Sol-gel method and chemical vapour deposition method - properties - optical and electrical	2	Learn about synthesis of nano particles	Seminar	ss m e nt I	
4	Nano clusters - carbon nano tubes - single walled nano tubes and multi- walled nanotubes	2	Know about nano clusters and carbon nano tubes	Power point presentation and seminar		
5	Properties of carbon nanotubes - applications - Application of nano chemistry in various fields	2	Understand the applications of nano chemistry	Lecture with videos		

Course Instructor: Dr. S. Ajith Sinthuja

Department of Chemistry Teaching Plan Even Semester 2019

Course Outcome

Major Core VIII

Semester	: VI
Name of the Course	: Organic Chemistry IV
Course code	: CC1761

CO -**Course Outcome** PSO CL No. **Upon completion of course** students will be able to recognize optical activity and the CO - 1 **PSO - 1** R types of isomerism CO - 2 interpret the principles of **PSO - 3** Ap spectroscopy and photochemistry CO - 3 apply spectral rules to calculate λ_{max} PSO - 6 Ap values evaluate different spectra CO - 4 PSO - 5 Е CO - 5 apply ir spectra in functional group PSO - 6 С analysis know the medicinal importance and CO - 6 PSO - 8 С elucidate the structure of alkaloids classify, differentiate and synthesise <u>C</u>O - 7 **PSO - 2** An various dyes

Unit	Section	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Stereoche	mistrv	Hours	Outcome		Evaluation
1	1.	Optical activity and Chirality	2	To understand the importance of optical isomerism	Lecture, Discussion	Evaluation through short test
	2.	R-S notation, enantiomers and diastereomers	3	To differentiate enantiomers and diastereomers	Lecture, Discussion	Formative assessment
	3.	Optical activity of compounds without asymmetric carbon atoms	2	To gain knowledge about optical activity	Lecture	Formative assessment
	4.	Methods of distinguishing geometrical isomers, determination of configuration of ketoximes	3	To get idea about geometrical isomerism	Lecture	Formative assessment, Short test
	5.	Conformational analysis of ethane, n-butane and cyclohexane energy diagrams.	2	To differentiate different energy diagrams	Question answer session, Lecture	Formative assessment, Assignment
II	Spectrosc	copy-I		1		r
	1.	General principles, introduction to absorption and emission spectroscopy	2	To know about principles of spectroscopy	Lecture with PPT Illustration	Formative assessment
	2.	Types of electronic transitions- bathochromic and	2	To know the types of electronic transitions	Lecture, Illustration	Formative assessment

Total Contact hours : 60 (Including lectures, assignments and tests)

		hypsochromic shifts				
	3.	Application of Woodward Rules for calculation of λ_{max} for different molecules	2	To understand clearly about the calculation of λ_{max}	Lecture, Discussion	Formative assessment, Short test
	4.	Photochemical reactions of ketones, Norrish type I and type II reactions	4	To study about photochemica l reactions	Lecture, Discussion	Formative assessment, Online Quiz
III	Spectrosc	copy-II				
	1.	Molecular vibrations and origin of IR spectra - IR absorption positions of O, N and S containing functional groups	2	To know about molecular vibrations	Lecture, Illustration	Formative assessment, Assignment
	2.	Hydrogen bonding, conjugation,. IR absorptions- fingerprint region	3	To learn about fingerprint region	Lecture, Illustration	Formative assessment
	3.	Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it	4	To analyse the factors influencing chemical shift	Lecture	Formative assessment Short test
	4.	Interpretation of NMR spectra of simple compounds	3	To recognise the various spectra compounds	Lecture with PPT Illustration	Seminar, Formative assessment

IV	Alkaloids and Terpenoids								
	1.	Natural	2	To know	Lecture	Formative			
		occurrence,		about		assessment			
		structural		different					
		features and		alkaloids					
		isolation of							
		alkaloids							
	2.	Structural	1	To understand		Formative			
		elucidation and		and	Lecture,	assessment,			
		synthesis of		differentiate	Discussion	Short test			
		coniine.		different					
		piperine and		alkaloids					
		nicotine.							
	3.	Significance of	2	To acquire	Lecture	Short test			
		number of		knowledge					
		peaks and peak		about peaks					
		area. Spin-spin		and coupling					
		coupling and		constant					
		coupling							
		constant.							
	4.	Occurrence	3	To evaluate	Lecture,	Formative			
		and		and classify	Discussion	assessment			
		classification		terpenoids					
		of Terpenoids,							
		isoprene rule							
	5	Elucidation of	2	To know	Lecture	Formative			
		structure and		about the		assessment			
		synthesis of		structure of					
		citral, geraniol,		various					
		menthol and α-		terpenoids					
		terpeniol.		_					
V	Dyes								
	1.	Classification	4	To know	Lecture,	Formative			
		based on		about the	Discussion	assessment			
		application and		classification					
		chemical		of dyes					
		structure with							
		examples.							
	2.	Colour and	3	To gather	Lecture	Formative			
		constitution of		knowledge		assessment			
		dyes.		regarding					
		Chemistry of		thecolour and					
		dyeing		constitution					
				of dyes					
	3.	Triphenyl	1	To understand	Lecture,	Formative			
		methane dyes -		the synthesis	Illustration	assessment,			

	malachite green, rosaniline and crystal violet.		and application of dyes		Short test
4	Phthalein dyes - Phenolphthalei n and fluorescein. Anthraquinone dyes - Alizarin Indigo dyes- Indigo.	4	To learn the synthesis and applications of phthalein and anthraquinone dyes.	Lecture, Discussion	Formative assessment, Seminar

Course Instructor: G. Leema Rose

Course Outcome

Semester	: VI	Major Core IX
Name of the Course	: Inorganic Chemistry III	
Course code	: CC1762	

CO -	Course Outcome	PSO	CL
No.	Upon completion of course students will be able to		
CO - 1	name the coordination compounds	PSO - 1	А
CO - 2	explain the theories of coordination compounds	PSO - 1	U
CO - 3	predict the colour, magnetic properties and geometry of coordination compounds	PSO - 2	С
CO - 4	analyse the nature of bonding in coordination compounds	PSO - 3	An
CO - 5	minimize the errors in chemical estimation	PSO - 5	An
CO - 6	employ the methods to separate the inner transition elements	PSO - 4	Ар
CO - 7	compare the properties of lanthanides and actinides	PSO - 2	An
CO - 8	explain the principles of gravimetric analysis	PSO - 1	U

Teaching Plan Total Contact hours : 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Co-ordin	ation chemistry I	•			
	1	Double salts – co- ordination compounds – difference, definition and terminology – co- ordination complexes and complex ions – central ion and ligands – co-ordination number – co- ordination sphere – charge on a complex ion.	3	Know the difference between double salts and coordination compounds.	Lecture, Showing available coordination compounds and double salts.	Evaluation through short test
	2	Types of ligands - examples for each. Nomenclature of co- ordination compounds	2	Name the coordination compounds.	Group discussion	Evaluation through short test
	3	Isomerism in co- ordination compounds, structural isomerism – ionisation, hydrate, co- ordination, linkage and co-ordination position isomerism.	2	Know the types of isomerism exhibited by coordination compounds.	llustration Lecture	Assignment on isomerism
	4	Stereoisomerism – geometrical isomerism in tetrahedral and octahedral complexes - optical isomerism in octahedral complexes.	2	Know the types of isomerism exhibited by tetrahedral and octahedral compounds.	Lecture, Seminar	Evaluation through short test
11	Co- ordin	nation Chemistry – II	4	T7 (1		
		Theories of co- ordination compounds- Werner's theory- postulates — verification of Werner's theory- cobalt ammine complexes.	4	Know the theories of coordination compounds	Question answer session	Multiple choice questions

	2	EAN rule – calculation	3	Predict the	Lecture	Short test
		of EAN with reference		stability of		Formative
				metal		assessment – I
				complexes.		
	3	Pauling's theory	4	Predict the	Lecture with	Short test
		(VBT) – postulates -		structure of	ppt	Formative
		application of VBT to		complexes		assessment – I
		square planar and		using VBT.		
		tetrahedral complexes,				
		inner and outer			Group	
		complexes – merits			discussion	
		and demerits of VBT.				
		Shapes of d-orbitals.				
	4	Crystal field theory –	5	Apply CFSE	Assignment	
		Crystal field splitting		and predict	on CFSE	
		of tetrahedral, square		the stability		
		planar and octahedral		of		
		systems. Factors		complexes.		
		CESE arristal field				Multiple aboies
		CFSE - Crystal field				multiple choice
		and its application in				questions
		the stability of				
		complexes				
III	Coordin	etion chemistry _ III				
	1	Molecular Orbital	3	Differentiate	Illustration	
	1	Theory (MOT)– MO	5	strong and	Seminar	Short test
		diagrams of ML ₆ type		weak field	~~~~~	
		complexes – weak and		ligands.		
		strong field ligands –		8		
		spectrochemical series.				
	2	Stability of metal	3	Predict the	Lecture,	Assignment
		complexes – relation		stability of	Group	
		between stability		complexes.	discussion	
		constant and				
		dissociation constant –				
		factors affecting the				
		stability of metal				
		complexes from				
		thermodynamic data.				
		Irving William series –				
		stabilization of				
		unstable oxidation				
	2	state.		TT 1 / 1	T / •,•	.
	3	Substitution reactions	5	Understand	Lecture with	Assignment
		oi square pianar		the	ppt	

		complexes trans		substitution		
		offoot		reactions of		
		effect.				
	4		2	complexes.	T /	A • .
	4	Metal carbonyls -	3	Apply	Lecture,	Assignment
		classification –		coordination	Illustration	
		examples – structure		compounds		
		and nature of M-L		in qualitative		
		bond in metal		and		
		carbonyls – structures		quantitative		
		of mono, di and		analysis.		
		polynuclear carbonyls		-		
		of Ni, Cr, Fe, Co and				
		Mn. Application of				
		complexes in				
		qualitative and				
		quantitative analysis				
		qualificative analysis.				
IV	Transitio	n Elements:				
	1	. Group discussion	2	Know the		
		with special reference		general		
		to electronic		characteristic		
		configuration.		S		
		oxidation state		of transition		
		spectral and magnetic		elements		
		properties colour		cicilitation		
		variable valency-				
		polyvalency of				Multiple choice
		Vanadium magnetic				questions
		and cotalytic				questions
		and catalytic				
		form complexes				
	2	Difficulture	2		T / 1	
	2	Difference between the	3	Differentiate	Lecture with	Formative
		first, second and third		the transition	ppt	assessment – II
		transition series.		series.		
		Extraction, properties				
		and uses of Cu, Co and				
		Ni. Preparation and				
		uses of titanium(II)				
		oxide, vanadium (V)				
		oxide, potassium				
		dichromate, potassium				
		permanganate.potassiu				
		m ferrocyanide.				
		Potassium				
		ferricyanide Vaska's				
		compound. platinum				

		(IV) chloride,				
		chloroplatinic acid and				
		purple of Cassius.				
	3	Inner transition	3	Know the	Lecture	
		Elements: Electronic		general		
		configuration,		characteristic		
		oxidation states,		s of inner		Quiz
		colour, spectral and		transition		
		magnetic properties.		elements.		
		Causes and				
		consequences of				
		lanthanide contraction				
	4	Extraction of	4	Compare	Lecture	Ouiz
		lanthanides from		lanthanides		X
		monazite sand -		and actinides		
		separation of				
		lanthanides by ion-				
		exchange method -				
		uses of lanthanides.				
		Comparison between				
		lanthanides and				
		actinides				
	5	Extraction properties	2	Know the	Lecture with	Ouiz
	5	and uses of thorium	-	extraction of	ppt	Zuiz
		and uranium - zinc		Th and U	PP*	
		uranyl acetate				
		Uranium				
		hexafluroide				
V	Analytica	l Chemistry				
•	1	Types of errors-	3	Gain		
	1	determinate and	U	knowledge		
		indeterminate errors-		about errors	Group	
		minimization of errors		ubbut errors.	discussion	Short test
		Precision and			discussion	Short test
		accuracy- Comparison				
		of precision and				
		accuracy with example				
	2	Standard deviation-	2	Calculate	Lecture	Assignment
		mean deviation –	_	standard	Lecture.	1 1001Gilliont
		relative mean		deviation and		
		deviation and		mean		
1						
		coefficient of variance		deviation		
		coefficient of variance.		deviation		
		coefficient of variance. Accuracy- absolute		deviation		
		coefficient of variance. Accuracy- absolute error- relative error- confidence limit-		deviation		

	value – Q Test and student T test .				
3	Principles and requirements of gravimetric analysis, gravimetric steps- digestion, filtration, washing, drying and ignition.	2	Apply the principles of gravimetric analysis.	Demonstrati on	Formative assessment – III
4	Mechanism of precipitation – factors affecting solubility of precipitate – co- precipitation- different types – prevention- post precipitation – prevention and difference between co- precipitation and post precipitation, precipitation from homogenous solution with examples.	4	Apply the principles of gravimetric analysis.	Lecture using ppt	Formative assessment – III

Course Instructor: R.Gladis Latha

Course Outcome

Semester	: VI
Name of the Course	: Physical Chemistry III
Course code	: CC1763

СО-	Course Outcome	PSO -	CL
No.	Upon completion of course		
	students will be able to		
CO - 1	Recall phase rule.	PSO - 1	R
CO - 2	Understand phase diagrams	PSO - 1	С
CO - 3	Differentiate various photochemical	PSO - 4	U
	processes		
CO - 4	Interpret Jablonski diagram	PSO - 4	Ар
CO - 5	Apply the electrochemical principles	PSO - 3	Ар
	in batteries		
CO - 6	To deduce the expressions of rate	PSO - 5	An
	constant		
CO - 7	Evaluate pH using electrodes.	PSO - 5	Е
CO - 8	Elucidate the structure of molecules	PSO - 8	С
	using spectral data		

Teaching Plan Total Contact hours : 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Phase Equil	ibria				
	1.	Concept of phase , components and degrees of freedom (definitions and examples) Derivation of Gibb's phase rule.	2	To derive Gibb's phase rule	Lecture, Discussion	
	2.	Phase diagram for one component system – water and sulphur system	2	Construct phase diagram for water and sulphur system	Lecture	
	3.	Two component system	1	To construct phase diagram for two component system	Lecture, Discussion	
	4.	Reduced phase rule and simple eutectic systems.	1	Construct phase diagram for simple eutectic system	Ppt presentation	Formative assessment,
	5.	Lead-silver system – Pattinson's process of de- silverisation of lead,freezing mixtures-KI-H ₂ O system	2	Understand de- silverisation and potassium iodide-water system	Lecture	Assignment, MCQ
	6.	Formation of compounds with congruent melting point	1	Understand congruent melting point	Ppt presentation	
	7.	Zinc-magnesium system and FeCl ₃ - H ₂ O system. Formation of compounds with incongruent melting points	2	Understand FeCl ₃ -H ₂ O system and incongruent melting points	Lecture	
	8.	Na ₂ SO ₄ -H ₂ O system and Solid-	1	Construct Na ₂ SO ₄ -H ₂ O	Lecture	

		gas equilibria		system		
	9.	CuSO ₄ -H ₂ O	1	Construct	Question	
		system.		CuSO ₄ -H ₂ O	answer	
				system	session	
					Lecture	
	10.	Efflorescen	1	Underst	Lecture,	
		ce, deliquescence		and	Discussion	
		and hygroscopy		Efflorescence,		
				deliquescence		
				and hygroscopy		
II	Chemical K	inetics				
	1.	Rate of	2	To know factors	Lecture	
		reaction, expression		influencing rate	with PPT	
		of rate, factors		of reaction and	Illustration	
		influencing rate of		theories of		
		reaction and		reaction rates		
		theories of reaction				
		rates				
	2.	Order and	1	Understand	Lecture,	
		molecularity of a		order and	Illustration	
		reaction		molecularity of		
				a reaction		
	3.	Definition and	1	Differentiate	Lecture,	
		examples,		order and	Discussion	
		differences between		molecularity of		
		order and		a reaction		Eamorations
		molecularity of a				Formative
		reaction				assessment,
	4.	Various orders of	2	Derive zero,	Ppt	Short lest,
		reaction and their		first and second	presentation	Assignment,
		derivation zero,		order reaction.	-	MCQ
		first and second				
		order reaction				
	5.	Definition,	1	Know rate	Lecture	
		examples and		constant and		
		derivation of rate		half life period		
		constant and half		of a reaction		
		life period.				
	6.	Methods of	2	Determine	Ppt	
		determining order		order of	presentation	
		of reaction, use of		reaction	-	
		Differential,				
		Integral, Half-life				
		method and				
		Ostwald's isolation				

		methods.				
	7	Concept of	1	Derive	Lecture	
		activation energy,		Arrhenius		
		effect of catalyst		equation		
		and calculation of		1		
		energy of activation				
		(Arrhenius				
		equation)				
	8	Collision theory of	1	Derive	Lecture	
		bimolecular		activated		
		gaseous reactions(complex theory		
		activated complex				
		theory)				
	9	Comparison of	1	Differentiate	Question	
		collision theory and		collision theory	answer	
		activated complex		and activated	session	
		theory.		complex theory	Lecture	
	10		2	Derive	Lecture,	
		Lindeman's		Lindeman's	Discussion	
		theoryofunimolecul		theoryofunimol		
		arreactions and		ecularreactions		
		solving problems		and able to		
				slove problems		
				in this topic		
III	Electrochen	nistry – I				
	1.	Definition of	1	Know	Lecture,	
		conductance,		conductance,	Illustration	
		specific		specific		
		conductance,		conductance,		
		equivalent		equivalent		
		conductance and		conductance		
		molar conductance		and molar		
				conductance		
	2.	Factors affecting	1	Understand	Lecture,	Formative
		conductance of a		factors affecting	Illustration	assessment,
		solution		conductance of		Short test,
				a solution	-	Assignment,
	3.	Transport number,	1	Able to	Lecture	MCQ
		determination of		determine		
		transport number		transport		
		by Hittorf's method		number		
		and moving				
		boundary method				
	4.	Strong and weak	2	Able to derive	Lecture	
		electrolytes		Debye-	with PPT	
		,variation of		Huckeltheory of	Illustration	

		equivalent		strong		
		conductance with		electrolytes		
		dilution and Debye-				
		Huckeltheory of				
		strong electrolytes				
	5	Debye-	2	Derive Debye-	Question	
	5.	HuckelOnsagareau	-	HuckelOnsagar	answer	
		ation Kohlrausch's		equation and	session	
		aw and its		Kohlrausch'sla	Lecture	
		amplications		Konnausen sia	Lecture	
	6	Applications of	2	W Understand the	Locturo	
	0.	applications of	Δ	onderstand the	Discussion	
		conductance		applications of	Discussion	
		measurements		conductance		
	7		1	Ineasurements	T 4	
	7.	Determination of	1	Determine	Lecture,	
		λ infinity of		degree of	Illustration	
		weak acid and		dissociation of		
		weak base and		weak		
		degree of		electrolytes		
		dissociation of				
		weak				
		electrolytes			-	
	8.	Solubility and	3	Understand	Lecture	
		solubility products		solubility and		
		of sparingly soluble		solubility		
		salts and		products of		
		conductometric		sparingly		
		titrations and		soluble salts		
		solvingproblems.		and		
				conductometrict		
				itrations.		
				Able to solve		
				problems in this		
				topic		
IV	Electrochen	nistry – II		Γ	Γ	
	1.	Electrochemical	2	Understand	Lecture	Formative
		cells ,chemical cells		Electrochemical		assessment,
		,reversible and		cells –chemical		Short test,
		irreversible cells		cells –		Assignment,
		and		reversible and		MCQ
		determinationof		irreversible		
		EMF of cells		cells -EMF of		
				cells		
	2.	Cell	1	Know various		
		representation, singl		types of	Lecture,	
		e electrode		electrodes	Discussion	

	potential,types of electrodes, metal- metal ion electrodes, amalgam electrodes				
3.	Insoluble metal salt electrodes and oxidation – reduction electrodes.Standard hydrogen electrode (SHE) and calomel electrode	2	Understand standard hydrogen electrode (SHE) and calomel electrode	Lecture	
4.	Derivation of Nernst equation	1	Derive Nernst equation for emf of cells	Lecture, Discussion	
5.	Standard electrode potential, electro chemical series, thermodynamics of galvanic cells, $\Delta G, \Delta H, \Delta S$ and equilibrium constant (K).	2	To know electro chemical series and thermodynamic s of galvanic cells $\Delta G, \Delta H and \Delta S$ and equilibrium constant (K)	Lecture with PPT Illustration	
6.	Concentration cells –with transference and without transference ,liquid junction potential and its elimination.	1	Understand Concentration cells with transference and without transference and liquid junction potential and its elimination	Question answer session Lecture	
7.	Applications of EMF measurements ,determination of transport number, valency of an ion, pH of a solution using hydrogen, quinhydrone and glass electrode.	2	Able to grasp Applications of EMF measurements,d etermination of transport number, valency of an ion, pH of a solution using	Lecture, Discussion	

	8	Potentiometric titrations - acid-	1	hydrogen, quinhydrone and glass electrode. Understand Potentiometric	Lecture, Illustration	
		base, oxidation reduction and precipitation titrations.		titrations		
	9	Decomposition potential and overvoltageand solving Problems	2	Know decomposition potential and overvoltage. Can able to solve problems from this topic	Lecture	
V	Spectroscop	y		• •	·	
	1.	Different regions of EMR spectrum, Born-Openheimer approximation ,types of molecular spectra – microwave (rotational) spectra theoretical principle, selection rule and applications in the determination of bond distance in diatomic molecules	4	To classify different regions of EMR and know about microwave spectroscopy.	Lecture, Discussion	Formative assessment, Short test, Assignment, MCQ
	2.	Vibrational (IR) spectra – theoretical principle, harmonic oscillator and unharmonicity – selection rule, intensity, modes of vibrations and types, force constant, applications of IR– hydrogen bonding	3	To gather knowledge regarding Vibrational spectra(IR)	Lecture	

3	,Inter and Intramolecular hydrogen bonding	1	To understand	Lecture	
5.	overtones and combination bands.	1	Fermi resonance, over tones and combination bands	Illustration	
4	Electronic spectra - selection rules, Frank types of transitions and pplications. Raman spectra - theoretical principle ,stokes and antistokes lines	2	To know Electronic and Raman spectra	Lecture, Discussion	
5.	Comparison of IR & Raman Spectroscopy.	1	Differentiate between Raman spectra and IR Spectra.	Lecture, Discussion	
6.	ESR spectra- theory and principle and hyperfine splitting ESR spectra of methyl radical .	2	To understand ESR Spectra	Lecture, Illustration	

Course Instructor: M. Anitha Malbi