Semester II Course Name : PROPERTIES OF MATTER AND SOUND Course code: PC2021

No. of Hours per Week	Credits	Total No. of Hours	Marks
4	4	60	100

Objective

To expose students to the fundamentals of properties of matter and sound.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO- 1	identify the materials suitable for construction of buildings, based on the moduli of elasticity.	PSO-4	Ар
CO- 2	paraphrase the properties of liquids and its determination.	PSO-1	U
CO- 3	analyze the physics of sound and its applications	PSO-2	An
CO- 4	integrate the concepts of acoustic comfort and better understanding of the theories used in building acoustics	PSO-3	Ар

ModulesCredits: 4Total contact hours: 60 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Elasticit	y				
	1	Elasticity Hooke's	2	To understand	Lecture	Evaluation
		law – Elastic moduli		the concept		through
		– Poisson's ratio –		elasticity and		short test

		Beams – Bending of		bending of	Discussion	
		beams – Expression		beams	with PPT	Multiple
		for bending moment		o cumo	illustration	choice
					mustration	questions
	2	Cantilever- Theory	2	To be able to	Lecture	questions
	-	of uniform and non –	-	determine the	discussion	Formative
		Uniform bending -		Young's	with	assessment I
		Determination of		modulus of the	illustration	
		Young's modulus		material		
	3	Koenig's method –	3	To acquire	Lecture	
		Torsion of a body –		knowledge on	discussion	
		Expression for		Work done in		
		couple per unit twist		twisting a wire		
		– Work done in				
		twisting a wire				
		-				
	4	Torsional	2	To be able to	Lecture	
		oscillations of a		distinguish	discussion	
		body - Rigidity		between		
		modulus by dynamic		dynamic		
		torsion method		torsion method		
		(Torsional		and static		
		pendulum) and static		torsion method		
		torsion method				
II	Surface	Tension				
	1	Surface tension –	3	To understand	Lecture	Short test
		definition –		the concept of		
		Molecular forces –		surface tension	Illustration	Quiz
		Explanation of		according to		
		surface tension on		kinetic theory		
		kinetic theory –				Assignment
		Surface energy				C
	2	Work done in	3	To determine	Lecture	Formative
		increasing the area		the excess	discussion	assessment I
		of a surface – Excess		pressure inside		
		pressure inside a		a spherical and		
		curved liquid surface		cylindrical		
		– Excess pressure		drops and		
		inside a spherical		bubbles		
		more a spherical		0000105		

	3	and cylindrical drops and bubbles Drop weight method - Angle of contact- Quincke's method- variation of surface tension with temperature- Experimental determination-	3	To evaluate the principle of surface tension in liquids and understand it by practical experiments.	Lecture Illustration	
III	Viscosity	Jaegar's method				
	1	Viscosity – Co efficient of viscosity – Streamlined and turbulent motion – Critical velocity	3	To have practical knowledge on determining the coefficient of viscosity of a liquid.	Lecture with PPT Illustration	Class test Quiz Formative assessment II
	2	Rate of flow of liquid in a capillary tube – Poiseuille's formula – Viscosity of highly viscous liquid	4	To understand the concept of pressure and thrust.	Question- answer session Lecture	assessment II
	3	Terminal velocity - Stoke's method - Ostwald Viscometer - Viscosity of gas- Mayer's formula- Rankine 's method	3	To evaluate Stoke's formula and apply it in experiment to understand the viscous force of a liquid.		
IV	Sound	1	I	1	I	l
	1	Simple harmonic motion – Differential equation of motion	3	To derive the solution of the differential	Lecture Discussion	Short test

	2	executing S.H.M. – Solution of the differential equation of motion Composition of two S.H.M. along the same direction and at right angles – Lissajous figure – Free, damped and forced vibration	3	equation for a simple harmonic motion To distinguish between Free, damped and forced vibration	Lecture Discussion	Quiz Formative assessment II
	3	Frequency of vibrating string- Melde's experiment and verification of the laws of transverse vibration of a string- Sonometer – Loudness level- Sound Intensity measurement	3	To acquire skills to do experiments by sonometer and Melde's string.		
V	Ultrason	nics and Acoustics				
	1	Ultrasonics – Production – Piezoelectric crystal method – Magnetostriction method – Properties and Applications	3	To compare the methods of ultrasonic production.	Lecture with PPT	Class test Formative assessment III
	2	Acoustics of building – Reverberation- Sabine's Reverberation formula (No derivation) - Factors affecting acoustics	5	To classify sound and to examine the architectural acoustics	Brain storming session. Lecture Illustration	

of building- Sound	
distribution in an	
auditorium-	
Requisites for good	
acoustics	

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze;

Course instructors: Dr.A.Lesly Fathima and Sr.S.Sebastianmal

SemesterIIName of the Course: Allied Physics IISubject code: AP2021

No. of hours per week	No. of credits	Total no. of hours	Marks	
4	4	60	100	

Objectives

To understand the concept of strength of materials, viscous properties of liquids, heat transformation from one place to another, converting heat to do mechanical work and basic properties of light such as interference and diffraction.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO 1	Acquire knowledge on elementary ideas of electricity and magnetism, electronics, optics and nuclear physics.	PSO-1	U
CO 2	Analyze the concepts and study their applications in the field of electricity and magnetism, electronics, optics and nuclear physics.	PSO-2	An
CO 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ap
CO 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	Ар

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment / Evaluation
Ι	Quantun	n Mechanics and Relativity				
	1	Wave mechanics – expression for group velocity – Davison Germer's experiment – Heisenberg's uncertainty principle – basic postulates of wave mechanics – time dependent form of Schrodinger equation – properties of wave function.	2	To understand the basic concepts of wave mechanics	Illustration and lecture	Evaluation through: quiz, short questions
	2	Heisenberg's uncertainty principle – basic postulates of wave mechanics – time dependent form of Schrodinger equation – properties of wave function.	2	To study the basic postulates of wave mechanics and derive Schrodinger equation	Illustration and theoretical derivation	- Multiple choice, questions , Deriving theoretical
	3	Relativity – frame of reference – Newtonian relativity – Galilean transformation equations.	2	To understand Relativity and frame of reference	Illustration, theoretical derivation and Practical	Formulas Problem solving
	4	Special theory of relativity – Lorentz transformation equations.	3	To derive Lorentz transformation equations.	Lecture and theoretical derivation	- Formative assessment
II	Nuclear	Physics				
	1	Nuclear constituents - size - mass - spin and charge - binding energy - binding energy curve		To understand the basic concepts of nuclear physics and study its units	Illustration, Theoretical formulation, Problem Solving	Evaluation through: quiz, short test
	2	Nuclear fission - chain reaction - nuclear reactor - radioactive disintegration		To determine nuclear fission	Lecture, Theoretical formulation	Assignment on applications.

III	3 Electrici	Half life period - radiation hazards.	2	and radioactive disintegration To understand the causes of radiation hazards	Lecture, Illustration,	Formative assessment
	1	Electric curent - current density - Ohm's law - Electrical conductivity - Kirchhoff's law	2	To understand the basic concepts of current and laws	Illustration and lecture	Evaluation through: quiz,
	2	Wheatstone's bridge - condition for balance - potentiometer - calibration of voltmeter and ammeter.	2	To study the basic of potentiometer , voltmeter and ammeter	Illustration and theoretical derivation. Practical	short questions, Multiple choice, questions,
	3	Electromagnetic induction - laws of electromagnetic induction - Faraday's law - Lenz law	2	To understand the basic concepts of electromagnetic induction through experiment	Illustration, theoretical derivation and Demonstration	Deriving theoretical formulas
	4	Flemings right hand rule - self- inductance - mutual induction - coefficient of coupling.	2	To define convection mode of heat transfer and study its application	Illustration and lecture	Formative assessment
IV	Electron	nics		I	I	
	1	Formation of p-n junction diode – forward and reverse biasing of a junction diode	2	To understand the basic concepts of electronics	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions
	2	Zener diode - characteristics of the Zener diode – diode as a half wave and full wave rectifiers.	2	To analyse the various aspects of zener diode	Lecture, Demonstration, theoretical formulation	Multiple choice, questions, Deriving
	3	Bipolar junction transistor –	2	To understand the concept of	Lecture, Demonstration,	theoretical

	4	junction transistor – CE characteristics of a transistor Field effect transistor – drain characteristics of an n channel JFET.	2	Bipolar junction transistor To understand the concept of Field effect transistor	theoretical formulation Lecture, Demonstration, theoretical formulation	formulas Formative assessment
V	Digital I	Electronics		L		
	1	Digital logic gates – AND – OR – NOT gate – NAND and NOR as universal gates – integrated circuit – EX-OR gate	3	To understand the basic concepts of logic gates	Illustration, Theoretical formulation, Demonstration	Evaluation through: quiz, Deriving theoretical
	2	Boolean algebra– half adder – full adder – half subtractor.	2	To understand the basic concepts of Boolean Algebra	Lecture, Demonstration, Theoretical formulation	formulas Assignment on applications
	3	Decimal system – Binary system –conversion – binary addition – binary subtraction using 2s complement – binary multiplication – binary division.	3	To understand the number system and binary operations	Lecture, Demonstration, Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze;

Course Instructor: Ms.P. Aji Udhaya &Sr.S.Sebastiammal

Course Code: PNM202

Ī	No. of hours per week	No. of credits	Total no of hours	Marks
	2	2	30	100

Objectives

- 1. To provide basic knowledge on the concepts of light, Electromagnetism and Electronics along with some applications.
- 2. To explain the wonders in universe using the principles of physics

. Course Outcomes

СО	Upon completion of this course, students will be able to:	CL
CO - 1	understand the principle and working of simple devices used in day to day life.	U
CO – 2	identify the symbols used for various electronic components and infer the electronic tools.	R
CO – 3	distinguish different heavenly bodies (star, planet, comets, galaxies)	R
CO - 4	recall various applications of physics concepts in everyday life	K

Teaching Plan

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	1	Lecture hours	Learning outcome	Pedagog y	Assessm ent/ Evaluat ion
Ι			Light		I	
	1	Introduction - Nature and properties of light - Reflection - Colours of light - Colours of objects- Reflection in everyday life Refraction - Dispersion – Rainbow formation- Refraction in everyday life	2	To understand the fundamental concepts of light To understand the fundamental phenomenon of light	Lecture, PPT Lecture , Demon strati on	Quiz test, Formative assessme nt
	3	Laser: principle and applications - Fiber optics and its applications - Applications of light in day to day life	1	To understand the principles and applications of	Lecture	

					1	1
				Laser and		
l				fiber optics in		
				day to day life		
II Electromagnetic Radiation						
	1	Introduction- Properties of	1	To understand	Lecture	Quiz test,
		Electromagnetic waves - EM		the basic	,	Formative
		Spectrum- Radio sub spectrum		properties of	Demon	assessme
		Spectrum Radio sub spectrum		electromagnet	strati	nt
				ic radiation	on	
	2	Cell phones, Microwaves -	2	To apply	Lecture	
		Microwave oven and sensor,		electromagnet	,	
		Terahertz radiation and its		ic radiations in electrical and	Demon	
		applications		electronic	strati	
				appliances	on	
	3	Infra red rays in everyday life –	1	To understand	Lecture	
		Infra Red and microwaves -		and apply the		
		comparison - visible light waves -		uses of		
		UV rays and its applications		microwave,		
				infrared and		
				visible light in		
III		Elect		day to day lie		
111			romagne			
	1	Introduction - Magnetic materials	2	To understand	Lecture	Quiz
		- Magnetic Field in and around a		Magnetic		test,
		bar Magnet, Magnetic Fields in and around Horseshoe magnet,		Field and		Forma
		Magnetic lines of force		magnetic force		tive
	2	Electric charge - Ohm's Law -	1	To understand	Lectu	assess
		Practical Applications of Ohm's		Ohm's Law	re,	ment (II)
		Law in Daily Life		and the	PPT	(11)
				applications of		
				Ohm's law		
	3	Electromagnetism- Applications	1	To apply the		
		of electricity and magnetism:		applications of		
		Credit card machine, Use of		electricity and		
		electromagnetism in daily life.		magnetism in		
				digital technology		
IV	Docio I	Instronios		teennology		
1 7	Dasic f	Electronics				
	1	Introduction - Electronic	1	To understand	Lecture	Quiz
		components - Electronic tools		and apply the		test,
				basic		Formativ
				electronic		e
				components		assessme

					and electronic tools		nt (II)
	2	Semiconductors and integrated circuits - Application of electronic devices	1		To understan Ohm's Law and th applications o Ohm's law	w PPT e	
V	3	Electromagnetism- Applications of electricity and magnetism: Credit card machine, Use of electromagnetism in daily life.	2		To apply the applications of electricity and magnetism in digital technology	of d	
V	1	Physics Introduction - The big bang theory - Stars-Star system, multiple star, supernova, black hole - solar system	1		understand stars and the ar system	Lecture	Quiz test, Formativ e assessme nt (II)
	2	Terrestrial and Jovian planets - Asteroids- Meteoroids - Meteors - Comets	2			Lecture	
	3	Galaxy - Eclipse: solar and lunar - seasons	1	To the cha		Lecture	

Course Code : PC2041

No. of hours per week	No. of credits	Total No. of hours	Marks
4	4	60	100

Learning Objectives

- provide knowledge 1. To aberrations on the concept of in lenses, prisms and Spectroscopy.2. To understand the phenomenon like interference, diffraction, polarization
- through wave nature of light and itsapplications.

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO- 1	gain knowledge of geometric optics, helps in the practical design of many optical systems and instruments including aberrations in lens system.	PSO - 2	U
CO- 2	determine the behavior of a ray and wave at any optical surface.	PSO - 1	R
CO- 3	analyze the intensity variation oflight due to polarization, interference and diffraction.	PSO - 4	An
CO- 4	study the phenomena: interference, diffraction, and polarization lays the foundation for an understanding of concepts such as as holograms, interferometers.	PSO -5	Е
CO- 5	gain knowledge on spectroscopy helps to extract the dynamic information about the mggcule.	PSO - 3	Ар

Modules

Total contact hours: 60 (Including lectures, assignments and Tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation	
Ι	Geometr	rical optics					
	1	Lens – Spherical aberration in lenses – Methods of minimizing spherical aberration	3	To understand the spherical aberrations in lenses	Illustration and lecture	Evaluati on through: quiz, short	
	2	Dispersion – Angular and Chromatic dispersion – combination of prisms to produce i)dispersion without deviation ii) deviation without dispersion	3	To define and understand angular and Chromatic dispersion	Illustration and lecture	questions Multiple choice,	
	3	Direct vision spectroscope – Eyepieces – Ramsden's and Huygens's eyepieces	2	To explain spectroscopes and various eyepieces	Illustration and lecture	question s,	
	4	Simple microscope (magnifying glass)– compound microscope	1	To compareSimpl e and compound microscope	Group discussion and lecture	Formative assessment	
II	Interfere	ence					
	1	Conditions for interference – Theory of interference fringes – interference due to reflectedlight (thin films)	3	To understand the basic concepts of interference and its condition	Illustration, demonstration and lecture	Evaluation through: quiz, Multiple choice,	
	2	Colours of thin films – wedge shaped thin film – theory – determination of diameter of a thin wire by Air wedge	2	To determine the diameter of any thin wire using air- wedge method	Demonstration and lecture	question s, Exhibiting Models,	
	3	Test for optical flatness – Newton's rings by reflected light	2	To test the optical flatness	Group discussion	Formative assessment	
	4	Determination of wavelength of light - Michelson's Interferometer – theory and its Application (Measurement of wavelength)	2	To determine the wavelength of light source	lecture and Demonstration		
III	Diffracti						
	1	Fresnel's diffraction – Rectilinear propagation of light – zone plate – action of zone plate - Fraunhofer diffraction at single slit – Double slit	3 39	Differentiate Fresnel's and Fraunhoffer diffraction	Lecture discussion, PPT	Evaluation through: quiz, Assignments	

	2 3	Plane diffraction grating –theory of plane transmission grating – experiment to determine wavelength (Normal incidence method) –resolving power Rayleigh's criterion for resolution – resolving power of a telescope – resolving power of a microscope – resolving power of a prism - resolving power of grating.	3	Discuss the theory of plane transmission gratig Evaluate the resolving power of various optical devices	Lecture discussion &Demonstrati on, PPT Lecture demonstration	Multiple choice questions Descriptive answers Formative assessment
IV	Polarisa	tion	<u> </u>	l		
	1	Double refraction –Nicol Prism – Nicol Prism as polarizer and analyzer – Huygens's explanation of double refraction in uniaxial crystals	3	To explain the basic principles & phenomena of polarisation	Lecture discussion, PPT	Evaluation through: quiz Assignments
	2	Plane, elliptically and circularly polarized light– Quarter wave plates and Half wave plates – Production and detection of plane, circularly and elliptically polarized light	3	To analyze different types of polarization	Lecture Illustration	Short questions Descriptive answers
	3	Optical activity– Fresnel's explanation of optical activity	3	Determine the various optical parameters by using optical components	Lecture discussion PPT	Formative assessment
V	Spectros			I		
	1	Infrared spectroscopy – sources and detector – uses – ultraviolet spectroscopy – sources – quartz spectrograph - applications -	4	Explain UV & IR spectroscopy and its applications	Lecture discussion, PPT	Evaluation through: quiz, Assignments on applications
	2	Raman Spectroscopy Nuclear magnetic resonance –Nuclear quadrupole resonance	2 40	Discuss the principles of NMR spectroscopy	Lecture discussion, PPT	Formative assessment
	3	Electron spin resonance		Analyze and study the	Group discussion,	

spectroscopies- (Qualitative study)	3	applications of ESR spectroscopy.	PPT	
		specificopy.		

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. M. Abila Jeba Queen & Dr. R. Krishna Priya

Semester IV

Course Name: Computer Programming in C++

Course code: PC2042

No. of hours per week	No. of Credits	Total No. of hours	Marks
4	4	60	100

Objectives

- To provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs.
- 2. To enable the students developing their own applications using C++.

Course Outcomes

COs	COs Upon completion of this course, students will be able to:		CL
CO-1	understand the different types of operators and expressions in C++ language.	PSO - 4	U
CO-2	implement different operation an arrays and use function to solve the given problem	PSO - 4	Ар
CO-3	understand member functions and constructors	PSO - 4	U
CO-4	analyze pointers, operator overloading and inheritance.	PSO - 4	An
CO-5	analyze input/output operations	PSO-4	An

Modules

Credit: 5

Total Hours: 60

I.m:t	Section	Toriog	Lecture	Learning	Pedagogy	Assesment/
Unit	Section	Topics	hours	outcome		Evaluation

Ι	C++ An Int	troduction				
	1	Introduction - tokens - keywords - identifiers and constants - declaration of variables - basic data types - user defined data types-derived data types	2	To understand the basics of C++ language	Illustration and PPT	Evaluation through: quiz
	2	Symbolic constants - operators in C++ -expressions and their type-hierarchy of arithmetic operators	3	To understand the types of operators	Illustration, PPT	Formative assessment Evaluation
	3	Scope resolution operator – declaring, initializing and modifying variables-special assignment operators -	2	To understand the applications of different operators	Lecture Discussion	through short test
	4	Control structures- Structure of a simple C ++ program	2	To understand and apply them to solve simple physical problems	Writing simple programme	
II	Arrays and	Functions in C++		1		
	1	Introduction - one dimensional and two dimensional arrays - initialization of arrays-array of strings -	1	To understand the declaration of arrays	Illustration	Evaluation through: quiz Class test
	2	Functions-introduction-function with no argument and no return values -function with no argument but return value - function with argument and no return values	3	To understand function and types of function	Lecture, Writing simple programmes	
	3	Function with argument and return values- call by reference return by reference	2	To understand the use of arguments in function	Lecture Illustration , Writing simple programmes	
	4	Function prototyping - inline functions - local, -global and static variables	2 42	To acquire knowledge on function prototyping	Illustration , Writing simple programmes	

	5	Function overloading - virtual functions-main function-math library functions.	1	To acquire knowledge on library functions	Illustration and PPT	
III	Classes and	l Objects				
	1	Introduction - specifying a class - defining member functions- C++ program with class	2	To understand the basic concepts of object oriented programming	Lecture and Discussion	Evaluation through: quiz
	2	Nesting of member functions - private member functions - objects as function arguments	2	To understand the access of member functions	Lecture Illustration , Writing simple programmes	Formative assessment Evaluation
	3	Arrays within a class-array of objects-static class members- friend functions	2	To understand and remember the array declaration and apply	Lecture Illustration , Writing simple programmes	through short test Multiple choice
	4	Constructors - parameterized constructors-multiple constructors - constructors with default arguments - copy constructor.	3	To understand and remember the use of constructors	Lecture Illustration , Writing simple programmes	questions
IV	Operator C	verloading, Inheritance and Poin	nters			
	1	Introduction -defining operator overloading - overloading unary operators -binary operators	2	To understand and remember the operators	Lecture Illustration , Writing simple programmes	Evaluation through: quiz,
	2	Inheritance - single inheritance – multipleinheritance - multilevel inheritance - hybrid inheritance- hierarchial inheritance	4	To understand and apply the concept of inheritance in solving problems	Lecture Illustration , Writing simple programmes	Problem solving Theoretical derivation
	3	virtual base class-abstract class	1	To understand and analyse	Lecture Illustration , Writing simple programmes	Formative assessment
	4	Pointers-definition-declaration- arithmetic operations	2 43	To understand and apply the concept of inheritance in	Lecture Illustration , Writing simple programmes	

V	Managing	Console I/O Operations		solving problems		
	1	Introduction - C++ stream - C++ stream classes -	2	To understand and remember the stream classes in C++	Lecture Illustration , Writing simple programmes	Eva thro
	2	unformatted I/O Operations - formatted console I/O operations	2	To understand ,analyse and apply in solving problems	Lecture Illustration , Writing simple programmes	For Ass
	3	Working with files - classes for file steam operations	2	To understand ,analyse and apply in solving problems	Lecture Illustration , Writing simple programmes	Ass
	4	Opening and closing a file - file pointers and their manipulations.	3	To understand ,analyse and apply in solving problems	Lecture Illustration , Writing simple programmes	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U –Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

B.Sc Physics Semester VI Elective – IV (a): Nanomaterials and its Applications Subject Code: PC1764

No of hours per week	No of credits	Total no of hours	Marks
5	4	75	100

Objectives : 1. To gain knowledge on synthesis and characterization of nanomaterials.

2. To understand the advancements and applications of nanostructures.

СО	Course outcomes	PSOs	CL
No	Upon completion of this course, students will be able to	addressed	
CO-1	Infer the history of nanotechnology and explain the various dimensions of nanostructures	PSO-1	U
CO-2	Apply the characterization techniques of nanomaterials (XRD,SEM,TEM and Analytical Electron Microscope)	PSO-3	Ар
CO-3	Explain the synthesis of nanomaterials and categorize their properties	PSO-2	An
CO-4	Interpret quantum well, quantum wires and quantum dots	PSO-5	Е
CO-5	Explain the carbon nanotubes and its applications.	PSO-6	Е
CO-6	Discuss the applications of nanotechnology in various fields	PSO-4	С

ModulesCredits: 4Total contact hours: 75 (Including assignments and tests)

Unit	Section	Topics	Lect ure hour s	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Introd	uction to nanotechnology				
	1	History of nanotechnology – Inorganic nanomaterials - Organic nanomaterials - Techniques in nanotechnology	3	To understand the history of nanotechnology and its techniques	Lecture Discussio n with PPT illustration	Evaluation through short test Multiple choice

	2 3	Dimensionsofnanostructures–Onedimensionalnanoscale–Twodimensionalnanoscalenanoscale–Threedimensional nanoscaleThreeManocrystals. Synthesis ofnanomaterials:sol-gelmethod,ballmilling,		To be able to distinguish the dimensions of nanoscale To know the principles of nanomaterials	discussion with illustration	questions Formative assessment I
	4	colloidal growth Characterization of nanomaterials – X-ray diffraction (XRD) – Scanning Electron Microscope (SEM) – Transmission Electron Microscope (TEM) – Analytical Electron Microscope – Significance of nanoparticles	3	and their synrhesis. To distinguish between nanorings, nanorods, nanoshells and to acquire knowledge on the properties of nanoparticles	Lecture discussion	
II	Quantu 1	m wells, Quantum wires and Introduction – Potential well – Quantum well – Particle in a box – One- dimensional box – Two- dimensional box – Three- dimensional box	Quantu 5	-	Lecture with PPT Illustration	Formative assessment I
	2	Superlattices– Types of Superlattices	3	To understand the concept of Superlattices and its types	session Lecture	
	3	Applications of quantum wells –Quantum wire – Density of States (3D, 2D, 1D, 0D) –Quantum dots – Electrons in mesoscopic structures.	4	To know the density of States, Quantum dots and electron in mesoscopic structure	Lecture with PPT Illustration	
III	Carbon	Nanotubes				·
	1	Discovery of nanotubes –	3 7	Го acquire	Lecture	

		Allotropes of carbon – Structure of carbon nanotubes		knowledgeondiscovery,Allotropesofcarbonandstructureofcarbon nanotubes	Discussion videos ppt	Formative assessment II
	2	Categories of carbon nanotubes : Tours – Buckminster fullerene – Carbon nanohorns – Fullerite – Nanobud	3	To categorize carbon nanotubes	Lecture Discussion videos	
	3	Synthesis of carbon nanotubes: Laser method – Electrolysis – Chemical Vapour Deposition (CVD)	3	Tohaveaknowledgeonsynthesisofcarbon nanotubes	Lecture with PPT Illustration	
	4	Purification of carbon nanotubes and fullerene – Applications of carbon nanotubes.	3	Toacquireknowledgeonpurificationandapplicationsofcarbon nanotubes	Lecture Discussion videos	
	IV Biona	notechnology				
	1	Biomachinery- DNA Nanotechnology	3	To understand the human body system and DNA	Lecture with PPT Illustration	Evaluation through short test
	2	Coding- Polymerisation	3	To acquire the Knowledge on Coding and polymerization	Lecture with PPT Illustration	Formative assessment II
	3	DNA computing – Electronic properties	3	TohaveaknowledgeonDNAcomputingandelectronicproperties	Lecture with Discussion	
	4	Biocomputers –DNA sensing- Self-assembly	3	To know the biological devices and self assembly	Lecture with PPT Illustration	
V	Applic	ations of Nanotechnology				
	1	Nanoelectronics-SingleElectronTransistor-Principle-Coulomb	3	To have a knowledge on Solar power using	Lecture with PPT	Short test Formative
		Blockade		nanotechnology		assessment II

2	NEMS- MEMS- Electronics – Batteries	3	To acquire knowledge on nanocomposites and nanotechnology in tartilas	Brain storming session. Lecture	
3	Water Purification- Ceramic membranes	3	in textiles To understand the nanooptics and nanotechnology in communication	Illustration Lecture with PPT Illustration	
4	Nanomedicine- photodynamic therapy – Tissue welding	3	field To acquire knowledge on MEMS, Photonic	Lecture Discussion	Open Book Test
			crystals and thin film optics	videos	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Semester - VI

Major Core IX

Name of the Course : Digital Systems and Applications

Subject code : PC1762

No. of Hours per week	No of Credits	Total no of Hours	Marks
6	5	90	100

Objectives: 1. To understand the different concepts in digital electronics, digital devices and applications.

2. To prepare students to perform the analysis and design of various digital electronic circuits.

СО	Upon completion of this course, students will be	PSO	CI
CO	able to:	addressed	CL
CO - 1	understand the fundamental concepts and techniques used in Digital Electronics.	PSO - 4	U
CO - 2	perform conversions among different number systems and apply in digital designing.	PSO - 2	Ap
CO - 3	infer the basic logic gates, understand Boolean algebra and simplify simple Boolean functions by using basic Boolean properties.	PSO - 1	U
CO - 4	understand, analyse and design various combinational and sequential circuits. (Flip flop, Counters, MUX, DEMUX, Encoder, Decoder etc.)	PSO - 5	Ap
CO - 5	understand the architecture and operations of microprocessor 8085.	PSO - 7	U
CO - 6	develop the basic idea about the instruction set and data transfer schemes.	PSO - 6	Ар

Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Description	Lecture hours	Learning outcome	Pagagogy	Assessme nt/Evalua tion
Ι	Logic ga	tes and Boolean Algebra				
	1	Universal logic gates – NOR, NAND	3	To be able to build basic logic gates OR, AND, NOT and Ex-OR using NOR	Lecture	Quiz, Assignme nt, Formative assessment (I)

				1		
				and NAND		
		De Mensenie discusse D 't'	1	only To simulify	Lastern	
	2.	De Morgan's theorems – Positive and	4	To simplify Boolean	Lecture	
		negative logic – Boolean laws and theorems		expressions		
	3.	Sum of products method – truth table to	4	To	Lecture	
	5.	Karnaugh map (Three variable and Four	4	interpret	Lecture	
		variable maps) – Karnaugh simplifications		the result		
		– Don't care conditions		of sum of		
				product		
				method		
				using		
				Karnaugh		
				map		
	4.	Product of sums method - Product of	4	То	PPT,	
		sums simplification.		interpret	Lecture,	
				the result	Group	
				product of	discussion	
				sums		
				method		
				using		
				Karnaugh		
TT	Number	Sustan		map		
II	Number		3	То	PPT,	Quiz,
	1	Binary number system – Binary to decimal conversion	5	understand	rr 1,	Assignme
				the concept		nt,
				of binary		Formative
				number		assessment
				system		(I)
	2.	Decimal to binary – Octal numbers –	4	To be able	Lecture,	
		Hexadecimal numbers		to convert	Problem	
				decimal	solving	
				number		
				into its		
				equivalent		
				binary,		
				hexadecim		
				al and octal		
	2	Dinema addition Dinema	Λ	numbers	Leature	
	3.	Binary addition – Binary subtraction – 1^{s}	4	To be able to add and		
1	1	and 2s complement method			Group discussion	
				cuntract		
				subtract		
				two binary	, Problem	

		– Serial in - Parallel Out		various types of shift registers	Lecture,	Formative assessment (II),
• •	1	Types of registers – Serial in - Serial Out	2	To analyze		Quiz,
IV	Register	s and Counters		working principle of D flip flop		
	4.	D flip flop	2	To understand the	PPT, Lecture,	
	3.	J-K flip flop – R-S master slave flip flop – J-K master – Slave flip flop	5	To understand the working principle of master slave flip flops	PPT, Lecture, Group discussion	
	2	Frequency divider – Logic gate flip flop – R-S flip flop – Clocked R-S flip flop	4	To distinguish between R-S flip flop and Clocked R- S flip flop	PPT, Lecture,	
<u>III</u>	1	er and flipflops 555 timer – Monostable multivibrator Astable multivibrator	4	To know the working principle of 555 timer	Lecture, Group discussion	Quiz, Assignme nt, Formative assessment (I & II),
	4.	Arithmetic building blocks – Half adder and full adder (truth table and Karnaugh map).	4	To know the basic Arithmetic building blocks	PPT, Lecture, Group discussion	
				and 2s complemen t method		

	2	Parallel in - Serial Out – Parallel in – Parallel Out	4	To distinguish between Parallel in Serial Out – Parallel in Parallel Out shift	PPT, Lecture,	
	3	Ring counter – Decade counter: A MOD - 5 counter	4	registers To know the principle of ring counter and decade counter	PPT, Lecture,	
	4	Shift counter – Shift counter Modulus.	3	To distinguish between various counters	PPT, Lecture,	
V	A-D and	D-A converters				
	1	Variable Resistor Network – Binary Ladders	2	To understand the concept of binary ladders	Lecture, PPT	Group discussion, Formative assessment (II),
	2	D-A converter – A-D converter – Simultaneous conversion	3	To be able to convert D-A and A-D	Lecture.	
	3	Multiplexer – De multiplexer	4	To understand the concept of multiplexer and de multiplexer	Lecture, PPT	
	4	Encoder: Decimal to BCD encoder - Decoders : BCD to decimal decoder - Seven segment decoder	6	To be able to understand the operation of encoder and decoder	Lecture	

Semester

: VI

Major Core - VIII

Name of the Course : Mathematical Methods of Physics

Subject code

: PC1761

No of hours per week	No of credits	Total no of hours	Marks
6	6	90	100

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	Illustrate linear dependence and combination of vectors as quantities in Physics.	PSO - 4	U
CO - 2	Evaluate problems in matrices.	PSO - 4	E
CO - 3	Solve ordinary and partial differential equations related to Physical Science.	PSO - 2	С
CO - 4	Adapt Fourier transform technique to obtain the Fourier series of periodic functions of Physics.	PSO - 5	С
CO - 5	Understand and manipulate random variables using the theory of probability including tools of probability transformation and characteristic functions.	PSO - 6	U

Modules

Credit:6

Total Hours:90 (Incl. Seminar & Test)

Unit	Sectio n	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment/E valuation
Ι	Vector A	Analysis				
	1	Point function - Scalar field – Vector field - Gradient of a Scalar field - Physical interpretation	4	To understand basic concepts of scalar field and vector field	Illustration and theoretical derivation	Evaluation through: quiz,
	2	Lamellar Vector field - line, surface and volume integrals -	3	To be able to evaluate line, surface and volume integrals	Illustration, Theoretical formulation Problem Solving	Problem solving

						Theoretical
	3	Divergence of a vector function – Expression for divergence in Cartesian coordinates	2	To derive expression for divergence of a vector function	Analysis Theoretical formulation and Problem solving	derivation Formative
	4	Curl of vector function – Expression for curl in Cartesian coordinates – Physical significance of curl	4	To understand the physical significance of curl operator and solve physical problems	Theoretical formulation and Problem solving	assessment
	5	Gauss divergence theorem – Green's theorem.	2	To derive Gauss divergence theorem and Green's theorem	Illustration and theoretical derivation	
II	Matrices	5		-		
	1	Eigen values - Eigen vectors	2	To understand the basic concepts of eigen values and eigen vectors	Theoretical formulation and Problem solving	Evaluation through: quiz,
	2	Characteristic equation of a matrix – Cayley – Hamilton theorem - – Theorems on eigen values and eigen vectors	5	To derive theorems on eigen values and eigen vectors	Illustration and theoretical derivation	Problem solving Theoretical
	3	Diagonalization of matrices – Special type of matrices – Inverse of a matrix	5	To diagonalize and also find inverse of the given matrix	Theoretical formulation and Problem solving	derivation
	4	Non-homogenous linear equations – Cramer's rule for solving non-homogenous linear equations	3	To solve non- homogenous linear equations using Cramer's rule	Illustration, Theoretical formulation and Problem solving	Formative assessment
III	Differen	tial Equations				

V		n Variables and Probability		physical problems	formulation	
	4	Applications of Fourier series: Sawtooth wave - Half wave rectifier – Full wave rectifier	2	expansion To use Fourier series to evaluate	Descriptive lecture and Theoretical	Formative assessment
	3	Symmetry – Complex form of Fourier series – Change in interval of expansion	4	To apply Fourier theorem for change in interval of	Descriptive lecture and Theoretical formulation	Theoretical derivation
	2	Fourier series –Dirichlet's theorem – Fourier coefficients – Fourier cosine and sine series	5	To evaluate Fourier series	Illustration, Theoretical formulation and Problem solving	Problem solving
IV	Fourier 1	• Analysis Harmonic oscillations – Harmonic synthesis and analysis – Fourier contribution	4	To understand the basic concepts of harmonic synthesis	Illustration, Theoretical formulation	Evaluation through: quiz,
	4	Physical examples: Radioactive decay process.	3	To apply solving techniques of differential equation to solve physical problems	Illustration, Theoretical formulation and Problem solving	
	3	Linear differential equations – Equations of first order and higher degrees	4	homogenous equations To understand the solving of first order and higher order differential equations	and Problem solving Illustration, Theoretical formulation and Problem solving	Theoretical derivation Formative assessment
	2	Homogenous equations – Non – homogenous equations reducible to homogenous ones –	4	 method to solve first order differential equations To reduce non homogenous equations to 	formulation and Problem solving Illustration, Theoretical formulation	quiz, Problem solving
	1	First order equations – Variables separable method	4	To use variable separable	Illustration, Theoretical	Evaluation through:

1	Random Variables – Simple random sample – Mean – Median – Mode – Dispersion	5	To understand basic concepts of random	Illustration, Theoretical formulation	Evaluation through: quiz,
	L		variables		1
2	Elementary properties of probability – Conditional probability – Addition rule of probability – Multiplication law of probability	6	To verify addition rule of probability and multiplication law of probability	and Problem solving	Problem solving Theoretical derivation
3	Probability distribution – Mean, variance and standard deviation of Poisson distribution.	4	To analyze probability distribution and solve physical problems	Illustration, Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Semester VI

Major core X: Nuclear Physics

Subject Code: PC1763

No of hours per week	No of credits	Total no of hours	Marks
5	5	75	100

Objective: 1. To enable the students to understand the properties, models and radioactive

reaction of the nucleus.

2.To create awareness on nuclear reactions such as fission, fusion, radiation detectors and elementary particles so that students can shine.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Define the fundamentals of nuclear matter (properties of nuclei and Nuclear forces)	PSO-2	R
CO- 2	Apply the principles of physics in the measurements of Nuclear size, Nuclear spin, Nuclear energy levels and Nuclear magnetic moment	PSO-1	Ар
CO- 3	Assess radioactivity and various nuclear reactions (nuclear fission and fusion)	PSO-3	E
CO -4	Explain the decay modes, Radiation Detectors and Particle Accelerators (Ionisation chamber,Proportional counter,Geiger Muller counter,Linear accelerator, Cyclotron, Synchro cyclotron, Betatron)	PSO-5	U
CO- 5	Discuss the classification of elementary particles and Quark model	PSO-5	E
CO -6	Analyse the characteristics and behavier of elementary particles and their fundamental interactions	PSO-7	An
CO -7	Develop a deeper understanding of some important applications of nuclear physics in Nuclear Reactor and Source of stellar energy.	PSO-6	С

Modules

T T •4	G		Lecture	Learning	Pedagogy	Assessment/Evaluation			
Unit	Section	Topics	Hours	outcomes					
I	I Properties of Nuclei								
	1	Constituents of nuclei - Isotopes, Isobars, Isotones and mirror nuclei -	3	Define the basis of nuclei and stability of nucleus	Lecture discussion	Evaluation Class test, oral question Assignment I			
		Nuclear mass and binding energy - Unit of atomic mass - Binding energy and stability of nucleus							
	2	Mass defect and packing fraction - Binding fraction Vs mass number curve - Nuclear size - Nuclear spin - Nuclear energy levels	3	Apply various Binding energy relations	Derivation and group discussion				
	3	Nuclear magnetic moment - Parity of nuclei - Nuclear quadrupole moment - Statistics of nuclei	3	solution of Nuclear magnetic moment	Derivation, problem solving and group discussion				
	4	Nuclear forces - Liquid drop model - Semi- empherical mass formula - Shell model	3	Apply Nuclear forces in different models	Derivation and group discussion				

Total contact hours: 75 (Including lectures, assignment and tests)

II				Radioactivity		
	1	Radioactivity -	3	Solve	Derivation	
		Radioactive		Radioactive	discussion	Evaluation
		reactions -		reactions		Class test, oral
		Radioactive				question
		decay law -				Assignment
		Statistical nature				
		of radioactivity				I/II
	2	Activity or	3	Define and	Derivation	
		strength of a		derive	and group	
		radio-sample -		Radioactive	discussion	
		Radioactive		decay	problem	
		decay :			solving	
		Conservation				
		laws				
	3	Radioactive	3	Statement	Derivation	
		series:		and proof	and group	
		Displacement		of	discussion	
		law - Successive		displaceme	problem	
		transformation -		nt law	solving	
		Radioactive			_	
		equilibrium				
	4	Radioact	3	Radioactive	Derivation	
		ive dating: Age		dating and	and group	
		of minerals,		its	discussion	
		rocks - Alpha		applications	problem	
		decay - Beta			solving	
		decay - Gamma			_	
		decay.				
III			Nu	clear Reaction	s	
	1	Nuclear	3	Analyse	Derivation	Evaluation
	•	Reactions:	J	Conservation		Class test, oral
		Basics -		laws in	aiseassion	question
		Conservation		nuclear		Assignment
		laws in nuclear		Reactions		1 1001511110110
		Reactions -		1 concertoring		II
		Energetics of				**
		nuclear				
		Reactions				
	2	Cross section of	2	Define and	Derivation	
	-	nuclear	-	derive nuclear		
		Reactions -		Reactions,	discussion	
		Reaction		Reaction ,	uiscussioil	
		mechanisms -		mechanisms		
		mechanisins -		mechanisms		

					[[]
		Nuclear fission -		&Nuclear		
		Energy released		fission		
		in fission of U-				
		235				
	3	Liquid drop	4	Define and	Derivation	
		theory of fission		Derive	and group	
		- Nuclear chain		Nuclear chain	discussion,	
		reaction -		reaction,	PPT	
		Nuclear Reactor		Types of		
		- Types of		reactor,		
		reactor - Breeder		Breeder		
		reactor - Fission		reactor &		
		bomb		Fission bomb		
	4	Fusion: Thermo	3	Define, derive	Derivation	
	-	nuclear reaction	J	and apply	and group	
		- Source of		Uncontrolled	discussion	
		stellar energy:			uiscussion	
		Natural fusion -		fusion:		
		Uncontrolled		Hydrogen		
				bomb		
		fusion:				
TT 7		Hydrogen bomb.				
IV	-			ctors and Partic		
	1	Introduction -	3	Discuss	Derivation	Evaluation
		Ionisation		different types	discussion	Class test, oral
		chamber -		of Radiation		question
		Proportional		Detectors		Assignment
		counter - Geiger				II/III
		Muller counter -				
		Neutron				
		detection				
	2	Cloud chamber -	3	Define and	Derivation	
		Scintillation		derive Cloud	and group	
		counter -		chamber &	discussion,	
		Photographic		Scintillation	PPT	
		detection - Solid		counter		
		state track				
		detector				
	3	Semiconductor	3	Define and	Derivation	
		detector -		Derive	and group	
		Particle		different types	discussion	
		accelerators -		of Particle		
		Linear		accelerators		
		accelerator				
	4	Cyclotron -	3	Define,	Derivation	
	-	Synchro	-	derive and	and group	
	1		1		0- ° "P	
		cyclotron -			discussion	

		Betatron		Cyclotron , Synchro cyclotron and Betatron				
V	Elementary Particles							
	1	Introduction - Fundamental Interactions - Pions and Muons - K mesons – Hyperons, Antiparticles	3	Analyse Fundamental Interactions	Discussion PPT	Evaluation Class test, oral question Assignment III		
	2	Classification of elementary particles - Conservation laws - CPT theorem	3	Analyse classification of elementary particles	Derivation and group discussion, PPT			
	3	Resonance particles - Symmetry classification of elementary particles	3	Explain symmetry classification of elementary particles	Derivation and group discussion			
	4	Quark model Unification of interactions - The standard model.	3	Define , derive and apply Quark model	Derivation and group discussion, PPT			

Books:

1. Gupta, A.B. (2015). *Modern Physics*. (2nd ed.). New Delhi: Books and Allied (P) Ltd.

Unit I: Chapter 18: 18.1-18.3, 18.5-18.16, 18.17, 18.18, 18.18.1, 18.19, 18.19.1 -

18.19.4

Unit II: Chapter 19 : 19.1 - 19.9, 19.11

Unit III: Chapter 20: 20.1-20.16

Unit IV: Chapter 21: 21.1-21.5, 21.7, 21.7.1, 21.7.2, 21.9, 21.11-21.16, 21.17.2, 21.18

Unit V: Chapter 22: 22.1-22.9, 22.10, 22.11-22.14

2. Arthur Beiser. (2006). *Concepts of Modern Physics*. (6th ed.).New Delhi: Tata McGraw - Hill Edition,

Unit II: Chapter 12: 12.4-12.6, Appendix (theory of alpha decay)

Reference Books:

1. Tayal D.C. (2002). *Nuclear Physics*. (1st ed.). New Delhi: Himalaya Publishing House.

2. Roy R.R. and Nigam B.P. (1983). *Nuclear Physics*, (2nd ed.). Bangalore: New age International Ltd.

3. SatyaPrakash, (2004). *Nuclear Physics and Particle Physics*. (1st ed.). New Delhi: S. Sultan Chand & Sons Publications.