DEPARTMENT OF PHYSICS

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

Teaching Plan

Semester: I

Course Name: MECHANICS Course code: PC2011

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Objective: To impart knowledge on basic aspects of dynamics, conservation laws, kinematics, collisions and elasticity.

Course Outcomes

COs	Upon completion of this course, students will be able to	PSO addressed	CL
CO – 1	understand and define the laws involved in mechanics	PSO1	U
CO – 2	apply conservation laws in collision experiments	PSO2	Ар
CO – 3	interpret the principles of gravitation and moment of inertia through theory and experiments	PSO3	Ар
CO – 4	analyze the fundamentals of center of mass and rocket motion	PSO2	An
CO – 5	apply pressure-velocity relation in fluid flow in the field of fluid dynamics	PSO3	Ар

Modules

Credits: 4 Total contact hours: 60 (Including assignments and tests)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/ Evaluation
			hours	outcome		Evaluation
Ι			Laws	of Motion		
	1	Laws of conservation of	2	To understand	Lecture Discussion	Evaluation
		energy, linear		the concept of conservation	with PPT	through short test
		momentum and		of energy.	illustration	
		angular momentum				Multiple
		 work energy theorem 				choice
	2	work done by	2	To be able to	Lecture	questions
	4	gravitational force –	2	derive the	discussion	
		work done by spring		workdone by	with	Formative
		force – potential		gravitational	illustration	assessment I
		energy –		and spring		
		conservative and non		force and		
		conservative forces –		distinguish		
		potential energy		conservative		
		curve		and non		
				conservative forces		
	3	Collision – Elastic and inelastic	3	To know the principles of	Lecture discussion	
		collision(Fundament		collision	discussion	
		al laws of impact) –		Combron		
		Newton's law of				
		impact – coefficient				
		of restitution				

	4	Impact of a smooth sphere on a fixed plane – Direct impact between two smooth spheres – Oblique impact	3	To distinguish between direct impact and oblique impact between two	Lecture discussion	
		between two smooth spheres – Calculation of final velocities of the		smooth spheres		
		spheres – Loss of K.E due to impact				
II			Dynamics	of Rigid Body		
	1	Moment of inertia – Theorems of perpendicular and parallel axes	2	To understand the concept moment of inertia	Lecture Illustration	Short test Quiz
	2	M.I of a circular ring, disc, solid sphere, hollow sphere and cylinder about all axes	3	To categorize moment of inertia of different objects.	Lecture discussion	Assignment Formative assessment
	3	Compound pendulum – theory – equivalent simple pendulum – reversibility of centers of oscillation and suspension – determination of g and k	4	To be able to find the acceleration due to gravity at a place	Lecture Illustration	
III			Gra	vitation	-	
	1	Newton's law of gravitation – Kepler's laws of gravitation – G by Boy's method – Mass and density of earth	2	To recall the concept of collision and to recognize the impact of smooth spheres.	Lecture with PPT Illustration	Formative assessment II
	2	Acceleration due to gravity – Variation of g with altitude, depth and rotation of earth – Value of g at poles and equator	3	To understand the variation of g with altitude, depth and rotation of earth	Question- answer session Lecture	

	3	Gravitational field – Gravitational potential – Gravitational potential due to spherical shell – Gravitational potential due to a solid sphere (inside and outside)	3	To understand the concept gravitational potential	Lecture with PPT Illustration	
IV				orce Motion	_	
	2	Angular velocity, angular momentum and K.E of rotation – Torque and angular acceleration – Relation between them – Expression for acceleration of a body rolling down an inclined plane without slipping Center of mass – Velocity and acceleration of centre of mass – Determination of	3	To acquire knowledge on angular velocity and angular momentum. To understand the concept centre of mass	Lecture Discussion Lecture Discussion	Formative assessment II
		motion of individual particle – System of variable mass. Rocket motion– Satellite				
V		S	tatics and l	Hydrodynamics		
	1	Friction-laws of friction–Angle of friction– Cone of friction – Centre of gravity – Solid and hollow tetrahedron– solid and hollow hemisphere	3	To have practical knowledge on angle of friction and cone of friction	Lecture with PPT	Short test Formative assessment III

2	Centre of pressure– vertical rectangular lamina – vertical triangular lamina	3	To understand the concept rectangular and triangular lamina.	Brain storming session. Lecture Illustration
3	Hydrodynamics – Equation of continuity– Pitot's tube and Venturimeter – Euler's equation of unidirectional flow – Torricelli's theorem – Bernoulli's theorem and its applications	3	To be able to understand the principles in hydrodynami c s.	Lecture with PPT Illustration

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Dr.LeslyFathima & Sr.Sebastianmal

Semester: I Course Name: Allied Physics I Course code: AP2011

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Objectives

To understand the concept of strength of materials, viscous properties of liquids, heat transformation from one place to another, converting heat to do mechanical work and basic properties of light such as interference and diffraction.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	Understand the fundamental concepts of Physics.	PSO-1	U
CO – 2	Analyse the concepts and study the applications of Thermodynamics, material properties heat and optics.	PSO-2	An
CO – 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ар
CO – 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	R

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι		Properties of M	latter			
	1	Young's modulus – Rigidity modulus – Bulk modulus – Poisson's ratio (definition alone)	2	To understand the basic concepts of Young's modulus and its definition	Illustration and lecture	Evaluation through: quiz, short questions
		Bending of beams – Expression for bending moment	1	To study the Bending of beams and define Expression for bending moment	Illustration and theoretical derivation	Multiple choice, questions ,
	2	Determination of Young' modulus – uniform and non uniform bending. Expression for Couple per unit twist	2	To determine uniform and non- uniform bending and study couple per unit twist	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas Problem
	3	Work done in twisting a wire – Torsional oscillations of a body– Rigidity modulus of a wire and M.I. of a disc by torsion pendulum	3	To understand working of torsion pendulum	Lecture and theoretical derivation	solving Formative assessment
II		Viscosity				
	1	Viscosity – Viscous force – Co- efficient of viscosity – Units and dimensions		To understand the basic concepts of viscosity and study its units	Illustration, Theoretical formulation Problem Solving	Evaluation through: quiz, short test
	2	Poiseuille's formula for co- efficient of viscosity of a liquid – Determination of co- efficient of viscosity using burette and comparison of Viscosities.		To determine Poiseuille's formula and determine the co- efficient	Lecture , Theoretical	Assignment on applications. Problem
	3	Bernoulli's theorem – Statemen and proof – Venturimeter – Pitot tube.	2	To understand the concept of venturimeter and Pitot tube.	Lecture , Illustration, Theoritical formulation Practical	Solving Formative assessment
III		Conduction, Convection			TIL (1	
	1	Specific heat capacity of solids and liquids – Dulong and Pettit's law	2	To understand the basic concepts of specific heat capacity	Illustration and lecture	Evaluation through: quiz, short questions

	2 3	Newton's law of cooling – Specific heat capacity of a liquid by cooling Thermal conduction –Coefficient of thermal conductivity by Lee's disc method.	2	To use the law of Newtons law of cooling to find specific capacity of liquid To understand the basic concepts of conduction mode of heat transfer through	Illustration and theoretical derivation Illustration, theoretical derivation and Demonstration	Multiple choice, questions, Deriving theoretical
	4	Convection process – Lapse rate – Greenhouse effect	1	experiment To define convection mode of heat transfer and study its application	Illustration and lecture	formulas Formative assessment
	5	Black body radiation – Planck's radiation law – Rayleigh Jean's law, Wien's displacement law – Stefan's law of radiation.	2	To deduce laws related to heat transfer through radiation	Illustration, theoretical derivation and Demonstration	
IV		Thermodynai	nics			
	1	Zeroth and First Law of thermodynamics – Second law of thermodynamics	2	To understand the basic concepts of laws of thermodynamics	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions
	2	Carnot's engine and Carnot's cycle – Efficiency of a Carnot's engine	3	To analyse the various aspects of Carnot engine	Lecture, Demonstration, theoretical formulation	Multiple choice, questions, Deriving
	3	Entropy – Change in entropy in reversible and irreversible process – Change in entropy of a perfect gas – Change in entropy when ice is converted into steam.	3	To understand the concept of entropy and its applications	Lecture, Demonstration, theoretical formulation	theoretical formulas Formative assessment
V		Optics				
	1	Interference – Conditions for interference maxima and minima – Air wedge – Thickness of a thin wire – Newton's rings – Determination of wavelength using Newton's rings.	3	To understand the basic concepts of interference phenomena and its application	Illustration, Theoretical formulation, Demonstration	Evaluation through: quiz, Deriving theoretical formulas
	2	Diffraction – Difference between diffraction and interference –	2	To understand the basic concepts of	Lecture, Demonstration,	

	Theory of transmission grating		diffraction	Theoretical	Assignment
	 Normal incidence 		phenomena and	formulation	on
			its application		applications
3	Optical activity – Biot's laws	3	To understand the	Lecture,	
	_		basic concepts of	Demonstration,	Formative
	Specific rotatory power				
	—				
	Determination of		optical activity	Theoretical	assessment
	specific				
	rotatory power using Laurent's		phenomena and	formulation	
	half shadepolarimeter.		its application		

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Ms.Aji Udahya

Semester I Non Major Elective Course - I Course Name: Physics in Everyday Life - I Course Code: PNM201

No. of hours per week	No of credits	Total no of hours	Marks
2	2	30	100

Objectives

- 1. To introduce the basic concepts in physics and their applications in everyday life.
- 2. To understand the physics concept applied in day to day life situations.

Course Outcomes

СО	Upon completion of this course, students will be able to:	PSO's	CL
		addresed	
CO – 1	understand their knowledge of basic scientific principles	PSO1	U
	and fundamental concepts in physics.		
CO – 2	recall the various phenomena of sound waves applied in	PSO2	R
	day today life		
CO – 3	understand the basic laws of physics and different forces	PSO1	Ap
	involved in nature.		
CO – 4	explain the Physics concepts behind sports	PSO3	E
CO – 5	categorize different characteristic nature of light and its	PSO1	С
	properties like refraction, reflection and diffraction.		

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedago gy	Assessment/ Evaluation
Ι		Properties of 1	Matter, H	Heat and Thermod	lynamics	
	1	Introduction- Elasticity- Elastic behaviour of materials- Elastic energy- Elastic and Plastic Deformation- Polymers and elastomers- Application of Elastic behaviour of materials	on-Elasticity- ehaviour of Elastic energy- and Plastic on- Polymers stomers- on of Elastic	Lecture, PPT	Quiz, test, Formative assessment (I)	
	2	Surface Tension -Concept behind Surface Tension- Examples of surface Tension , Capillary action- Experiment- Examples of capillary action	2	To apply Surface tension effects in day today lie situation.	Lecture, Demonstra tion	
	3	Viscosity - definition - Applications of Viscosity.	1	To understand the concept viscosity	Lecture	

II	Sound						
	1	Introduction- frequency spectrum of Sound waves - The Human voice-How does the ear hears?-	1	To understand the basic properties of sound	Lecture, Demons- tration		
	2	Amazing Abilities of Sound Basic characteristics of sound-	1	To be able to understand the basic characteristics of sound	Lecture,	Quiz test,	
	3	Reflection of Sound-echo- Interference -Application of reflection of sound wave	1	To understand the fundamental concept of reflection	Lecture	Formative	
	4	Ultra sound: Properties and applications of ultrasound-Applications of sound in human life.	1	To understand the applications of ultrasonic	Lecture, PPT		
III			Me	chanics			
	1	Introduction- terms used in mechanics- Centripetal and centrifugal forces-	1	To understand Centripetal and centrifugal forces	Lecture	Assignments,	

		Contact and non contact				
		forces				
	2	Friction and its types-	2	To understand	Lecture,	-
	2	Newton's laws of motion-	2	friction and its	PPT	
					111	Formation
		gravity		types		Formative
						assessment
	3	Mass and weight-	1	To understand	Lecture, PPT	
		Mechanics in everyday life.		the relation	PPI	
				between mass		
				and weight and		
				apply the		
				mechanics in day		
				to day life		
IV		Bior	nechani	ics in Sports		
	1	Forces and torques in Bio Mechanics- Centre of gravity	1	To understand the forces, normal reaction, friction		
	2	Physics of walking –	1	,	Lecture,	Formative
		Physics of cycling –			PPT	assessment
		Physics of long jump				
	3	Physics of swimming,	2	To understand the	Lecture,	-
		volleyball and		forces, normal	PPT	
		basketball		reaction, friction,		
V			Renew	able Energy		

1	Solar power – Applications - Wind power and applications -	2	Understand the natural power	Lecture, PPT	
	Applications - Hydroelectric power and its uses				
2	Biogas plant and its	1	To use the biogas	Lecture,	Quiz,
	advantages -		resources in day	PPT	Assignments
3	Advantages and	1	To understand the	Lecture,	
	disadvantages of		pros and cons of	PPT	
	renewable energy sources.		these resources		

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructor: S.J.Jenepha Mary

Semester: III Course Name: Heat and Thermodynamics Course Code: PC2031

Hours /Week	Credits	Total Hours	Marks
4	4	60	100

Objectives

- 1. To understand the phenomena connected with various units of measurement of temperature, knowing the concept of specific heat capacities of matter and transmission ofheat.
- 2. To introduce the concept of lowering the temperature, liquefying gases and process of making heat to do mechanicalwork.

	Course Outcomes		
COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand experimental methods to determine the transmission of heat.	PSO - 4	U
СО-2	analyze the work and heat interactions associated with a prescribed process path and to perform a analysis	PSO - 1	An
	of a flow system		
CO-3	understandthe basic concepts of thermodynamics like system,properties, equilibrium, pressure, specificvolume,temperature and the laws of thermodynamics	PSO - 4	U

CO-4	evaluate entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process fromsuch calculations.	PSO - 3	An
CO-5	analyze Maxwell's thermo dynamical relations and their applications	PSO - 5	E

Teaching Plan

Total contact hours: 60 (Including lectures, assignments and Tests)

Unit	Module	Topics	Lectur e hours	Learning outcome	Pedagog y	Assessment/ Evaluation
Ι		Thermome	try and C	alorimetry		
	1	Platinum resistance thermometer - Calendar and Griffith's bridge	1	Describe the theory behind different thermomet ers	Lectur e discus sion PPT	Multiple Choice Questions
	2	Thermoelectric effect – Seebeck effect – Thermoelectric thermometers- International temperature scale – Thermistor-	2	Able to explain thermoelecti c effects	Lecture demons tration PPT	Quiz,
	5	Specific heat capacity of Solids – Regnault's method of mixtures(solid) – specific heat capacity of liquids – Callendar and Barnes method.	3	Able to determin e the specific heat capacity of solids and liquids	Lecture demons trati on PPT	Formative Assessment I

4	Specific heat capacity of gases – Cp and Cv – Meyer's relation – Cv by Joly's differential steam calorimeter method – Cp by Regnault's method.	3	Able to determine the specific heat capacity of gasses.	PPT Lectur e discus sion	Assignment
---	---	---	---	--------------------------------------	------------

II		Low Ten	nperatu	ire Physics		
	1	Joule - Kelvin effect - Liquefaction of Air-Linde's Process –liquefaction of hydrogen - liquefaction of helium-Kammerling - Onne's method	3	Describi ng the process of liquefacti on of gases by various methods	Lectur e discus sion PPT	Formative Assessment I &II
	2	Helium I and II - Lambda point - production of low temperatures - adiabatic demagnetization	3	Explain about the production of low temperatur es	Lecture demons trati on PPT	Multiple choice questions
	3	Practical applications of low temperature - refrigerators and air- conditioning machines - super fluidity - application of super fluidity.	3	Discuss about fluidity, low temperature and applications based on it	Group discussio n, PPT	Quiz
III	Transr	nission of Heat	1		1 1	
	1	Conduction – coefficient of thermal conductivity – Rectilinear flow of heat along a bar	2	Explain the conduction process and rectilinear heat flow.	Lecture discussio n, PPT	Multiple choice questions
	2	convection – lapse rate – Stability of the atmosphere – Newton's law of cooling – determination of specific heat capacity of liquid	3	Discuss the convection process of heat transfer.	Lecture discussi on & Demon strat ion, PPT	Formative Assessment I &II

			2	Describe the	PPT	
	3	Radiation - black body – Kirchhoff's law – Stefan – Boltzmann law- solar constant – water		process of radiation and laws associated with it.	Lecture discussi on	Short Test Quiz
		flowpyroheliometer.				
	4	Energy distribution in black body spectrum - Wien's law – Rayleigh Jean's law– Planck's law	2	Comparing the theoretical and experimental results of energy distribution in black body.	Group discussio n, PPT	Assignment
IV		Kinetic	Theory	v of Gases		
	1	Kinetic Theory of gases- assumptions - Molecular collisions – mean free path – expression for mean free path	2	Able to explain the motion of gas molecules	Lecture discussio n, PPT	Multiple choice questions
	2	Transport phenomenon – Brownian motion and its features - expression for viscosity, Diffusion and thermal conductivity of gas.	4	Describe the movement of molecules into different layers thus understanding the transport of gas	Lecture discussi on & Demon strat ion, PPT	Formative Assessment I
	3	Experimental verification -Vander Waals' equation of state - Determination of Vander Waals' constant - Relation between Vander Waals' constant and critical constants.	3	Explain the correction in Ideal gas equation and finding the constants of correction and their relations	Lecture demons tration PPT	Short Quiz
V		Thermodynamics		1	I I	

1	Zeroth and first law of thermodynamics – reversible and irreversible processes – isothermal process-adiabatic process-gas equation during adiabatic process - work done during adiabatic and isothermal process	3	Discuss the zeroth law and first law of thermodyna modynamics	Lecture discussio n, PPT	Multiple Choice Questions
2	second law of thermodynamics – Carnot's engine – its efficiency. Entropy – change of entropy in reversible and irreversible processes – temperature – entropy diagrams – physical significance of entropy - change of entropy when ice converted into steam	2	Discuss the law of thermodyna modynamics and entropy concept	Lecture discussio n, PPT	Quiz,
3	third law of thermodynamics – Extensive and Intensive thermodynamic variables – distinction between them Maxwell thermodynamical relations – derivation and application - Clausius - Clapeyron equation and specific heat relation	4	Analyze and study the applications maxwells relation	Group discussio n, PPT	Formative Assessment II

Course Instructor: Dr.M.Abila Jeba Queen

Semester

Course Name : Non Conventional Energy Sources -Elective – I(a)

III

Course Code : PC2032

No. of hours per week	No. of credits	Total No. of hours	Marks
4	4	60	100

Learning Objectives

- 1. To provide an understanding of the present energy crisis and various available energy sources.
- 2. To make the students to understand the present day crisis of need for conserving energy and their alternatives.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO- 1	Apply the solar energy in various sectors. (industry, agriculture and domestic purposes)	PSO-3	Ар
CO- 2	Explain the basic principles of wind energy conversion, various Biomass conversion Processes and its classification.	PSO- 1	U
CO- 3	Discuss the geothermal energy resources and chemical energy resources. (fuel cells)	PSO-2	An
CO- 4	Solve the present and future energy crisis.	PSO-8	С

Modules

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Introduc	tion to Energy Sources	•			
	1	World's reserve of Commercial energy sources and their availability	3	To understand the energy resources available in Word	Illustration and lecture	Evaluati on through: quiz, short questions
	2	India's production and reserves	2	To understand the availability of energy resources in India	Illustration and lecture	questions
	3	Conventional and non- conventional sources of energy, comparison	2	To compare Conventional and non- conventional	Illustration and lecture	Formative assessment

				courses of		
				sources of		
	4	Coal- Oil and natural gas – applications - merits and	2	energyTo know the merits and	Illustration and lecture	
		demerits.		demerits of fossil fuels		
II	Solar Th	ermal Energy				
	1	Solar constant -Solar spectrum	0.5	To understand the phenomena of solar activity	Illustration, demonstration and lecture	Evaluation through: quiz, Multiple choice, question s,
						Formative assessment
	2	Solar radiations outside earth's atmosphere –at the earth surface- on tilted surfaces	2.5	To understand the basic concepts of solar radiation towards earth	Illustration, demonstration and lecture	
	3	Solar Radiation geometry	0.5	To understand the different terms with solar radiation geometry	Illustration, lecture and Demonstration	
	4	Basic Principles of Liquid flat plate collector	1	To understand the principles of solar collector	lecture and Demonstration	
	5	Materials for flat plate collector -Construction and working	1.5	To explain the construction and working of Flat plate collector	Group Discussion	Multiple choice, question s,
	6	Solar distillation- Solar drying- Solar cooker (box type)-Solar water heating systems – Swimming pool heating.	3	To design the various Pollution free energy resources	Lecture with ppt, Group Discussion	Exhibiting Models, Formative assessment
III	Photovo	Itaic Systems				

	1	Introduction-Photovoltaic principle-Basic Silicon Solar cell- Power output and conversion efficiency	3	To understand the basic principle of Solar cell and study its efficiency	Lecture with ppt, Group Discussion	Evaluation through: quiz, Assignments
						Multiple choice questions
						Descriptive answers
						Formative assessment
	2	Limitation to photovoltaic efficiency-Basic photovoltaic system for power generation- Advantages and disadvantages	3	Able to utilize the solar energy for generating power	Lecture discussion	
	3	Types of solar cells	1	Able to discuss about the various types of solar cell	Lecture discussion	
	4	Application of solar photovoltaic systems - PV Powered fan – PV powered area - lighting system – A Hybrid System.	3	Apply the solar energy in various sectors	Lecture discussion	
IV	Biomass	Energy		I		
	1	Introduction-Biomass classification- Photosynthesis - Biomass conversion technologies-Bio-gas generation-Factors affecting bio-digestion	3			Evaluation through: quiz Assignments
			22	To understand the fundamentals of Biomass conversion processes& devices	Lecture discussion	Short questions Descriptive answers

						Formative
						assessment
	2	Working of biogas plant- floating and fixed dome type plant -advantages and disadvantage	3	To bring awareness from a technical point of view of Bio gas plants	Lecture, Illustration, Group discussion	
	3	Bio-gas from plant wastes	1	To understand and apply the concept of production of bio-gas from plant wastes	Lecture, Illustration, Group discussion	
	4	Methods for obtaining energy from biomass. Advantage & disadvantages of biomass as energy source	2	To discuss about the generation of biogas from biomass	Lecture discussion	
V	Wind E	nergy and Other Energy Sources		•		
	1	Wind Energy Conversion- Classification and description of wind machines, wind energy collectors-Energy storage	3	To understand the basic concepts of WECS system	Illustration, lecture, Demonstration	Evaluation through: quiz, Assignments on applications
						Formative
	2	Energy from Oceans and Chemical energy resources- Ocean thermal energy conversion-tidal power, advantages and limitations of tidal power generation-Energy and power from waves- wave energy conversion devices	3	To understandthe basic conceptsof OTEC and Wave energy	Lecture, Demonstration,	assessment
	3	Fuel cells- and application of fuel cells- batteries- advantages of battery for bulk energy storage- Hydrogen as alternative fuel for motor vehicles.	3	To understandthe basic conceptsof Chemical energy	Lecture, Demonstration,	
	4					

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. R. Krishna Priya& Ms. P. AjiUdhaya

Semester III

Course Name : Allied Physics I for Chemistry

Course code : AP2031

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Learning Objectives

- 1. To understand the concept of strength of materials, viscous properties of Liquids, heat transformation from one place to another, converting heat to do mechanical work.
- 2. To understand basic properties of light such as interference and diffraction.

Course Outcome

COs	Upon completion of this course students will be able to:	PSO addressed	CL
CO-1	Understand to know, various modulus involved in the materials, flow of liquids due to viscous forces, transmission of heat due to process of conduction, convection and radiation and various laws involved in heat transformation, various thermodynamic laws and.	PSO-1	U
CO -2	Analyze the concepts and study the concept of entropy, and the phenomenon like interference and diffraction, optical activity of liquids and its uses.	PSO -3	An
CO- 3	Apply their depth knowledge of Physics in day today life.	PSO -2	Ар
CO- 4	Develop their knowledge and carry out the practical by applying these concepts	PSO -4	R

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι		Properties of M	latter			

		Viscosity				
	3	Radiation: Distribution of energy ir the spectrum of black body – Results.		To understand the basic concepts of radiation phenomena and derive related laws	Illustration, theoretical derivation and Demonstration	formulas Formative assessment
	2	Convection: Newton's law of cooling – Determination of specific heat capacity of liquid		To understand the basic concepts of convection phenomena and derive related laws	Illustration and theoretical derivation	Multiple choice, questions , Deriving
	1	Thermal conductivity – Lee's disc method – Relation between thermal and electrical conductivities - Widemann – Franz law	3	To understand the basic concepts of conduction phenomena and derive related laws	Illustration, theoretical derivation and lecture	Evaluation through: quiz, short questions
II		Conduction in s	olids			
	3	Work done in twisting a wire – Torsional oscillations of a body– Rigidity modulus of a wire and M.I. of a disc by torsion pendulum	3	To understand working oftorsion pendulum	Lecture and theoretical derivation	solving Formative assessment
	2	Determination of Young' modulus – uniform and non uniform bending. Expression for Couple per unit twist	3	To determine uniform and non- uniform bending and study couple per unit twist	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas Problem
		Bending of beams – Expression for bending moment	1	To study the Bending of beams and define Expressionfor bending moment	Illustration and theoretical derivation	Multiple choice, questions,
	1	Young's modulus – Rigidity modulus – Bulk modulus – Poisson's ratio (definition alone)	2	To understand the basic conceptsof Young's modulus and itsdefinition	Illustration and lecture	Evaluation through: quiz, short questions

III	1	Viscosity – Viscous force – Co- efficient of viscosity – Units and dimensions	3	To understand the basic concepts of viscosity and	Illustration, Theoretical formulation	Evaluation through: quiz, short
				study its units	Problem Solving	questions
	2	Poiseuille's formula for co- efficient of viscosity of a liquid – Determination of co- efficient of viscosity using burette and comparison of Viscosities.	3	To determine Poiseuille's formula and determine the co- efficient	Lecture , Theoretical formulation Practical demonstration	Multiple choice, questions ,
	3	Bernoulli's theorem – Statemen and proof – Venturimeter – Pitot tube.	3	To understand the concept of venturimeter and Pitottube.	Lecture , Illustration, Theoritical formulation Practical	Deriving theoretical formulas Formative assessment
IV		Thermodynai	nics			
	1	Zeroth and First Law of thermodynamics – Second lawof thermodynamics	2	To understand the basic concepts of laws of thermodynamics	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions
	2	Carnot's engine and Carnot's cycle – Efficiency of a Carnot's engine	3	To analyse the various aspects of Carnot engine	Lecture, Demonstration, theoretical formulation	Multiple choice, questions, Deriving
	3	Entropy – Change in entropy in reversible and irreversible process – Change in entropy of a perfect gas – Change in entropy when ice is converted into steam.	3	To understand the concept of entropy and its applications	Lecture, Demonstration, theoretical formulation	theoretical formulas Formative assessment
V		Optics				
	1	Interference – Conditions for interference maxima and minima – Air wedge – Thickness of a thin wire – Newton's rings – Determination of wavelength using Newton's rings.	3	To understand the basic concepts of interference phenomena and itsapplication	Illustration, Theoretical formulation, Demonstration	Evaluation through: quiz, Deriving theoretical formulas
	2	Diffraction – Differencebetween diffraction and interference –	3	To understandthe basic conceptsof	Lecture, Demonstration,	

	Theory of transmission grating –		diffraction	Theoretical	Assignment
	Normal incidence		phenomena and	formulation	on
			its application		applications
3	Optical activity – Biot's laws–	3	To understandthe	Lecture,	
	Specific rotatory power –		basic conceptsof	Demonstration,	Formative
	Determination of specific		optical activity	Theoretical	assessment
	rotatory power using Laurent's		phenomena and	formulation	
	half shadepolarimeter.		its application		

CO- Course Outcome; CL-Cognitive Level; R- Remember; U-Understand; Ap-Apply; C - Create.

Course Instructors: Ms. S. Virgin Jeba

Teaching Plan (2019-2020) Semester : V

Name of the Course : Elements of Modern Physics

Subject code

: PC1751

No of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Objectives: 1.To provide insight into wave- particle duality and its consequence.

2. To apply skill related to principle and concepts of modern physics.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Explain the theories and experiment related to particle and wave nature of light.	PSO-1	U
CO- 2	Identify particle nature experiments (photoelectric effect, planks law, Compton effect, photoelectric effect) and wave nature experiments(Thomson experiment, Davision Germer experiment).	PSO-2	Ар
CO- 3	Define uncertainty principle.	PSO-2	R
CO -4	Analyse various models of atomic spectra.	PSO-5	An
CO- 5	Solve Schrodinger equation in different dimensional stages.	PSO-4	С
CO- 6	Estimate Lorentz transformation for length contraction ,time dilation.	PSO-5	E

Unit	Module	Description	Lecture	Learning	Pagagogy	Assessment
			hours	outcome		/Evaluation
Ι	Particle N	lature of Radiation				
	1	Introduction , Spectral distribution of	2	То	PPT,	Quiz test,
		blackbody radiation, Quantum hypothesis of		summaris	Lecture	Formative
		Planck		e the	method	assessment
				quantum		(I)
				theories		
	2.	Planck's law of radiation, Photoelectric	5	То	PPT,	
		Effect,		explain		
		Photoemission characteristics Failure of		particle		
		electromagnetic wave theory, Einstein's		nature		

		Photoelectric equation		theories		
	3.	Millikan's verification of Einstein's equation, Continuous X-ray Spectrum, Compton effect	4	To explain particle nature experime nts	Lecture	
	4.	Energy of scattered radiation and recoil electron, Compton scattering vs Photoelectric effect,Pair Production, Particle or Waves.	4	To compare Compton and Photoelec tric effect	PPT, Lecture, Group discussio n	
II	Wave Na	ture of Particles				
	1	Introduction , De Broglie waves and wavelength, Wavelength vs Voltage	3	To explain wave nature theories	PPT,	Quiz test, Formative assessment (I), Assignment
	2.	Davisson –Germer experiment, Experiments of G.P Thomson, Frisch and stern's method	4	To explain wave nature experime nts	Lecture method	
	3.	Standing electron waves in a circular orbit, Heisenberg's uncertainty principle	4	To Define uncertain ty principle	PPT, Lecture, Group discussio n	
	4.	Uncertainty relation, Uncertainty principle and concept of Bohr orbits, Derivation of the uncertainty principle, Phase velocity and group velocity, Phase and group velocities of matter waves.	4	To Derive uncertain ty relation	PPT, Lecture, Group discussio n	
III	Atomic s		1	1		
		Introduction ,Spectra of H atom,Orbital magnetic moment of H atom, Larmor precession	3	To analyse various models of atomic spectra	Lecture, Group discussio n	Quiz test, Formative assessment (II),

	2	SternGerlachexperiment,ElectronSpin,Vectoratommodel,Spin-orbitinteractionPauli'sexclusionprinciple,Total	4	To analyse various interaction To	PPT, Lecture, PPT,	
	5.	momentum in multi-electron atoms,Energy levels and transitions of helium,Alkali spectra	5	analyse various models of spectra	Lecture, Group discussion	
	4.	Normal Zeeman effect, Anomalous Zeeman effect, Stark effect	3	To differenti ate differet effects	PPT, Lecture,	
IV	Atomic n	nodels and Quantum Mechanics				
	1	Introduction ,Atomic spectra,Thomson's model Rutherford's nuclear atom model	2	To analyse various models of atomic spectra	PPT, Lecture,	Quiz test, Formative assessment (II & III),
	2	Bohr's model of hydrogen atom Hydrogen spectrum Ritz combination principle Correction for finite nuclear mass	4	To explain hydrogen atom model	PPT, Lecture,	
	3	Discovery of heavy hydrogen , Hydrogenic atoms Sommerfeld's model , Bohr's correspondence principle,Resonance, excitation and ionization potentials,– Measurements of critical potentials Merits and Limitations of Bohr's theory	4	To explaint the Merits and Limitatio ns of Bohr's theory	PPT, Lecture,	
	4	Schrodinger wave equation , Schrodinger time dependent wave equation Schrodinger time independent wave equation, Physical significance of the wave function	3	To Solve Schrodin ger equation	PPT, Lecture,	

	5	Applications of Schrodinger wave equation , Particle in a one dimensional potential well Particle in three dimensional box, Degeneracy Electrons in a metal.	2	To Solve Schrodin ger equation in different dimensio nal stages.	PPT, Lecture,	
V	-	eory of Relativity		Т	T (
	1	Introduction ,Frame of reference, Galilean transformations,Michelson-Morley experiment	2	To explain differed reference	Lecture, PPT	Formative assessment (II & III),
	2	Einstein's postulates,Lorentz transformations Length contraction,Time dilation	3	Estimate Lorentz transform ation for length contracti on, time dilation.	Lecture.	
	3	Relativity of simultaneity,Addition of relativistic velocities, Relativistic mass,Mass- energy relation	4	Estimate Lorentz transform ation for	Lecture, PPT	
	4	Minkowski's four dimensional space,Time continuum,General theory of relativity,Massless particle.	6	Derive four dimensio nal space,Ti me continuu m	Lecture	

Course Instructor : Dr. V. Shally and Dr. R. Krishna Priya

Head of the Department : Dr. S. Mary Delphine

Name of the Course	: Waves and Optic	es	
Subject code	: PC1752		
No of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Objectives 1. To study the electromagnetic nature of light.

2.To enable the students to link the theory with day to day life.

СО	Upon completion of this course, students will be	PSO	CL
	able to:	addressed	CL
CO - 1	explain the fundamental principle of optics.	PSO - 1	U
CO - 2	determine the behavior of a ray at any optical surface .(lenses, Prisms).	PSO - 6	Е
CO - 3	explain the types of waves and its characteristics.	PSO - 2	U
CO - 4	analyze the intensity variation of light due to polarization, interference and diffraction.	PSO - 3	An
CO - 5	distinguish Interference, diffraction and polarization.	PSO - 2	An
CO - 6	test the optical planeness of any optical surface.	PSO - 6	С
CO - 7	measure the various optical parameters. (focal length, power, refractive index, radius of curvature, dispersive power etc) using optical components (prism, lenses, glass plate, grating).	PSO - 4	E
CO - 8	understand the interference and diffraction from wave optics concepts and know its applications. Understand polarization of light and its applications.	PSO - 1	U

Unit	Module	Description	Lecture hours	Learning outcome	Pagagogy	Assessment/ Evaluation
Ι	Geometri	cal Optics	nours	outcome		Lvaluation
	1	Introduction – Refractive index and optical path- Sign convention – Refraction through lenses – Principal foci	2	To summaris e the basic concepts of optics	PPT, Lecture method	Quiz test, Formative assessment (I)
	2.	Deviation produced by a thin lens – Power	5	То	Lecture,	

	3.	of a lens - Aberrations – Spherical aberration in a lens –Methods of reducing spherical aberration (brief) – Chromatic aberration Dispersion by a prism - Refraction through a prism – Angular and chromatic dispersion – Dispersive power	4	explain the various aberratio ns in lens systems To discuss the dispersio n and refraction in a prism	PPT	
	4.	Achromatism in prism – Dispersion without deviation – Condition for achromatism of two lenses placed in contact and separated by a finite distance.	4	To explain achromat ic principles of prism	PPT, Lecture, Group discussio n	
II	Wave Op	otics	I	I		
	1	Oscillations – Waves – Travelling waves – Wave front and ray – Examples of waves – Characteristics	3	To explain the different types of waves and characteri stics	PPT,	Quiz test, Formative assessment (I), Assignment
	2.	Mathematical representation – Phase velocity – Complex representation – Wave packet and band width – Group velocity	4	To explain the phase velocity and group velocity of waves.	Lecture method	
1			4	То	PPT,	1
	3.	Propagation of light waves: Introduction – Maxwell's equations – Physical significance		discuss the light propagati on in a medium	Lecture, Group discussio n	

		relations - Wave equation for free space -		explain	Lecture,	
		Velocity of Electromagnetic waves – Relation between refractive index and relative permittivity.		the various paramete rs of waves	Group discussio n	
III	Interferen			1		
	1	Introduction – Young's experiment – Coherent source – Phase and path difference	3	To analyse the principle in interferen ce	Lecture, Group discussio n	Quiz test, Formative assessment (II),
	2	Analytical treatment – Theory of interference – Fresnel's biprism – Fringes with white light	4	To explain the differed theories of interferen ce	PPT, Lecture,	
	3.	Lioyd's mirror – Interference in thin films – Interference due to reflected and transmitted light	5	To explain the interferen ce in thinfilms	PPT, Lecture, Group discussio n	
	4.	Wedge shaped thin film – Testing the planeness – Newton's rings – Determination of λ	3	To determin e the waveleng th of the light source	PPT, Lecture,	
IV	Diffractio	on				
	1	Fraunhofer diffraction : Introduction – Single slit – Intensity distribution	2	To analyse the principle in	PPT, Lecture,	Quiz test, Formative assessment (II & III),

				diffractio n		
	2	Double slit – Comparison between interference and diffraction – Fraunhofer diffraction at N slits	4	To compare the interferen ce and diffractio n	PPT, Lecture,	
	3	Plane diffraction grating – Theory – Principal maxima – Oblique incidence	4	To explain the theoritica l principles in diffractio n grating	PPT, Lecture,	
	4	Determination of λ using grating – Dispersive power – Fresnel's diffraction	3	To determin e the dispersiv e power	PPT, Lecture,	
	5	Introduction – Huygen's Fresnel theory – Fresnel's assumptions – Rectilinear propagation of light	2	To explain the theoritica l principles of diffractio n	PPT, Lecture,	
V	Polarizati	ion		.	ı	
	1	Introduction – Polarization – Unpolarized and polarized light – Types of polarization	2	To explain the polarizati on of light	Lecture, PPT	Formative assessment (II & III),

2	Production of plane polarized light –	3	То	Lecture.	
	Polarizer and analyser – Anisotropic		explain		
	crystals – Double refraction		the		
	5		polarizati		
			on and		
			double		
			refraction		
			in		
			crystals		
3	Ordinary and extra ordinary ray – Positive and negative crystals – Nicol prism –	4	To discuss	Lecture, PPT	
	Quarter and half wave plates		the half		
	Quarter and half wave places		and		
			quarter		
			wave		
			plates		
4	Production and analysis of elliptically and	6	То	Lecture	
	circularly polarized light – Analysis of		analyze		
	polarized light		the		
			different		
			polarized		
			lights		

Course Instructor : Dr. S. Mary Delphine and Dr. Abila Jeba Queen

Head of the Department : Dr. S. Mary Delphine

Name of the Course : Solid State Physics

Subject code : PC1753

No of hours per week	No of credits	Total no of hours	Marks
6	5	90	100

Objectives

- 1. To impart knowledge on the structure of crystals and the different types of materials.
- 2. To develop a scientific attitude at micro and nano scales of materials

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	illustrate various types of bonding present in solids with example.	PSO - 1	U
CO - 2	explain the various crystal parameters and structures.	PSO - 3	Е
CO - 3	discuss the various theories involved in magnetic materials. (dia, para, ferro, ferri and antiferro magnetism)	PSO - 3	С
CO - 4	describe polarization processes and analyze the information contained in the temperature and frequency dependence of dielectric materials.	PSO - 1	С
CO - 5	analyze the structure and physical properties of semiconductors.	PSO - 5	An
CO - 6	describe and discuss the theory of superconductivity and superconducting materials.	PSO - 2	С

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment /Evaluation
Ι	Bonding i	n Solids		1	1	1
	1	Bonding in solids, An over view of an atom, Condition for bonding, Octet rule and stability	4	To acquire knowledge on bonding in solids	Lecture Discussion with PPT illustration	Evaluation through short test Multiple
	2	Van der Waal's bonding, Ionic bonding, Covalent bonding	3	To understand the different kinds of bonding	Lecture discussion with PPT illustration	choice questions Formative assessment I
	3	Dipole-dipole interactions, Hydrogen bonding, Metallic bonding, Mixed bonding	4	To acquire knowledge on hydrogen, metallic and mixed bonding	Lecture discussion	

	4	Calculation of ionization	4	To be able to	Lecture	
	'	energies for compounds,	-	determine the	discussion	
		Comparison of physical		ionization	uiscussion	
		properties				
II	Crystol	lline Materials		energies		
11	1	Classification of solids,	4	То	Lecture	Short test
	1		4	understand	Lecture	Short lest
		Periodicity in crystalline solids, Lattice translation			Illustration	Ouiz
		vectors		the concept	mustration	Quiz
		vectors		of crystal		
			4	structure.	T t	Assistant
	2	Unit and primitive cells,	4	To acquire	Lecture	Assignment
		Bravais lattices,		knowledge	discussion	Eamorations
		Symmetry operations		on unit cells		Formative
				and bravais		assessment I
			4	lattices	T (
	3	Crystal indexing, Miller	4	To be able to	Lecture	
		indices of lattice planes,		determine the	discussion	
		Directions in crystals,		miller indices		
		Atomic packing factor		of lattice		
		(APF)		planes	.	
	4	Density and lattice	3	To acquire	Lecture	
		constant, Other common		knowledge	Illustration	
		crystal structures		on other		
				crystal		
				structures		
III	Magnetic N			1	I	
	1	Magnetic and	3	To be able to	Lecture with	
		nonmagnetic materials,		distinguish	PPT	Short test
		Magnetic dipole compared		between	Illustration	
		with electric dipole		magnetic and		Quiz
				nonmagnetic		Formative
				materials		assessment
	2	Important terms in	3	To know the	Lecture with	II
		magnetism, Sources of		important	PPT	
		permanent magnetic		terms in	Illustration	
		moment		magnetism		
	3	Classification of magnetic	5	To know the	Lecture with	
		materials, Theory of		classical	PPT	
		diamagnetism, Classical		theory	Illustration	
		theory of para magnetism,		involved in		
		Theories of		Dia and Para		
		ferromagnetism, The		magnetism		
		Weiss exchange				
		(molecular) field				
	4	Domain theory,	4	To acquire	Question-	
		Hysteresis, Hard and soft		knowledge	answer	

		magnetic material,		on ferro, ferri	session	
		Antiferromagnetism		and antiferro	50551011	
		Ferrimagnetism		magnetism	Lecture	
IV	Dielectric I			inagnetisin	Lecture	
1 1	1	Dielectrics, Polarizability	4	To acquire	Lecture	
		and dielectric constant,	т	knowledge on	Lecture	
		Types of polarization		Dielectrics,	Discussion	Formative
		Types of polarization		Polarizability	Discussion	assessment
				and dielectric		II
				constant		
	2	Langevin's theory of	3	To acquire		
		polarization in polar		knowledge on	Lecture	
		dielectrics, Piezoelectric		piezoelectric		
		materials, Ferroelectrics,		and	Discussion	
		Antiferroelectricity		ferroelectric		
				materials		
	3	Internal or local field,	4	To be able to		
	_	Clausius Mossotti		understand	Lecture	
		equation, Lorentz-		the effects of		
		formula, Frequency and		Frequency	Discussion	
		temperature effects on		and		
		polarization		temperature		
		-		on		
				polarization		
	4	Dielectric breakdown,	4	To be able to	Brain	
		Dielectric loss,		classify the	storming	
		Classification of		insulating	session.	
		insulating materials,		materials	Lecture	
		Important insulating				
		materials			Discussion	
V	Semicondu	ctors and Superconductors				
	1	Bands in solids,	4	To acquire	Lecture	Short test
		Elemental and compound		knowledge on	with PPT	
		semiconductors,		elemental and		Formative
		Conduction in		compound		assessment
		semiconductors, Band		semiconductors		III
		structure of				
		semiconductors				
	2	Concentration of charge	3	To understand	Lecture	
		carriers, Mobility and		the concept of		
		conductivity in		mobility and	Illustratio	
		semiconductors		conductivity	n	
	3	Discovery of	4	To understand	Lecture	
		superconductivity,		the properties of		
		Superconductivity and		superconductors		

	magnetism, Critical magnetic field, Meissner effect, Magnetic induction in superconductors		Illustratio n	
4	Type I and Type II Superconductors, Isotope effect, Applications of superconductors	To understand the significance and applications of superconductors	Lecture with PPT	

Course Instructor	:	Dr. C. Nirmala Louis
Head of the Department	:	Dr. S. Mary Delphine

Subject code : PC1754

Number of hours per week	No of credits	Total number of hours	Marks
5	4	75	100

Objectives:

- **1.** To apply C++ language to write simple programs for solving general Physics problems
- To enable the students developing their own Applications using C++ and evolve as efficient software programmers

СО	Upon completion of this course, students will be able to:	PSO	CL
CO - 1	describe the principles of object oriented program. (abstraction, encapsulation, inheritance and polymorphism)	PSO - 4	С
CO - 2	apply object oriented programming techniques to solve computing problems.	PSO - 4	Ар
CO - 3	develop programs using functions and classes. (objects, array of objects, friend functions, passing and returning objects)	PSO - 4	С
CO - 4	develop programs using constructor, destructor, operator overloading and inheritance.	PSO - 4	С
CO - 5	formulate the applications of pointers and virtual functions.	PSO - 4	С

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation		
Ι	Principles	of object oriented Prog	ramming					
	1	Object-oriented programming, paradigm, Basic concepts of object oriented pro gramming	3	To understand the basic concepts of object oriented pro gramming	Lecture Discussion with PPT illustration	Evaluation through short test Multiple choice		
	2	Benefits of OOP, Object-oriented languages, Applications of OOP	3	To know the benefits and applications of OOP	Lecture discussion with PPT illustration	questions Formative assessment I		
	3	Introduction to C++ and its applications, A simple C++ program – An example with class	3	To be able to write a simple program in C++	Lecture discussion			
	4	Structure of C++ program, Creating the source file, Compiling and Linking	3	To be able to understand the structure of C++ program	Lecture discussion			
Π	Tokens, Expressions and Control Structures							
	1	Introduction, Tokens, Keywords, Identifiers and constants	3	To understand the concept of Tokens, Keywords, Identifiers and constants	Lecture Illustration	Short test Quiz Assignment		
	2	Basic data types, User defined data types, Storage classes, Derived data types, Symbolic constants	3	To acquire knowledge on basic and user defined data types	Lecture discussion	Formative assessment I		
	3	Declaration of Variables, Dynamic initialization of variables, Reference variables	3	To understand the concept dynamic initialization of variables	Lecture discussion			
	4	Operators in C++, Scope resolution	3	To acquire knowledge on	Lecture			

		operator, Memory		operators	Illustration	
				operators	musuation	
		management				
III	Functions	operator Classes and Objects				
111	1	The main function.	3	To acquire	Lecture	
	L	Function	5	knowledge on	with PPT	Short test
				main function	Illustration	Short test
		prototyping, Call by		and function	musuation	Ouiz
		reference, Return by				Quiz
		reference	3	prototyping To be able to	T a star us	Formative
	2	Inline functions,	3	To be able to	Lecture	assessment II
		Default arguments,		understand the	with PPT	
		Constant arguments,		concept	Illustration	
		Function		functions		
		overloading, Friend				
		and virtual functions				-
	3	Specifying a class,	3	To be able to	Lecture	
		Defining member		specify a class	with PPT	
		function, A C++			Illustration	
		program with class,				
		Making an outside				
		function inline,				
		Nesting of member				
		functions				
	4	Private member	3	To acquire	Question-	
		functions, Arrays		knowledge on	answer	
		within a class,		arrays within a	session	
		Memory allocation		class and		
		for objects, Static		arrays of	Lecture	
		data members, Static		objects		
		member functions,				
		Arrays of objects,				
		Friendly functions				
IV	Constructo	rs, Destructors and Op	perator over	rloading		
	1	Constructors,	3	To understand	Lecture	
		Parameterized		the concept		
		constructors,		constructors	Discussion	Formative
		Multiple				assessment II
		constructors in a				-
		class, Constructors				
		with default				
		arguments,				
		Dynamic				
		initialization of				
		objects				
		001000			1	

		Carran to t	2	T		1
	2	Copy constructor,	3	To acquire	T a atas	
		Dynamic		knowledge on	Lecture	
		constructors,		copy	D' '	
		Constructing two		constructor	Discussion	
		dimensional arrays,		and dynamic		
	-	Destructors	2	constructors		
	3	Defining Operator	3	To be able to	-	
		overloading,		understand	Lecture	
		Overloading Unary		overloading		
		operators,		operators	Discussion	
		overloading, Binary				
		operators,				
		Overloading Binary				
		operators using				
		friends				
	4	Manipulation of	3	To understand	Brain	
		strings using		the rules for	storming	
		operators, Rules for		Overloading	session.	
		overloading		operators	Lecture	
		operators			Discussion	
V	Inheritance	e, Pointers and Virtual	functions			
	1	Defining derived	3	To acquire	Lecture	Charttast
	1	Defining derived	3	To acquire	Lecture	Short test
	1	classes, Single	3	knowledge on	with PPT	Short test
	1	e	3	-		Formative
	1	classes, Single	5	knowledge on		
	1	classes, Single inheritance, Making	3	knowledge on		Formative
	2	classes, Single inheritance, Making a private member	3	knowledge on		Formative
		classes, Single inheritance, Making a private member inheritable		knowledge on inheritance	with PPT	Formative
		classes, Single inheritance, Making a private member inheritable Multilevel		knowledge on inheritance To be able to	with PPT	Formative
		classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple		knowledge on inheritance To be able to distinguish	with PPT Lecture	Formative
		classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance,		knowledge on inheritance To be able to distinguish between	with PPT Lecture	Formative
		classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Hierarchical		knowledge on inheritance To be able to distinguish between multilevel	with PPT Lecture	Formative
		classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid		knowledge on inheritance To be able to distinguish between multilevel inheritance	with PPT Lecture	Formative
		classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid		knowledge on inheritance To be able to distinguish between multilevel inheritance and multiple	with PPT Lecture	Formative
		classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid		knowledge on inheritance To be able to distinguish between multilevel inheritance and multiple	with PPT Lecture	Formative
	2	classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid inheritance.	3	knowledge on inheritance To be able to distinguish between multilevel inheritance and multiple inheritance	with PPT Lecture Illustration	Formative
	2	classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Hybrid inheritance, Hybrid inheritance.	3	knowledge on inheritance To be able to distinguish between multilevel inheritance and multiple inheritance To acquire	with PPT Lecture Illustration Lecture	Formative
	2	classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Hybrid inheritance, Hybrid inheritance.	3	knowledge on inheritance To be able to distinguish between multilevel inheritance and multiple inheritance To acquire knowledge on	with PPT Lecture Illustration Lecture with PPT	Formative
	2	classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Hultiple inheritance, Hybrid inheritance, Hybrid inheritance.	3	knowledge on inheritance To be able to distinguish between multilevel inheritance and multiple inheritance To acquire knowledge on pointers	with PPT Lecture Illustration Lecture with PPT Illustration	Formative
	2	classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Multiple inheritance, Hybrid inheritance, Hybrid inheritance. Pointers, Pointers to objects, Pointers to derived classes Virtual functions,	3	knowledge on inheritance To be able to distinguish between multilevel inheritance and multiple inheritance To acquire knowledge on pointers To understand the	with PPT Lecture Illustration Lecture with PPT Illustration Lecture	Formative
	2	classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Multiple inheritance, Hybrid inheritance, Hybrid inheritance. Pointers, Pointers to objects, Pointers to derived classes Virtual functions, Virtual constructors	3	knowledge on inheritance To be able to distinguish between multilevel inheritance and multiple inheritance To acquire knowledge on pointers To understand	with PPT Lecture Illustration Lecture with PPT Illustration Lecture	Formative
	2	classes, Single inheritance, Making a private member inheritable Multilevel inheritance, Multiple inheritance, Multiple inheritance, Hybrid inheritance, Hybrid inheritance. Pointers, Pointers to objects, Pointers to derived classes Virtual functions, Virtual constructors	3	knowledge on inheritance To be able to distinguish between multilevel inheritance and multiple inheritance To acquire knowledge on pointers To understand the significance of	with PPT Lecture Illustration Lecture with PPT Illustration Lecture	Formative

Course Instructor : Dr. M. Priyadharshini and Dr. A. Lesly Fathima

Head of the Department : Dr. S. Mary Delphine