Semester II

Course Name : PROPERTIES OF MATTER AND SOUND

Course code: PC2021

No. of Hours per Week	Credits	Total No. of Hours	Marks
4	4	60	100

Objective

To expose students to the fundamentals of properties of matter and sound.

Course Outcomes

CO	Upon completion of this course the students will be able to:	PSO addressed	CL
CO-1	identify the materials suitable for construction of buildings, based on the moduli of elasticity.	PSO-4	Ap
CO-2	paraphrase the properties of liquids and its determination.	PSO-1	U
$\mathbf{C O - 3}$	analyze the physics of sound and its applications	PSO-2	An
CO-4	integrate the concepts of acoustic comfort and better understanding of the theories used in building acoustics	PSO-3	Ap

Modules

Credits: 4 Total contact hours: 60 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I	Elasticity					
	1	Elasticity -- Hooke's law - Elastic moduli - Poisson's ratio -	2	To understand the concept elasticity and	Lecture	Evaluation through short test

		Beams - Bending of beams - Expression for bending moment -		bending of beams	Discussion with PPT illustration	Multiple choice questions Formative assessment I
	2	Cantilever- Theory of uniform and non Uniform bending Determination of Young's modulus	2	To be able to determine the Young's modulus of the material	Lecture discussion with illustration	
	3	Koenig's method Torsion of a body Expression for couple per unit twist - Work done in twisting a wire	3	To acquire knowledge on Work done in twisting a wire	Lecture discussion	
	4	Torsional oscillations of a body - Rigidity modulus by dynamic torsion method (Torsional pendulum) and static torsion method	2	To be able to distinguish between dynamic torsion method and static torsion method	Lecture discussion	
II	Surface Tension					
	1	Surface tension definition Molecular forces Explanation of surface tension on kinetic theory Surface energy	3	To understand the concept of surface tension according to kinetic theory	Lecture Illustration	Short test Quiz Assignment
	2	Work done in increasing the area of a surface - Excess pressure inside a curved liquid surface - Excess pressure inside a spherical	3	To determine the excess pressure inside a spherical and cylindrical drops and bubbles	Lecture discussion	assessment I

			and cylindrical drops and bubbles					
	3	3	Drop weight method - Angle of contactQuincke's methodvariation of surface tension with temperatureExperimental determinationJaegar's method	3		To evaluate the principle of surface tension in liquids and understand it by practical experiments.	Lecture Illustration	
III	Viscosity							
	1	1	Viscosity - Co efficient of viscosity - Streamlined and turbulent motion Critical velocity	3		To have practical knowledge on determining the coefficient of viscosity of a liquid.	Lecture with PPT Illustration	Class test Quiz Formative assessment II
	2	2	Rate of flow of liquid in a capillary tube - Poiseuille's formula - Viscosity of highly viscous liquid	4	4	To understand the concept of pressure and thrust.	Questionanswer session Lecture	
	3	3	Terminal velocity Stoke's method Ostwald Viscometer - Viscosity of gasMayer's formula- Rankine 's method	3		To evaluate Stoke's formula and apply it in experiment to understand the viscous force of a liquid.		
IV	Sound							
	1	1	Simple harmonic motion - Differential equation of motion	3		To derive the solution of the differential	Lecture Discussion	Short test

		executing S.H.M. - Solution of the differential equation of motion		equation for a simple harmonic motion		Quiz Formative assessment II
	2	Composition of two S.H.M. along the same direction and at right angles Lissajous figure Free, damped and forced vibration	3	To distinguish between Free, damped and forced vibration	Lecture Discussion	
	3	Frequency of vibrating stringMelde's experiment and verification of the laws of transverse vibration of a stringSonometer Loudness levelSound Intensity measurement	3	To acquire skills to do experiments by sonometer and Melde's string.		
V	Ultrasonics and Acoustics					
	1	Ultrasonics - Production - Piezoelectric crystal method - Magnetostriction method - Properties and Applications	3	To compare the methods of ultrasonic production.	Lecture with PPT	Class test Formative assessment III
	2	Acoustics of building -ReverberationSabine's Reverberation formula (No derivation) - Factors affecting acoustics	5	To classify sound and to examine the architectural acoustics	Brain storming session. Lecture Illustration	

| | of building- Sound
 distribution in an
 auditorium-
 Requisites for good
 acoustics | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

PO- Program outcome; LO - Learning outcome; Cognitive Level U - Understand; Ap- Apply, An- Analyze;
Course instructors: Dr.A.Lesly Fathima and Sr.S.Sebastiammal

Semester
Name of the Course
Subject code

II

: Allied Physics II

: AP2021

No. of hours per week	No. of credits	Total no. of hours	Marks
4	4	60	100

Objectives

To understand the concept of strength of materials, viscous properties of liquids, heat transformation from one place to another, converting heat to do mechanical work and basic properties of light such as interference and diffraction.

Course Outcomes

CO	Upon completion of this course the students will be able to:	PSO addressed	CL
CO 1	Acquire knowledge on elementary ideas of electricity and magnetism, electronics, optics and nuclear physics.	PSO-1	U
CO 2	Analyze the concepts and study their applications in the field of electricity and magnetism, electronics, optics and nuclear physics.	PSO-2	An
CO 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ap
CO 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	Ap

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment / Evaluation
I	Quantum Mechanics and Relativity					
	1	Wave mechanics - expression for group velocity - Davison Germer's experiment Heisenberg's uncertainty principle - basic postulates of wave mechanics - time dependent form of Schrodinger equation - properties of wave function.	2	To understand the basic concepts of wave mechanics	Illustration and lecture	Evaluation through: quiz, short questions
	2	Heisenberg's uncertainty principle - basic postulates of wave mechanics - time dependent form of Schrodinger equation - properties of wave function.	2	To study the basic postulates of wave mechanics and derive Schrodinger equation	Illustration and theoretical derivation	Multiple choice, questions,
	3	Relativity - frame of reference - Newtonian relativity Galilean transformation equations.	2	To understand Relativity and frame of reference	Illustration, theoretical derivation and Practical	Formulas Problem solving
	4	Special theory of relativity Lorentz transformation equations.	3	To derive Lorentz transformation equations.	Lecture and theoretical derivation	Formative assessment
II	Nuclear Physics					
	1	Nuclear constituents - size - mass spin and charge - binding energy binding energy curve	3	To understand the basic concepts of nuclear physics and study its units	Illustration, Theoretical formulation, Problem Solving	Evaluation through: quiz, short test Assignment on applications.
	2	Nuclear fission - chain reaction nuclear reactor - radioactive disintegration	3	To determine nuclear fission	Lecture, Theoretical formulation	

				and radioactive disintegration		Formative assessment
	3	Half life period - radiation hazards.	2	To understand the causes radiation hazards	Lecture, Illustration,	
III	Electricity \& Magnetism					
	1	Electric curent - current density Ohm's law - Electrical conductivity - Kirchhoff's law	2	To understand the basic concepts of current and laws	Illustration and lecture	Evaluation through: quiz, short questions, Multiple choice, questions,
	2	Wheatstone's bridge - condition for balance - potentiometer calibration of voltmeter and ammeter.	2	To study the basic of potentiometer voltmeter ammeter	Illustration and theoretical derivation. Practical	
	3	Electromagnetic induction - laws of electromagnetic induction Faraday's law - Lenz law	2	To understand the basic concepts of electromagnetic induction through experiment	Illustration, theoretical derivation and Demonstration	Deriving theoretical formulas
	4	Flemings right hand rule - selfinductance - mutual induction coefficient of coupling.	2	To define convection mode of heat transfer and study its application	Illustration and lecture	Formative assessment
IV	Electronics					
	1	Formation of p-n junction diode - forward and reverse biasing of a junction diode	2	To understand the basic concepts of electronics	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions Multiple choice, questions, Deriving theoretical
	2	Zener diode - characteristics of the Zener diode - diode as a half wave and full wave rectifiers.	2	To analyse the various aspects of zener diode	Lecture, Demonstration, theoretical formulation	
	3	Bipolar junction transistor -	2	To understand the concept	Lecture, Demonstration,	

	4	junction transistor - CE characteristics of a transistor Field effect transistor - drain characteristics of an n channel JFET.	2	Bipolar junction transistor To understand the concept of Field effect transistor	theoretical formulation Lecture, Demonstration, theoretical formulation	formulas Formative assessment
V	Digital Electronics					
	1	Digital logic gates - AND - OR - NOT gate - NAND and NOR as universal gates - integrated circuit - EX-OR gate	3	To understand the basic concepts of logic gates	Illustration, Theoretical formulation, Demonstration	Evaluation through: quiz, Deriving theoretical
	2	Boolean algebra- half adder full adder - half subtractor.	2	To understand the basic concepts of Boolean Algebra	Lecture, Demonstration, Theoretical formulation	formulas Assignment on applications
	3	Decimal system - Binary system -conversion - binary addition binary subtraction using 2 s complement - binary multiplication - binary division.	3	To understand the number system and binary operations	Lecture, Demonstration, Theoretical formulation	Formative assessment

PO- Program outcome; LO - Learning outcome; Cognitive Level U - Understand; Ap- Apply, An- Analyze;
Course Instructor: Ms.P. Aji Udhaya \&Sr.S.Sebastiammal

Semester II

Course Name : Physics in Everyday life - II

Course Code: PNM202

No. of hours per week	No. of credits	Total no of hours	Marks
2	2	30	100

Objectives

1. To provide basic knowledge on the concepts of light, Electromagnetism and

Electronics along with some applications.
2. To explain the wonders in universe using the principles of physics
. Course Outcomes

$\mathbf{C O}$	Upon completion of this course, students will be able to:	CL
$\mathrm{CO}-1$	understand the principle and working of simple devices used in day to day life.	U
$\mathrm{CO}-2$	identify the symbols used for various electronic components and infer the electronic tools.	R
$\mathrm{CO}-3$	distinguish different heavenly bodies (star, planet, comets, galaxies)	R
$\mathrm{CO}-4$	recall various applications of physics concepts in everyday life	K

Teaching Plan

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagog y	Assessm ent/ Evaluat ion
I	Light					
	$\begin{array}{r}1 \\ \\ \\ \hline\end{array}$	Introduction - Nature and properties of light - Reflection Colours of light - Colours of objects- Reflection in everyday life	1	To understand the fundamental concepts of light	Lecture, PPT	Quiz test, Formative assessme nt
	2	Refraction - Dispersion Rainbow formation- Refraction in everyday life	2	To understand the fundamental phenomenon of light	Lecture Demon strati on	
	3	Laser: principle and applications - Fiber optics and its applications - Applications of light in day to day life	1	To understand the principles and applications of	Lecture	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \& \& Laser and fiber optics in day to day life \& \&

\hline II \& \multicolumn{6}{|c|}{Electromagnetic Radiation}

\hline \& 1

2

3 \& | Introduction- Properties of |
| :--- |
| Electromagnetic waves - EM |
| Spectrum- Radio sub spectrum |

Cell phones, Microwaves -
Microwave oven and sensor,
Terahertz radiation and its
applications

Infra red rays in everyday life -
Infra Red and microwaves -
lomparison - visible light waves -
UV rays and its applications
:---
To apply electromagnet ic radiations in electrical and electronic appliances
To understand and apply the uses of microwave, infrared and visible light in day to day lie
:---
Demon
strati
on
Lecture
Demon
strati
on
Lecture

\hline III \& \multicolumn{6}{|c|}{Electromagnetism}

\hline \multirow{3}{*}{IV} \& 1

2

3 \& \begin{tabular}{|l|}
Introduction - Magnetic materials

- Magnetic Field in and around a

bar Magnet, Magnetic Fields in

and around Horseshoe magnet,

Magnetic lines of force

\hline | Electric charge - Ohm's Law - |
| :--- |
| Practical Applications of Ohm's |
| Law in Daily Life |

Electromagnetism- Applications

of electricity and magnetism:

Credit card machine, Use of

electromagnetism in daily life.

 \& 2 \&

To understand Magnetic

Field and magnetic force

To understand Ohm's Law and the applications of Ohm's law

To apply the applications of electricity and magnetism in digital technology

 \&

Lecture

Lectu

re,

PPT
\end{tabular} \& Quiz test, Forma tive assess ment (II)

\hline \& \multicolumn{6}{|l|}{Basic Electronics}

\hline \& 1 \& Introduction - Electronic components - Electronic tools \& 1 \& To understand and apply the basic electronic components \& Lecture \& | Quiz |
| :--- |
| test, |
| Formativ |
| e |
| assessme |

\hline
\end{tabular}

No. of hours per week	No. of credits	Total No. of hours	Marks
4	4	60	100

Learning Objectives

1. To provide knowledge on the concept of aberrations in lenses, prisms and Spectroscopy.
2. To understand the phenomenon like interference, diffraction, polarization through wave nature of light and itsapplications.

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	gain knowledge of geometric optics, helps in the practical design of many optical systems and instruments including aberrations in lens system.	PSO - 2	\mathbf{U}
CO-2	determine the behavior of a ray and wave at any optical surface.	PSO - 1	\mathbf{R}
CO-3	analyze the intensity variation oflight due to polarization, interference and diffraction.	PSO-4	An
CO-4	study the phenomena: interference, diffraction, and polarization lays the foundation for an understanding of concepts such as as holograms, interferometers.	PSO -5	E
CO-5	gain knowledge on spectroscopy helps to extract the dynamic information about the mggecule.	PSO -3	Ap

Total contact hours: 60 (Including lectures, assignments and Tests)

	2	Plane diffraction grating -theory of plane transmission grating experiment to determine wavelength (Normal incidence method) -resolving power	3	Discuss the theory of plane transmission gratig	Lecture discussion \&Demonstrati on, PPT	Multiple choice questions
	3	Rayleigh's criterion for resolution resolving power of a telescope resolving power of a microscope resolving power of a prism - resolving power ofgrating.	3	Evaluate the resolving power of various optical devices	Lecture demonstration	Descriptive answers Formative assessment
IV	Polarisation					
	1 Double refraction -Nicol Prism - Nicol Prism as polarizer and analyzer - Huygens's explanation of double refraction in uniaxial crystals		3	To explain the basic principles \& phenomena of polarisation	Lecture discussion, PPT	Evaluation through: quiz Assignments
	2	Plane, elliptically and circularly polarized light- Quarter wave plates and Half wave plates Production and detection of plane, circularly and elliptically polarized light	3	To analyze different types of polarization	Lecture Illustration	Short questions Descriptive answers
	3	Optical activityFresnel's explanation of optical activity	3	Determine the various optical parameters by using optical components	Lecture discussion PPT	Formative assessment
V	Spectroscopy					
	1	Infrared spectroscopy - sources and detector - uses - ultraviolet spectroscopy - sources - quartz spectrograph - applications -	4	Explain UV \& IR spectroscopy and its applications	Lecture discussion, PPT	Evaluation through: quiz, Assignments on applications Formative assessment
	2	Raman Spectroscopy Nuclear magnetic resonance -Nuclear quadrupole resonance	2 40	Discuss the principles of NMR spectroscopy	Lecture discussion, PPT	
	3	Electron spin resonance		Analyze and study the	Group discussion,	

| | spectroscopies-
 (Qualitative study) | 3 | applications of
 ESR
 spectroscopy. | PPT | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; ApApply; An-Analyze; C - Create.

Course Instructors: Dr. M. Abila Jeba Queen \& Dr. R. Krishna Priya

Semester IV

Course Name: Computer Programming in C++
Course code: PC2042

No. of hours per week	No. of Credits	Total No. of hours	Marks
4	4	60	100

Objectives

1. To provide knowledge about the basics of Computer programming in $\mathrm{C}++$ and to solve problems by writing programs.
2. To enable the students developing their own applications using C++.

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand the different types of operators and expressions in C++ language.	PSO - 4	\mathbf{U}
$\mathbf{C O - 2}$	implement different operation an arrays and use function to solve the given problem	PSO - 4	Ap
$\mathbf{C O - 3}$	understand member functions and constructors	PSO - 4	U
$\mathbf{C O - 4}$	analyze pointers, operator overloading and inheritance.	PSO - 4	An
$\mathbf{C O - 5}$	analyze input/output operations	PSO- 4	An

Modules

Credit: 5

Total Hours: 60

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment/ Evaluation

I	C++ An Introduction	2	To understand the basics of C++ language	Illustration and PPT	Introduction - tokens - keywords - identifiers and constants - declaration of variables - basic data types - user defined data types-derived data types	

	5	Function overloading - virtual functions-main function-math library functions.	1	To acquire knowledge on library functions	Illustration and PPT	
III	Classes and Objects					
	1	Introduction - specifying a class - defining member functions$\mathrm{C}++$ program with class	2	To understand the basic concepts of object oriented programming	Lecture and Discussion	Evaluation through: quiz
	2	Nesting of member functions private member functions objects as function arguments	2	To understand the access of member functions	Lecture Illustration, Writing simple programmes	Formative assessment
	3	Arrays within a class-array of objects-static class membersfriend functions	2	To understand and remember the array declaration and apply	Lecture Illustration , Writing simple programmes	Evaluation through short test Multiple choice questions
	4	Constructors - parameterized constructors-multiple constructors - constructors with default arguments - copy constructor.	3	To understand and remember the use of constructors	Lecture Illustration , Writing simple programmes	
IV	Operator Overloading, Inheritance and Pointers					
	1	Introduction -defining operator overloading - overloading unary operators -binary operators	2	To understand and remember the operators	Lecture Illustration , Writing simple programmes	Evaluation through: quiz,
	2	Inheritance - single inheritance -multipleinheritance- multilevel inheritance- hybrid inheritancehierarchial inheritance	4	To understand and apply the concept of inheritance in solving problems	Lecture Illustration , Writing simple programmes	Problem solving Theoretical derivation
	3	virtual base class-abstract class	1	To understand and analyse	Lecture Illustration , Writing simple programmes	Formative assessment
	4	Pointers-definition-declarationarithmetic operations	$\begin{aligned} & \hline 2 \\ & 43 \end{aligned}$	To understand and apply the concept of inheritance in	Lecture Illustration , Writing simple programmes	

PO- Program outcome; LO - Learning outcome;
Cognitive Level R - Remember; U -Understand; Ap-
Apply, An- Analyze; E-Evaluate; C- Create

B.Sc Physics
 Semester VI
 Elective - IV (a): Nanomaterials and its Applications
 Subject Code: PC1764

No of hours per week	No of credits	Total no of hours	Marks
5	4	75	100

Objectives: 1. To gain knowledge on synthesis and characterization of nanomaterials.
2. To understand the advancements and applications of nanostructures.

CO No	Course outcomes Upon completion of this course, students will be able to	PSOs addressed	CL
CO-1	Infer the history of nanotechnology and explain the various dimensions of nanostructures	PSO-1	U
CO-2	Apply the characterization techniques of nanomaterials (XRD,SEM,TEM and Analytical Electron Microscope)	PSO-3	Ap
CO-3	Explain the synthesis of nanomaterials and categorize their properties	PSO-2	An
CO-4	Interpret quantum well, quantum wires and quantum dots	PSO-5	E
CO-5	Explain the carbon nanotubes and its applications.	PSO-6	E
CO-6	Discuss the applications of nanotechnology in various fields	PSO-4	C

Modules

Credits: 4 Total contact hours: 75 (Including assignments and tests)

Unit	Section	Topics	Lect ure hour s	Learning outcome	Pedagogy	Assessment/ Evaluation
I	Introduction to nanotechnology					
	1	History of nanotechnology - Inorganic nanomaterials - Organic nanomaterials - Techniques in nanotechnology	3	To understand the history of nanotechnology and its techniques	Lecture Discussio n with PPT illustration	Evaluation through short test Multiple choice

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \begin{tabular}{|c}
2 \\
\\
\\
\hline 3 \\
\\
4
\end{tabular} \& \begin{tabular}{|lrr}
Dimensions \& of \\
nanostructures \& - \& One \\
dimensional \& nanoscale \& - \\
Two \& dimensional \\
nanoscale- \& \begin{tabular}{c}
Three
\end{tabular} \\
dimensional \& nanoscale
\end{tabular} \& 3

3

3 \& \begin{tabular}{l}
To be able to

distinguish the

dimensions of

nanoscale

To know the

principles of

nanomaterials

and their

synrhesis.

To distinguish
between
nanorings,
nanorods,
nanoshells and to
acquire
knowledge on
the properties of
nanoparticles

\hline

 \&

Lecture discussion with illustration

Lecture discussion

Lecture discussion

 \&

questions

Formative assessment I
\end{tabular}

\hline II \& \multicolumn{6}{|l|}{Quantum wells, Quantum wires and Quantum Dots}

\hline \multirow[t]{3}{*}{} \& 1 \& Introduction - Potential
well - Quantum well -
Particle in a box - One-
dimensional box - Two-
dimensional box - Three-

dimensional box \& 5 \& To acquire knowledge on Potential ,Quantum well and Particle in a box \& | Lecture with PPT |
| :--- |
| Illustration | \& Formative assessment I

\hline \& 2 \& Superlattices- Types of Superlattices \& 3 \& To understand the concept of Superlattices and its types \& | Questionanswer session |
| :--- |
| Lecture | \&

\hline \& 3 \& Applications of quantum wells -Quantum wire Density of States (3D, 2D, 1D, 0D) -Quantum dots Electrons in mesoscopic structures. \& 4 \& To know the density of States, Quantum dots and electron in mesoscopic structure \& | Lecture with PPT |
| :--- |
| Illustration | \&

\hline III \& \multicolumn{6}{|l|}{Carbon Nanotubes}

\hline \& 1 \& Discovery of nanotubes - \& 3 \& To acquire \& Lecture \&

\hline
\end{tabular}

		Allotropes of carbon - Structure of carbon nanotubes		knowledge on discovery, Allotropes of carbon and structure of carbon nanotubes	Discussion videos ppt	Formative assessment II
	2	Categories of carbon nanotubes : Tours - Buckminster fullerene - Carbon nanohorns - Fullerite - Nanobud	3	To categorize carbon nanotubes	Lecture Discussion videos	
	3	Synthesis of carbon nanotubes: Laser method - Electrolysis - Chemical Vapour Deposition (CVD)	3	To haver a knowledge on synthesis of carbon nanotubes	Lecture with PPT Illustration	
	4	Purification of carbon nanotubes and fullerene Applications of carbon nanotubes.	3	To acquire knowledge on purification and applications of carbon nanotubes	Lecture Discussion videos	
IV Bionanotechnology						
	,	Biomachinery- DNA Nanotechnology	3	To understand the human body system and DNA	Lecture with PPT Illustration	Evaluation through short test
	2	Coding- Polymerisation	3	To acquire the Knowledge on Coding and polymerization	Lecture with PPT Illustration	Formative assessment II
	3	DNA computing Electronic properties	3	To \quad have a knowledge on DNA computing and electronic properties	Lecture with Discussion	
	4	Biocomputers -DNA sensing- Self-assembly	3	To know the biological devices and self assembly	Lecture with PPT Illustration	
V		tions of Nanotechnology				
	1	Nanoelectronics- Single Electron Transistor- Principle- Coulomb Blockade	3	To have a knowledge on Solar power using nanotechnology	Lecture with PPT	Short test Formative assessment II

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 2 & \begin{array}{l}\text { NEMS- MEMS- } \\ \text { Electronics - Batteries }\end{array} & 3 & \begin{array}{l}\text { To acquire } \\ \text { knowledge on on } \\ \text { nanocomposites } \\ \text { and } \\ \text { nanotechnology } \\ \text { in textiles }\end{array} & \begin{array}{l}\text { Brain } \\ \text { storming } \\ \text { session. }\end{array} & \text { Lecture } \\ \text { Illustration }\end{array}\right]$.

PO- Program outcome; LO - Learning outcome; Cognitive Level R - Remember; U - Understand; ApApply, An- Analyze; E-Evaluate; C- Create

Name of the Course : Digital Systems and Applications
Subject code : PC1762

No. of Hours per week	No of Credits	Total no of Hours	Marks
6	5	90	100

Objectives: 1. To understand the different concepts in digital electronics, digital devices and applications.
2. To prepare students to perform the analysis and design of various digital electronic circuits.

CO	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand the fundamental concepts and techniques used in Digital Electronics.	PSO-4	U
CO-2	perform conversions among different number systems and apply in digital designing.	PSO-2	Ap
CO-3	infer the basic logic gates, understand Boolean algebra and simplify simple Boolean functions by using basic Boolean properties.	PSO-1	U
CO-4	understand, analyse and design various combinational and sequential circuits. (Flip flop, Counters, MUX, DEMUX, Encoder, Decoder etc.)	PSO-5	Ap
CO-5	understand the architecture and operations of microprocessor 8085.	PSO-7	U
CO-6	develop the basic idea about the instruction set and data transfer schemes.	PSO-6	Ap

Total Hours: 90 (Incl. Seminar \& Test)

| Unit | Section | Description | Lecture
 hours | Learning
 outcome | Pagagogy | Assessme
 nt/Evalua
 tion |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| I | Logic gates and Boolean Algebra | 3 | To be able
 to build
 basic logic | PPT,
 Lecture
 gates OR, | Quiz,
 Assignme
 nt, | |
| | 1 | Universal logic gates - NOR, NAND | | AND, NOT
 and Ex-OR
 andive
 asing NOR | | assessment
 (I) |

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 2.
3.

4. \& | De Morgan's theorems - Positive and negative logic - Boolean laws and theorems |
| :--- |
| Sum of products method - truth table to Karnaugh map (Three variable and Four variable maps) - Karnaugh simplifications - Don't care conditions |
| Product of sums method - Product of sums simplification. | \& 4

4
4

4 \& \begin{tabular}{l}
and NAND

only

To simplify

Boolean

expressions

To

interpret

the result

of sum of

product

method

using

Karnaugh

map

To

interpret

the result

product of

sums

method

using

Karnaugh map

 \&

Lecture

Lecture

PPT,

Lecture,

Group

discussion
\end{tabular} \&

\hline II \& Num \& System \& \& \& \&

\hline \& 1 \& Binary number system - Binary to decimal conversion \& 3 \& To understand the concept of binary number system \& PPT, \& Quiz, Assignme nt, Formative assessment (I)

\hline \& 2. \& Decimal to binary - Octal numbers Hexadecimal numbers \& 4 \& To be able to convert decimal number into its equivalent binary, hexadecim al and octal numbers \& Lecture, Problem solving \&

\hline \& 3. \& Binary addition - Binary subtraction - 1^{s} and 2 s complement method \& 4 \& To be able to add and subtract two binary numbers using 1s \& Lecture, Group discussion , Problem solving \&

\hline
\end{tabular}

	4.	Arithmetic building blocks - Half adder and full adder (truth table and Karnaugh map).	4	lad 2s and complemen t method To know the basic Arithmetic building blocks	PPT, Lecture, Group discussion	
III	555 timer and flipflops					
	1	555 timer - Monostable multivibrator Astable multivibrator	4	To know the working principle of 555 timer	Lecture, Group discussion	Quiz, Assignme nt, Formative assessment (I \& II),
	2	Frequency divider - Logic gate flip flop -R-S flip flop - Clocked R-S flip flop	4	To distinguish between R-S flip flop and Clocked RS flip flop	PPT, Lecture,	
	3.	J-K flip flop - R-S master slave flip flop -J-K master - Slave flip flop	5	To understand the working principle of master slave flip flops	PPT, Lecture, Group discussion	
	4.	D flip flop	2	To understand the working principle of D flip flop	PPT, Lecture,	
IV	Registers and Counters					
	1	Types of registers - Serial in - Serial Out - Serial in - Parallel Out	2	To analyze various types of shift registers	PPT, Lecture,	Quiz, Formative assessment (II),

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 2

3

4 \& | Parallel in - Serial Out - Parallel in Parallel Out |
| :--- |
| Ring counter - Decade counter: A MOD 5 counter | \& 4

4
4

3 \& \begin{tabular}{l}
To distinguish between Parallel in Serial Out - Parallel in Parallel Out shift registers the principle of ring counter and decade counter

To distinguish between various counters

 \&

PPT,

Lecture,

\hline | PPT, |
| :--- |
| Lecture, |

\hline | PPT, |
| :--- |
| Lecture, |

\end{tabular} \&

\hline V \& A-D \& D-A converters \& \& \& \&

\hline \& 1 \& Variable Resistor Network - Binary Ladders \& 2 \& To understand the concept of binary ladders \& Lecture, PPT \& Group discussion, Formative assessment (II),

\hline \& 2 \& D-A converter - A-D converter Simultaneous conversion \& 3 \& To be able to convert D-A and A-D \& Lecture. \&

\hline \& 3 \& Multiplexer - De multiplexer \& 4 \& To understand the concept of multiplexer and de multiplexer \& Lecture, PPT \&

\hline \& 4 \& Encoder: Decimal to BCD encoder Decoders : BCD to decimal decoder Seven segment decoder \& 6 \& To be able to understand the operation of encoder and decoder \& Lecture \&

\hline
\end{tabular}

Name of the Course
Subject code
: Mathematical Methods of Physics
: PC1761

No of hours per week	No of credits	Total no of hours	Marks
6	6	90	100

CO	Upon completion of this course, students will be able to:	$\begin{gathered} \text { PSO } \\ \text { addressed } \end{gathered}$	CL
CO-1	Illustrate linear dependence and combination of vectors as quantities in Physics.	PSO-4	U
CO-2	Evaluate problems in matrices.	PSO-4	E
CO-3	Solve ordinary and partial differential equations related to Physical Science.	PSO-2	C
CO-4	Adapt Fourier transform technique to obtain the Fourier series of periodic functions of Physics.	PSO-5	C
CO-5	Understand and manipulate random variables using the theory of probability including tools of probability transformation and characteristic functions.	PSO-6	U

Modules

Credit: 6
Total Hours:90 (Incl. Seminar \& Test)

Unit	Sectio \mathbf{n}	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment/E valuation
I	Vector Analysis		而			
	1	Point function - Scalar field - Vector field - Gradient of a Scalar field - Physical interpretation	4	To understand basic concepts of scalar field and vector field	Illustration and theoretical derivation	Evaluation through: quiz,
	2	Lamellar Vector field - line, surface and volume integrals -	3	To be able to evaluate line, surface and volume integrals	Illustration, Theoretical formulation Problem Solving	Problem solving

						Theoretical derivation
	3	Divergence of a vector function - Expression for divergence in Cartesian coordinates	2	To derive expression for divergence of a vector function	Analysis Theoretical formulation and Problem solving	
	4	Curl of vector function Expression for curl in Cartesian coordinates - Physical significance of curl	4	To understand the physical significance of curl operator and solve physical problems	Theoretical formulation and Problem solving	Formative assessment
	5	Gauss divergence theorem Green's theorem.	2	To derive Gauss divergence theorem and Green's theorem	Illustration and theoretical derivation	
II	Matrices					
	1	Eigen values - Eigen vectors	2	To understand the basic concepts of eigen values and eigen vectors	Theoretical formulation and Problem solving	Evaluation through: quiz,
	2	Characteristic equation of a matrix - Cayley - Hamilton theorem - - Theorems on eigen values and eigen vectors	5	To derive theorems on eigen values and eigen vectors	Illustration and theoretical derivation	Problem solving Theoretical
	3	Diagonalization of matrices Special type of matrices Inverse of a matrix	5	To diagonalize and also find inverse of the given matrix	Theoretical formulation and Problem solving	derivation
	4	Non-homogenous linear equations - Cramer's rule for solving non-homogenous linear equations	3	To solve nonhomogenous linear equations using Cramer's rule	Illustration, Theoretical formulation and Problem solving	Formative assessment
III	Differential Equations					

	1	First order equations - Variables separable method	4	$\begin{aligned} & \text { To use variable } \\ & \text { separable } \\ & \text { method to solve } \\ & \text { first order } \\ & \text { differential } \\ & \text { equations } \\ & \hline \end{aligned}$	Illustration, Theoretical formulation and Problem solving	Evaluation through: quiz,
	2	Homogenous equations - Non homogenous equations reducible to homogenous ones -	4	To reduce non homogenous equations to homogenous equations	Illustration, Theoretical formulation and Problem solving	Problem solving
	3	Linear differential equations Equations of first order and higher degrees	4	To understand the solving of first order and higher order differential equations	Illustration, Theoretical formulation and Problem solving	Theoretical derivation
	4	Physical examples: Radioactive decay process.	3	To apply solving techniques of differential equation to solve physical problems	Illustration, Theoretical formulation and Problem solving	
IV	Fourier Analysis					
	1	Harmonic oscillations Harmonic synthesis and analysis - Fourier contribution	4	To understand the basic concepts of harmonic synthesis	Illustration, Theoretical formulation	Evaluation through: quiz,
	2	Fourier series -Dirichlet's theorem - Fourier coefficients Fourier cosine and sine series	5	To evaluate Fourier series	Illustration, Theoretical formulation and Problem solving	Problem solving
	3	Symmetry - Complex form of Fourier series - Change in interval of expansion	4	To apply Fourier theorem for change in interval of expansion	Descriptive lecture and Theoretical formulation	Theoretical derivation
	4	Applications of Fourier series: Sawtooth wave - Half wave rectifier - Full wave rectifier	2	To use Fourier series to evaluate physical problems	Descriptive lecture and Theoretical formulation	Formative assessment
V	Random Variables and Probability					

	1	Random Variables - Simple random sample - Mean - Median - Mode - Dispersion	5	To understand basic concepts of random variables	Illustration, Theoretical formulation	Evaluation through: quiz,
	2	Elementary properties of probability - Conditional probability - Addition rule of probability - Multiplication law of probability	6	To verify addition rule of probability and multiplication law of probability	and Problem solving	Problem solving
	3	Probability distribution - Mean, variance and standard deviation of Poisson distribution.	4	To analyze probability distribution and solve physical problems	Illustration, Theoretical formulation	Theoretical derivation assessment

PO- Program outcome; LO - Learning outcome; Cognitive Level R - Remember; U - Understand; ApApply, An- Analyze; E-Evaluate; C- Create

Semester VI

Major core X: Nuclear Physics

Subject Code: PC1763

No of hours per week	No of credits	Total no of hours	Marks
5	5	75	100

Objective: 1. To enable the students to understand the properties, models and radioactive reaction of the nucleus.
2.To create awareness on nuclear reactions such as fission, fusion, radiation detectors and elementary particles so that students can shine.

CO	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Define the fundamentals of nuclear matter (properties of nuclei and Nuclear forces)	PSO-2	R
CO-2	Apply the principles of physics in the measurements of Nuclear size, Nuclear spin, Nuclear energy levels and Nuclear magnetic moment	PSO-1	Ap
CO- 3	Assess radioactivity and various nuclear reactions (nuclear fission and fusion)	PSO-3	E
CO-4	Explain the decay modes, Radiation Detectors and Particle Accelerators (Ionisation chamber,Proportional counter,Geiger Muller counter,Linear accelerator, Cyclotron, Synchro cyclotron, Betatron)	PSO-5	U
CO- 5	Discuss the classification of elementary particles and Quark model	PSO-5	E
CO -6	Analyse the characteristics and behavier of elementary particles and their fundamental interactions	PSO-7	An
CO-7	Develop a deeper understanding of some important applications of nuclear physics in Nuclear Reactor and Source of stellar energy.	PSO-6	C

Modules

Total contact hours: 75 (Including lectures, assignment and tests)

Unit	Section	Topics	Lecture Hours	Learning outcomes	Pedagogy	Assessment/Evaluation
I	Properties of Nuclei					
	1	Constituents of nuclei Isotopes, Isobars, Isotones and mirror nuclei Nuclear mass and binding energy - Unit of atomic mass - Binding energy and stability of nucleus	3	Define the basis of nuclei and stability of nucleus	Lecture discussion	Evaluation Class test, oral question Assignment I
	2	Mass defect and packing fraction Binding fraction Vs mass number curve - Nuclear size - Nuclear spin - Nuclear energy levels	3	Apply various Binding energy relations	Derivation and group discussion	
	3	Nuclear magnetic moment Parity of nuclei - Nuclear quadrupole moment Statistics of nuclei	3	solution of Nuclear magnetic moment	Derivation, problem solving and group discussion	
	4	Nuclear forces - Liquid drop model - Semiempherical mass formula Shell model	3	Apply Nuclear forces in different models	Derivation and group discussion	

II	Radioactivity					
	1	Radioactivity Radioactive reactions Radioactive decay law Statistical nature of radioactivity	3	Solve Radioactive reactions	Derivation discussion	Evaluation Class test, oral question Assignment
	2	Activity or strength of a radio-sample Radioactive decay : Conservation laws	3	Define and derive Radioactive decay	Derivation and group discussion problem solving	
	3	Radioactive series: Displacement law - Successive transformation Radioactive equilibrium	3	Statement and proof of displaceme nt law	Derivation and group discussion problem solving	
	4	Radioact ive dating: Age of minerals, rocks - decay Alpha decay - Gamma decay.	3	Radioactive dating and its applications	Derivation and group discussion problem solving	
III	Nuclear Reactions					
	1	Nuclear Reactions: Basics Conservation laws in nuclear Reactions Energetics of nuclear Reactions	3	Analyse Conservation laws in nuclear Reactions	Derivation discussion	Evaluation Class test, oral question Assignment
	2	Cross section of nuclear Reactions Reaction mechanisms -	2	Define and derive nuclear Reactions , Reaction mechanisms	Derivation and group discussion	

		Nuclear fission Energy released in fission of U 235		\&Nuclear fission		
	3	Liquid drop theory of fission - Nuclear chain reaction - Nuclear Reactor - Types of reactor - Breeder reactor - Fission bomb	4	Define and Derive Nuclear chain reaction, Types of reactor, Breeder reactor \& Fission bomb	Derivation and group discussion, PPT	
	4	Fusion: Thermo nuclear reaction - Source of stellar energy: Natural fusion Uncontrolled fusion: Hydrogen bomb.	3	Define, derive and apply Uncontrolled fusion: Hydrogen bomb	Derivation and group discussion	
IV	Radiation Detectors and Particle Accelerators					
	1	Introduction Ionisation chamber Proportional counter - Geiger Muller counter Neutron detection	3	Discuss different types of Radiation Detectors	Derivation discussion	Evaluation Class test, oral question Assignment II/III
	2	Cloud chamber - Scintillation counter - Photographic detection - Solid state track detector	3	Define and derive Cloud chamber \& Scintillation counter	Derivation and group discussion, PPT	
	3	Semiconductor detector Particle accelerators Linear accelerator	3	Define and Derive different types of Particle accelerators	Derivation and group discussion	
	4	Cyclotron Synchro cyclotron -	3	Define, derive and apply	Derivation and group discussion	

		Betatron		Cyclotron , Synchro cyclotron and Betatron		
V	Elementary Particles					
	1	Introduction - Fundamental Interactions - Pions and Muons - K mesons - Hyperons, Antiparticles	3	Analyse Fundamental Interactions	Discussion PPT	Evaluation Class test, oral question Assignment III
	2	Classification of elementary particles Conservation laws - CPT theorem	3	Analyse classification of elementary particles	Derivation and group discussion, PPT	
	3	Resonance particles Symmetry classification of elementary particles	3	Explain symmetry classification of elementary particles	Derivation and group discussion	
	4	Quark model Unification of interactions The standard model.	3	Define, derive and apply Quark model	Derivation and group discussion, PPT	

Books:

1. Gupta, A.B. (2015). Modern Physics. ($2^{\text {nd }}$ ed.). New Delhi: Books and Allied (P) Ltd.

Unit I: Chapter $18: 18.1-18.3,18.5-18.16,18.17,18.18,18.18 .1,18.19,18.19 .1-$
18.19.4

Unit II: Chapter 19: 19.1-19.9, 19.11
Unit III: Chapter 20: 20.1-20.16
Unit IV: Chapter 21: 21.1-21.5, 21.7, 21.7.1, 21.7.2, 21.9, 21.11-21.16, 21.17.2, 21.18
Unit V: Chapter 22: 22.1-22.9, 22.10, 22.11-22.14
2. Arthur Beiser. (2006). Concepts of Modern Physics. ($6^{\text {th }}$ ed.).New Delhi: Tata McGraw - Hill Edition,

Unit II: Chapter 12: 12.4-12.6, Appendix (theory of alpha decay)
Reference Books:

1. Tayal D.C. (2002). Nuclear Physics. ($1^{\text {st }}$ ed.). New Delhi: Himalaya Publishing House.
2. Roy R.R. and Nigam B.P. (1983). .Nuclear Physics, (2 ${ }^{\text {nd }}$ ed.). Bangalore: New age International Ltd.
3. SatyaPrakash, (2004). Nuclear Physics and Particle Physics. (1 ${ }^{\text {st }}$ ed.). New Delhi: S. Sultan Chand \& Sons Publications.
