Department		:		Chemistry						
Class		:		IB.S	c Chemis	try				
Title of the Course : General Chemistry-I										
Semester : I										
Course Code :				CU23	B1CC1					
Course	L	т	Р	S	Credits	Inst.	Total		Marks	
Code	L	1	r	3	Creans	Hours	Hours	CIA	External	Total
CU231CC1	5				5	5	75	25	75	100

Learning Objectives

- 1. To understand various atomic models and atomic structure
- 2. To realize the wave particle duality of matter
- 3. To learn periodic table, periodicity in properties and its application in explaining the chemical behaviour
- 4. To know the nature of chemical bonding, and
- 5. To understand the fundamental concepts of organic chemistry

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	explain the atomic structure, wave particle duality of matter, periodic properties bonding, and properties of compounds.	PSO – 1	K2(U)
CO - 2	classify the elements in the periodic table, types of bonds, reaction intermediates electronic effects in organic compounds, types of reagents.	PSO – 2	K1(R)
CO - 3	apply the theories of atomic structure, bonding, to calculate energy of a spectral transition, Δx , Δp electronegativity, percentage ionic character and bond order.	PSO – 3	K3(A)
CO - 4	evaluate the relationship existing between electronic configuration, bonding, geometry of molecules and reactions; structure reactivity and electronic effects	PSO – 3	K5(E)
CO - 5	construct MO diagrams, predict trends in periodic properties assess the properties of elements, and explain hybridization in molecules, nature of H – bonding and organic reaction mechanisms.	PSO – 3	K3(A)

Teaching plan

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/E valuation						
I	Atomic	structure and Periodic trends				I						
	1	History of atom (J.J.Thomson, Rutherford); Moseley's Experiment and Atomic number,	3	K2(U)	Lecture using models, chalk and talk	Slip test and concept explanations						
	2	Atomic Spectra; Black-Body Radiation and Planck's quantum theory	2	K3(A)	Group discussion and problem solving	Problem solving						
	3	Bohr's model of atom;The Franck- Hertz Experiment; Interpretation of H- spectrum; Photoelectric effect	3	K1(R)	Lecture using chalk and talk	Short test						
	4	Compton effect; Dual nature of Matter- De- Broglie wavelength- Davisson and Germer experiment	2	K2(U)	Lecture using chalk and talk	Slip test and MCQ						
	5	Heisenberg's Uncertainty Principle; Electronic Configuration of Atoms and ions		K3(A)	Lecture using chalk and talk, group discussion and problem solving	Group discussion and problem solving						
	6	Hund's rule, Pauli's exclusion principle and Aufbau principle. Numerical problems involving the core concepts.	3	K3(A)	Lecture using models, chalk and talk	Concept explanations and slip test						
II	Introduction to Quantum mechanics											
	1	Classical mechanics, Wave mechanical model of atom, distinction between a Bohr orbit and orbital;	2	K2(U)	Lecture using chalk and talk	Short test						
	2	Postulates of quantum mechanics; probability interpretation of wavefunctions, Formulation of Schrodinger wave equation - Probability and electron density-visualizing the orbitals -	3	K3(A)	Lecture using chalk and talk	Slip test						
	3	Probability density and significance of Ψ and Ψ^2 .	2	K1(R))	Lecture using chalk and talk	Short test and MCQ						

Total Contact hours: 75 (Including lectures, assignments and tests)

		Modern Periodic Table Cause of periodicity; Features of the periodic table; classification of elements -				
	4	Periodic trends for atomic size- atomic radii, ionic and covalent radii; ionization energy, electron affinity, electronegativity-	4	K3(A)	Lecture using chalk and talk	Short test and quiz
	5	Electronegativity scales Mulliken and Paulings scales of electronegativity, applications of electronegativity. Problems involving the core concepts	4	K3(A)	Lecture using chalk and talk	Slip test
III	Structu	ire and bonding – I				
	1	Ionic bond Ionic bond-definition; properties of ionic compounds; Energy involved in ionic compounds; Born Haber cycle – lattice energies-applications of lattice energy,	3	K1(R)	Lecture using chalk and talk	Concept explanations
	2	Ion polarisation– polarising power and polarizability; Fajans' rules - effects of polarisation on properties of compounds; problems involving the core concepts.	3	K2(U)	Lecture using chalk and talk, Group discussion	Slip test
	3	Covalent bond Shapes of orbitals, overlap of orbitals $-\sigma$ and Π bonds;	3	K3(Ap)	Lecture using powerpoint	Short test
	4	Hybridization-types-sp, sp^2 , sp^3 - examples. VSEPR theory - shapes of molecules of the type AB ₂ , AB ₃ , AB ₄ , AB ₅ , AB ₆ and AB ₇	3	K3(Ap)	Lecture using chalk and talk , Seminar	Slip test and quiz
	5	Partial ionic character of covalent bond-dipole moment, percentage ionic character	3	K2(U)	Lecture using chalk and talk	Concept explanations
IV	Structu	re and bonding – II				1

	1	VB theory – application to hydrogen molecule; concept of	3	K2(U)	Lecture using powerpoint	Slip test
		resonance - resonance structures of some inorganic species $-CO_2$,				
		NO ₂ , CO ₃ ²⁻ , NO ₃ ⁻ limitations of VBT				
	2	MO theory - bonding, antibonding and nonbonding orbitals, bond order;	4	K1(R)	Lecture using chalk and talk	Slip test and quiz
	3	MO diagrams of H ₂ , C ₂ , O ₂ , O_2^+ , O^{2^-} , O^{2^-} , N ₂ , NO, HF, CO; magnetic characteristics, comparison of VB and MO theories.	3	K3(A)	Lecture using chalk and talk	Short test
	4	Coordinate bond: Definition, Formation of BF ₃ , NH ₃ molecules Metallic bond-electron sea model, VB model	2	K2(U)	Lecture using chalk and talk	Group discussion
	5	Band theory-mechanism of conduction in solids; conductors, insulator, semiconductor – types, applicationsof semiconductors. numerical problems based on calculation of percentage ionic character.	3	K3(A)	Lecture using chalk and talk, Seminar	Short test
V	Basic co	oncepts in Organic Chemistry and	Electronic	effects		
	1	Types of bond cleavage – heterolytic and homolytic; arrow pushing in organic reactions; reagents and substrates.	2	K2(U)	Lecture using chalk and talk	Slip test
	2	Types of reagents - electrophiles, nucleophiles, free radicals; reaction intermediates – carbanions, carbocations, carbenes, arynes and nitrynes. Inductive effect - reactivity of alkyl halides, acidity of halo acids,	2	K2(U)	Lecture using powerpoint,Se minar	Concept explanations
	3	Basicity of amines; inductive and electromeric effects. Resonance – resonance energy, conditions for resonance - acidity of phenols, basicity of aromatic amines	3	K2(U)	Lecture using chalk and talk, Group discussion	MCQ
	4	Stability of carbonium ions, carbanions and free radicals, reactivity of vinyl chloride, dipole moment of vinyl chloride and	4	K3(A)	Lecture using chalk and talk	Short test

	nitrobenzene, steric inhibition to resonance				
5	Hyperconjugation - stability of alkenes, orienting effect of methyl group, dipole moment of aldehydes and nitromethane	2	K3(A)	Lecture using chalk and talk	Short test
6	Types of organic reactions- addition, substitution, elimination and rearrangements	2	K2(U)	Power point	Long answer test

Course Focussing on Employability/ Entrepreneurship/ Skill Development :

Employability

Activities: Group Discussion, Assignment, Seminar

Assignment :

- 1. Types of chemical bonding
- 2. Electronic configuration of first 20 elements.
- 3. Types of electronic effects

Seminar Topic:

- 1.Ionic bonding
- 2. Covalent bonding
- 3. Types of organic reactions

Sample questions

Part A

- 1. In Davisson and Germer experiment, the metal used is-----.
- 2. Photo electric effect supports ______nature of light.
- (a) atom (b) particle (c) ion (d) molecule 3. Ionisation energy _____ along a group.
- 4. The number of electrons in d orbitals is
- (a) 6 (b) 4 (c) 2 (d) 14
- 5. The energy released when one gram mole of a solid ionic crystal is formed from its gaseous ions is defined as ______ energy.
- (a) lattice (b) ionic (c) Born Haber (d) thermal
- 6. Ionic bond is otherwise called as electrovalent bond. Say true or false.
- 7. The bond order for a nitrogen molecule is______ (a) 2 (b) 3 (c) 1 (d) 0
- 8. The type of bonding in ammonia is.(a) ionic(b) covalent(c) coordinate(d) hydrogen
- 9. Electrophiles are electron _____ centres.
- 10. The charge of a carbocation is positive. Say true or false.

Part B

- 1. What is Compton effect? Write its significance.
- 2. Write notes on (i) Hunds rule (ii) Pauli's exclusion principle
- 3. Explain the scales of electronegativity.
- 4. Differentiate between orbit and orbital.
- 5. List the general characteristics of ionic compounds.
- 6. Write notes on Fajan's rule.
- 7. What are bonding, antibonding and non bonding orbitals?

8. Write the postulates of VB Theory.

- 9. What are electrophilic and nucleophilic reagents? Give examples.
- 10. What is Inductive effect? Explain the types.

Part C

- 1. How will you prove the wave nature of electrons proved using Davisson and Germer Experiment?.
- 2. Write the electronic configuration of first ten elements.
- 3. Explain the features of the modern periodic table.
- 4. Explain the periodic variation of ionisation energy, electron affinity and electronegativity.
- 5. Explain Born Haber cycle and give its applications.
- 6. What is ionic bond? Explain the formation of ionic bonding.
- 7. Explain the conducting property of a conductor and a semi conductor using band theory.
- 8. Draw the MO diagrams of H₂, HF and CO molecules.
- 9. Explain the stability of reaction intermediates.
- 10. What is hyperconjugation? Explain the stability of alkenes using this effect.

Head of the Department

Dr. M. Anitha Malbi

Course Instructor

Dr. R. Gladis Latha

De	epartment	:		Che	emistry					
Cl	ass	:		I B.	Sc Chemi	stry				
Ti	tle of the Course	:		Fou	Indation (Course – Basic	s of Cher	nistry		
Semester : I										
Co	ourse Code	:		CU	231FC1					
		-					Total		Marks	
Cour	Course Code	urse Code L	Т	Р	Credits	Inst. Hours	Hours	CIA	External	Total
	CU231FC1	2	-	1	2	2	30	25	75	100

Objectives

- To understand the concepts of periodic classification, chemical bonding, nomenclature of organic compound, isomerism and state of matter.
- To acquire knowledge on various spectroscopic techniques.

Course Outcomes (COs)

СО	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive level
CO 1	remember the basic concepts of periodic classification, chemical bonding, nomenclature of organic compound, isomerism and state of matter.	PSO 1	K1(R)
CO 2	understand the periodic properties, types of bonding, hybridization, stereo isomerism, properties of matter and spectroscopy.	PSO 1	K2(U)
CO 3	apply the concepts of valence bond theory, hybridization, isomerism IUPAC nomenclature and spectroscopy to chemical compounds.	PSO 2	K3(Ap)
CO 4	analyze the periodic properties of elements, magnetic properties, characteristic of solids and types of spectroscopic techniques.	PSO 6	K4(An)
CO 5	evaluate quantum numbers and their significance and percentage of ionic character of compounds.	PSO 2	K5(E)

Teaching plan

Total Contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Structure	of atom and periodic classification of	Elements and		_	1
	1	Atomic structure - fundamental particles - atomic mass - atomic number - isotopes - isobars - isotones - orbitals - quantum number and their significance.	2	K1(R)	Lecture using ppt	Simple definitions and discussion
	2	Shapes of s, p and d orbitals - rules governing electronic configuration in various its atomic orbitals. Periodic table - periodic laws (Mendeleev and Mosley) - classification of elements into s, p, d and f-blocks.	2	K3(Ap)	Lecture using chalk and talk	Slip test and MCQ
	3	Metals - non-metals - periodic properties - concept, variation and factors affecting various periodic properties - inert pair effect.	2	K2(U)	Lecture using chalk and talk	Concept explanation and short test
II	Chemica	al Bonding				
	1	Definition - types of chemical bond - ionic bond - ion polarization - dipole moment and percentage of ionic character.	1	K2(U)	Lecture using ppt	Oral test and discussion
	2	Covalent bond - definition - postulates of valence bond theory and concept of hybridization (sp, sp ² , sp ³ , sp ³ d, sp ³ d ² , dsp ² , d ² sp ³).	2	K3(Ap)	Lecture using chalk and talk	Slip test
	3	Magnetic properties - paramagnetic - diamagnetic - ferromagnetic.	1	K4(An)	Lecture using chalk and talk	Short test
	4	Co-ordinate covalent bond - definition - examples - Co-ordination compounds (basic concepts only).	2	K2(U)	Lecture using chalk and talk	Short test and quiz
III	Nomencla	ature and Isomerism in Organic comp				
	1	Carbon compounds - uniqueness of carbons - classification of hydrocarbons - IUPAC nomenclature of organic compounds.	2	K3(Ap)	Group discussion and problem solving	Problem solving
	2	Structural Isomerism: Chain isomerism, functional isomerism, positional isomerism and meta isomerism.	2	K2(U)	Lecture using ppt	Slip test
	3	Stereoisomerism: Geometrical and optical isomerism - chiral molecule - enantiomers - diastereomers - meso compounds - racemic mixture.	2	K2(U)	Lecture using videos and ppt	Short test and quiz

IV	States of Matter											
	1	Gaseous state: Kinetic theory of gases - ideal and non-ideal gases - Ideal gas equation - deviation of ideal gas from ideal behavior - vander Waal's equation and liquification of gases.	2	K2(U)	Lecture using chalk and talk	Concept explanations						
	2	Liquids: Intermolecular forces, vapour pressure and boiling point of liquid - surface tension - viscosity - factors affecting surface tension and viscosity.	2	K3(Ap)	Lecture using ppt	Slip test and quiz						
	3	Solids: Definition - characteristics of solids- amorphous and crystalline solids - space lattice and unit cells - close packed structure of solids- radius ratio rule.	2	K4(An)	Lecture using videos and ppt	Short test						
V	Introduction to Spectroscopy											
	1	Electromagnetic radiation - general characteristics of wave - wavelength - frequency - amplitude - wavenumber - electromagnetic spectrum.	1	K2(U)	Lecture using ppt	Discussion						
	2	Absorption and emission spectrum - quantization of Energy level - selection rule - intensity of the spectral lines - width of spectral lines.	2	K3(Ap)	Lecture using chalk and talk	Concept explanations						
	3	Types of spectroscopy -Microwave spectroscopy, Infrared spectroscopy, UV-Visible spectroscopy, Nuclear Magnetic Resonance spectroscopy, Electron spin resonance spectroscopy	3	K4(An)	Lecture using ppt, chalk and talk	Short test and discussion						

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em): Group discussion and Problem solving

Assignment: (Mention Topic and Type)

IUPAC nomenclature of simple organic compounds - Reflective writing

Sample questions

Part A

1.	Who coined the word	'atom'?		
	a) Rutherford	b) Thomson	c) Democritus	d) Dalton
2.	Identify the isobars fr	om the following eleme	ents.	

a) ${}^{3}\text{He}_{2}$ and ${}^{4}\text{He}_{2}$ b) ${}^{24}\text{Mg}_{12}$ and ${}^{25}\text{Mg}_{12}$ c) ${}^{40}\text{K}_{19}$ and ${}^{40}\text{Ca}_{20}$ d) ${}^{40}\text{K}_{19}$ and ${}^{39}\text{K}_{19}$

- 3. Which of the following molecule have trigonal planar geometry? a) IF₃ b) NH₃ c) PCl₃ d) BF₃
- 4. 2-chloropropane and 1-chloropropane exhibit ______ isomerism. A compound with the same molecular formula exists in two forms one is alcohol and the other is Ether, what type of isomerism does it show?
 - a) Metamerism b) Position isomerism c) Functional isomerism d) Chain isomerism
- 6. Non-ideal gases approach ideal behaviour under:
 - a) high temperature and high pressure b) high temperature and low pressure
- c) low temperature and high pressure d) low temperature and low pressure
- 7. Which among the following liquids, is the good conductor of heat?
 - a) Water b) Mercury c) Ether d) Alcohol
- 8. The process of changing from solid state to the gaseous state is known as ______.
- 9. The region of electromagnetic spectrum for nuclear magnetic resonance is _____
- 10. Identify the UV region.
 - a) 200-300 nm b) 200-350 nm c) 300-400 nm d) 200-400 nm

Part - B

- 1. Differentiate isotopes, isobars and isotones.
- 2. Explain Mendeleev periodic law.
- 3. How will you determine the percentage of ionic character?
- Determine the hybridization and geometry of the following compounds: (i) CO₂ (ii) H₂O (iii) NH₃ (iv) BF₃
- 5. Draw the structural formulas for the following compounds: (i) 2-methyl butane (ii) 2-propanol
- 6. Interpret the IUPAC nomenclature for the following compounds:

HO-C-CH₂CH₂CH₂CH₂CH₃ (ii)
$$CH_3C$$

CH₂CH₂CH₂CH₃

7. Discuss the kinetic theory of gases.

(i)

- 8. Illustrate radius ratio rule with an example.
- 9. How will you determine the intensity of spectral lines?
- 10. Give the principle of electron spin resonance spectroscopy.

Part - C

- 1. Analyze the factors which affects the periodic properties.
- 2. Discuss the significance of quantum numbers.
- 3. Illustrate the postulates of valance bond theory.
- 4. Differentiate paramagnetic, diamagnetic and ferromagnetic materials.
- 5. Classify structural isomers with examples.
- 6. Differentiate enantiomers and diastereomers.
- 7. Discuss the factors which affects surface tension and viscosity of liquids.
- 8. Analyze the characteristics of solids.
- 9. Define the following term:
 - (i) Wavelength (ii) Frequency (iii) Amplitude (iv) Wavenumber
- 10. Explain the principle of UV-Visible and IR spectroscopy.

Head of the Department: Dr. M. Anitha Malbi Course Instructor: Ms. L. Deva Vijila

De	epartment	:	Chemistry							
Cl	ass	:		Ele	ctive Cou	rse I: Botany a	and Zoolo	ogy Maj	or	
Ti	tle of the Course	:		Ch	emistry fo	r Biological S	ciences - I	[
Semester : I										
Course Code				CU	231EC1					
		-	T	-	~		Total		Marks	
	Course Code		T	T P	Credits	Inst. Hours	Hours	CIA	External	Total
	CU231EC1	4	-	I	3	4	60	25	75	100

Objectives

- 1. To know the significance and shapes of atomic orbitals.
- 2. To understand the basics of biophysical analysis and industrial chemistry.
- 3. To recognize the role of drugs, separation and purification techniques.

Course Outcomes

СО	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive level
CO - 1	state the theories of chemical bonding and nuclear reactions	PSO - 1	K1(R)
CO - 2	evaluate the efficiencies and uses of various fuels and fertilizers.	PSO - 3	K5(E)
CO - 3	explain the type of hybridization, electronic effect and mechanism involved in theorganic reactions.	PSO - 1	K1(R)
CO - 4	demonstrate the structure and uses of antibiotics, anaesthetics, antipyretics and artificial sugars.	PSO - 6	K3(A)
CO - 5	analyse various methods to identify an appropriate method for the separation of chemical compounds	PSO - 2	K4(An)

Teaching plan

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/E valuation
Ι	Atomic S	tructure				<u>I</u>
	1	Dual nature of electron , de-Broglie equation , Davisson and Germer experiment.	3	K1(R)	Lecture with ppt	Oral test
	2	Heisenberg's uncertainty principle and its significance. Compton effect	3	K2(U)	Lecture using chalk and talk	Slip test
	3	Schrodinger's wave equation and its significance, eigen values and eigen functions, quantum numbers and their significance.	2	K2(U)	Seminar	Short test
	4	Atomic orbitals, significance, shapes, difference between orbit and orbital.	2	K3(Ap)	Lecture using ppt	Oral test and MCQ
	5	Rules for filling up of orbitals, Pauli's exclusion principle, Aufbau principle, Hund's rule. Electronic configuration of elements up to 20.	2	K4(An)	Lecture using chalk and talk	Short test
II	Industri	al Chemistry				
	1	Fuels, Fuel gases, Natural gas, water gas, semi water gas	3	K2(U)	Lecture using chalk and talk	Oral test
	2	Carbureted water gas, producer gas, CNG, LPG and oil gas	3	K4(An)	Lecture using ppt	Quiz
	3	Silicones, Synthesis, properties and uses of silicones	3	K4(An)	Seminar	Short test and MCQ
	4	Fertilizers, Urea, ammonium sulphate, potassium nitrate NPK fertilizer, superphosphate and triple superphosphate.	3	K3(Ap)	Lecture using chalk and talk	Short test and quiz
III	Biophysic	cal Analysis and Catalysis	1		-	1
	1	Osmosis, osmotic pressure and isotonic solutions	3	K1(R)	Lecture using videos	Short test
	2	Determination of molar mass by osmotic pressure measurement	3	K2(U)	Seminar	Oral test
	3	Reverse osmosis, adsorption, types and factors influencing adsorption and applications	3	K3(Ap)	Lecture using chalk and talk	Short test

	4	Catalysis , types , intermediate compound formation theory and adsorption theory	3	K3(Ap)	Lecture using ppt	Slip test and quiz
IV	Drugs an	nd Speciality Chemicals				
	1	Definition and uses of antibiotics, Penicillin, chloramphenicol and streptomycin.	3	K2(U)	Lecture using chalk and talk	Slip test
	2	Anaesthetics , chloroform and ether. Antipyretics , aspirin, paracetamol and ibuprofen.	3	K4(An)	Seminar	Group discussion
	3	Artificial Sweeteners, saccharin, a spartame and cyclamate	3	K4(An)	Lecture using videos	Short test
	4	Organic Halogen compounds, freon and teflon	3	K2(U)	Lecture using ppt	Oral test
V	Analytic	cal Chemistry				
	1	Introduction qualitative and quantitative analysis. Principles of volumetric analysis	4	K2(U)	Lecture using ppt	Slip test
	2	Separation and purification techniques, extraction, distillation and crystallization.	4	K2(U)	Lecture using chalk and talk	Short test
	3	Chromatography, principle and application of column, paper and thin layer chromatography.	4	K3(Ap)	Group Discussion	MCQ

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em): Group discussion and Seminar

Assignment: (Mention Topic and Type)

- 1. Silicones, Synthesis, properties and uses of silicones Study Assignments
- 2. Chromatography, principle and application of column chromatography Study Assignments

Seminar: (Mention Topic)

- 1. Quantum numbers and their significance.
- 2. Factors influencing adsorption and applications
- 3. Separation and purification techniques

Sample questions

Part - A

- 1. Give the Bragg's equation
 - a) $n\lambda = 2d\sin\Theta$ b) $n\infty = 2d\sin\Theta$ c) $n\beta = 2d\sin\Theta$ d) $n\lambda = 2a\sin\Theta$
- 2. The Heisenberg's uncertainty principle is a proof for the dual nature of electron. Say true or false.
- 3. What is CNG ?
- 4. Water gas is -----
- 5. Van't Hoff equation is -----. a) P = cRT b) P = cVRT c) P = Crp d) P = cRV
- 6. The isotonic solutions have same molar concentration. Say true or false.
- 7. Which is the first antibiotic discovered ?
 - a) Penicillin b) Chloramphenicol c)Streptomycin d)Vasopressin
- 8. Chloramphenicol is used in the treatment ofa) leprosy b) rheumatoid c)typhoid fever d)cold
- 9. The method used in the purification of a solid organic compound when the impurities present in it is small in amount is ------.
- 10. The ratio between the distance travelled by solute and the distance travelled by the solvent is known as ------

Part - B

- 1. Explain Compton effect.
- 2. Explain Pauli's exclusion principle and Aufbau principle.
- 3. Write notes on Natural gas and water gas.
- 4. Give the preparation of urea and ammonium sulphate.
- 5. How will you determine the molar mass by osmotic pressure measurement?
- 6. Discuss the factors influencing adsorption.
- 7. Write the uses of Penicillin and chloramphenicol.
- 8. Give the preparation and uses of saccharin and aspartame.
- 9. Discuss the principles of volumetric analysis.
- 10. Explain the principle and application of column chromatograghy.

Part - C

- 1. Explain the quantum numbers and their significances.
- 2. Explain the shapes of atomic orbitals.
- 3. Discuss the synthesis, properties and uses of silicones.
- 4. Write notes on Carburated water gas and producer gas.
- 5. Discuss the applications of adsorption.
- 6. Explain the intermediate compound formation theory and adsorption theory.
- 7. Write the structure and uses of aspirin, paracetamol and ibuprofen.
- 8. Write notes on freon and teflon.
- 9. Explain the principle and application of paper chromatography.
- 10. Discuss the principle and application of thin layer chromatography.

Head of the Department: Dr. M. Anitha Malbi

Course Instructor: Dr. K. Francy

Department	:	Chemistry
Title of the Course	:	NME I : Food Chemistry
Semester	:	Ι
Course Code	:	CU231NM1

Course Code	т	Т	Р	S	Credits	Inst. Hours	Total		Marks	
Course Coue	L	I	Г	3	Creatis	mst. nours	Hours	CIA	External	Total
CU231NM1	2	•	•	•	2	2	30	25	75	100

- Learning Objectives: 1. To know about adulterations used in food and their impact on health.
 - To learn the different types of additives used in food.
 To gain knowledge on diseases caused by beverages

Course Outcomes

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	remember and recall the different types of adulterants in food, edible oils used in foods and beverages.	PSO -2	K1(R)
CO - 2	understand the effect of chemicals in common food and their adverse impact on health.	PSO -1	K2(U)
CO - 3	apply various methods to detect various adulterants in food and to determine the values of oils and fats.	PSO -4	K3(A)
CO - 4	analyze the effects of contaminants and additives in food.	PSO -2	K4(An)
CO - 5	remember and recall the different types of adulterants in food, edible oils used in foods and beverages.	PSO -2	K5(E)

Teaching plan Total Contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Food Adu	Ilteration				•
	1	Sources of food, types, advantages and disadvantages.	1	K2(U)	lecture using chalk and talk	Slip test and concept explanations
	2	Food adulteration - contamination of wheat, rice, milk, butter etc. with clay stones, water and toxic chemicals.	3	K3(A)	Seminar	class test
	3	Common adulterants, Ghee adulterants and their detection.Detection of adulterated foods by simple analytical techniques.	2	K4(An)	lecture using chalk and talk	Short test
II	Food Pois	son				
	1	Food poisons - natural poisons (alkaloids - nephrotoxin).	3	K2(U)	Lecture using videos and ppt	Short summary or overview
	2	Pesticides, (DDT, BHC, Malathion) -Chemical poisons.	1	K2(U)	Lecture using chalk and talk	Slip test and class test
	3	First aid for poison consumed victims	2	K3(A)	Group discussion	Problem solving
III	Food Add	litives			1	
	1	Food additives - artificial sweeteners-Saccharin- Cyclomate and Aspartate	2	K2(U)	Lecture using ppt	Concept explanations
	2	Food flavours - esters, aldehydes and heterocyclic compounds – Food colours – Emulsifying agents.	2	K4(An)	Seminar	Slip test
	3	Preservatives -leavening agents. Baking powder – yeast – tastemakers – MSG - vinegar.	2	K3(A)	Lecture	Oral test
IV	Beverages	s				
	1	Beverages-soft drinks-soda- fruit juices-alcoholic beverages-examples	3	K2(U)	Lecture using videos and ppt	Concept explanations and short summary

	2	Carbonation-addiction to alcohol– diseases of liver and social problems.	3	K4(An)	Lecture using chalk and talk	Slip test and quiz
V	Edible Oi	ls				
	1	Fats and oils - Sources of oils - production of refined vegetable oils - preservation	2	K3(A)	Group discussion	slip test
	2	Saturated and unsaturated fats and oils-examples - iodine value - determination of iodine value, acid value.	2	K2(U)	Lecture using chalk and talk	Short test
	3	RM value, saponification values and their significance- Role of MUFA and PUFA in preventing heart diseases.	2	K5(E)	Group discussion, and Peer tutoring	group discussion and slip test

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/SD): Think-Pair-Share and Seminar

of

Assignment: (Mention Topic and Type)

Disadvantages of Food colours

Seminar: (Mention Topic)

Unit :I

Sources of lipids and proteins

Unit :IV

Disadvantages of alcohol beverages

Sample questions

Part - A

1.	Carbohydrates ar	e the polymers of _		
	a) Sugars	b) Fibres	c) Amino	acids d) Fats
2.	Proteins are the p	olymers of α-amin	o acids. Say true of	r false
3.	The main source	of energy for centr	al nervous system	(CNS) is
	a) Fats	b) Glucose	c) Ghee	d) Vegetable oil
4.	The iodine numb	er of pure ghee is _		
	a) 34.00	b) 36.50	c) 38.10	d) 38.70
5.	The most commo	on analytical metho	d of detection of a	dulterant is
	a) NMR b) I	R c)HPLC d	l) ESR	
7. '	The adulterant use	d in wheat flour is	·	
	a)Talc	b)Brick powder	c)saccharin	d)Tea dust
8.	The saponification	n value of pure ghe	e is 17. Say true or	false.
9.	Which of the follo	wing adulterant is	added in rice?	
	a) starch l	o) mud ball c) dext	rine d) glucose	

10. Which hormone controls the level in the blood.a)Protiens b)Carbohydrates c)Lipids d) Progestrone

Part - B

- 1. How will you detect the adulterants present in ghee?
- 2. Explain the action of DDT and BHC against pesticides.
- 3. Explain the advantages and disadvantages of lipids.
- 4. Write notes on food poison. Give examples.
- 5. Discuss the potential hazards of chemical poision
- 6. Write a note on artificial sweeteners.
- 7. Define food flavours? Give examples and their uses.
- 8. Write a notes on
 - i) Baking powder ii) taste makers.
- 9. Explain the methods of carbonation.
- 10. Discuss the social problems due to alcoholism.

Part- C

- 1. How will you detect the adulterated foods by simple analytical techniques.
- 2. Analyse the adulterants present in milk, butter and ghee.
- 3. Discuss about the first aid for poison consumed victims.
- 4. Classify beverages with examples.
- 5. What are preservatives in food. Explain their role in food preservation.
- 6. Explain emulsifying agent and preservatives

Head of the Department: Dr. M. Anitha Malbi Course Instructor: Dr.Y.Christabel Shaji

Departi	ment	:		Chemistry						
Class		:		II	II B.Sc Chemistry					
Title of	the Course	:		Co	Core III : General Chemistry - III					
Semeste	er	:		Ι						
Course	Code	:		CC	22031					
C		urse Code L T P Crea	Caralla	Ter et II errer	Total					
Course Code L T				P	Creatts	Inst. Hours	Hours	CIA	External	Total
(CC2031	4	-	<u>4</u> <u>4</u> <u>60</u> <u>30</u> <u>70</u> <u>100</u>						

Objectives

- To gain knowledge on aromaticity, aromatic compounds and electrophilic substitution reactions.
- To understand the characteristics of the elements of Group 13 and 14.
- To learn the chemistry of Nitrogen and Oxygen family.
- To gain knowledge on the different colloids.
- To understand the various types of photochemical process.

Course Outcomes

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	gain knowledge on aromatic compounds	PSO -1	K2(U)
CO - 2	synthesise aromatic compounds	PSO -4	K3(A)
CO - 3	remember the characteristics of group 13 and 14 elements	PSO -2	K2(U)
CO - 4	predict the chemistry of nitrogen and oxygen family	PSO -2	K5(E)
CO - 5	to understand the different colloidal systems	PSO -1	K3(A)
CO - 6	explain the various photochemical processses	PSO -1	K2(U)

Teaching plan Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Aromatic	Compounds				1
	1	Aromaticity - definition - Huckel's rule - consequence of aromaticity-structure of benzene - stability, carbon- carbon bond lengths in benzene ring - resonance energy	3	K2(U)	Lecture using Chalk and talk	Evaluation through short test
	2	Aromatic electrophilic substitution - general pattern of the mechanism involving σ and π complexes, mechanism of nitration, halogenation, sulphonation, mercuration and Friedel-Crafts reaction, Energy profile diagrams.	3	K3(A)	Group discussion	Short test
	3	Activating and deactivating substituents - orientation in mono substituted benzenes - reactions of aromatic side chain - halogenation and oxidation	2	K3(A)	Flipped classroom and lecture using chalk and talk	Evaluation through MCQ
	4	Methods of formation and chemical reactions of alkylbenzenes, biphenyl, naphthalene and anthracene	2	K3(A)	Group Discussion	Slip test and MCQ
	5	synthesis of 3-nitrotoluene, 4- bromonitro benzene, 4- bromoacetophenone, 3-(4- nitrophenyl)prop-1-ene, 3- nitrostyrene	2	K3(A)	Lecture using chalk and talk	Group discussion and short test
II	p-block e	lements – Boron and Carbon fa	mily (group 1	13 and 14)		•
	1	General characteristics of elements of Group 13 – extraction of boron - physical and chemical properties of boron – compounds of boron – borax, boric acid, diborane, boron nitride	3	K2(U)) Lecture using videos and ppt	Short summary or overview
	2	extraction of Al – physical and chemical properties - uses – compounds of aluminium – Al ₂ O ₃ , AlCl ₃ , alums – alloys of aluminium.	2	K2(U)	Lecture using chalk and talk	Slip test and class test

		carbonyl compounds and				
		annulenes.				
	3	General characteristics of elements of Group 14 – allotropic forms of carbon – structure of graphite and diamond-chemistry of charcoal – chemistry of oxides of carbon-	3	K2(U)	Group discussion and problem solving	MCQ
	4	Preparation of silicon – physical and chemical properties of Si – uses – oxides of silicon – structures of silicates - chemistry of silicones.	2	K2(U)	Lecture using chalk and talk	Short test and quiz
	5	Manufacture of glass – types of glasses – ceramics – extraction of lead – physical and chemical properties – uses – lead pigments.	Lecture using chalk and talk	Short summary or overview		
III	p-block el	ements – Nitrogen and Oxygen	family (group	15 and 16)		
	1	General characteristics of elements of group 15 – Preparation of nitrogen – physical and chemical properties of nitrogen – uses – chemistry of nitrogen – hydrazine, hydroxylamine, hydrazoic acid, nitric acid – nitrogen cycle	3	K2(U)	Lecture using ppt	Concept explanations
	2	Preparation, physical and chemical properties and uses of phosphorus – chemistry of PH ₃ , PCl ₃ , PCl ₅ , POCl ₃ , P ₂ O ₅ and oxyacids of phosphorous	3	K4(An)	Group Discussion &Lecture using chalk and talk	Slip test
	3	Phosphate fertilizers –super phosphate of lime-triple super phosphate. Oxides of nitrogen and Phosphorous – oxoacids of nitrogen and phosphorus	2	K4(An)	Lecture using chalk and talk	Short summary or overview
	4	Anomalous behavior of oxygen – allotropy of oxygen and phosphorous-structure of ozone, oxides – peroxides, suboxides, basic oxides	2	K2(U)	Lecture using chalk and talk	Slip test and quiz

	5	Amphoteric oxides, acidic oxides, neutral oxides – oxides of sulphur – oxoacids of sulphur – sulfuryl compounds – extraction - uses - selenium and tellurium.	2	K4(An)	Seminar	Group discussion
IV	Colloids				-	
	1	Definition – classifications – lyophobic and lyophilic colloids – differences. True solutions, colloidal solutions and suspension – definition and characteristics.	4	K2(U)	Lecture using videos and ppt	Concept explanations and short summary
	2	Preparation of colloidal solutions – dispersion methods and condensation methods-purification of colloidal solutions- optical properties-tyndall effect– kinetic properties – Brownian motion	Lecture using chalk and talk	Slip test and quiz		
	3	electrical properties– Helmholtz and diffuse double layers – electro kinetic or zeta potential – electrophoresis - applications - coagulation – methods– Hardy Schultz law – Hofmeister series	3	K2(U)	Lecture using chalk and talk	Short summary
	4	Protective colloids – protective action – gold number – applications- Emulsions – classification, preparation, Gels – preparation – properties – thixotropy - syneresis – imbibitions - application of colloids.	2	K3(A)	Lecture using chalk and talk, mind mapping and group discussion	Group discussion and class test
V	Photo Che	emistry		1	l	1
	1	Introduction-comparison of thermal and photochemical reactions Laws of photochemistry – Beer- Lamberts law-Grothus- Drapper law – Stark-Einstein law of photochemical equivalence	3	K2(U)	Introductory session Lecture using videos and ppt	Solving problems and slip test

2	 – Quantum efficiency – determination of quantum efficiency – chemical actinometry – consequence of light absorption – Jablonski diagram – radiative and non- radiative transitions- primary and secondary processes- fluoresence-phosphoresence 	3	K2(U)	Lecture using chalk and talk	Simple Definitions& MCQ
3	photochemical reactions – photochemical rate law- kinetics of photochemical combination of H_2 and Cl_2 , H_2 and Br_2 and decomposition of HI – energy transfer in photochemical reactions	3	K2(U)	Lecture using chalk and talk &Group Discussion	Problem- solving questions
4	Photosensitization - photosynthesis in plants - chemiluminescence - thermoluminescence - bioluminescence. Lasers- principle-types-applications.	3	K3(A)	Group discussion& Peer tutoring	Slip test

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development

Activities (Em/SD): Demonstration of True solutions & Colloidal solutions tyndall effect

Demonstration of IR Tyndall effect

Assignment: (Mention Topic and Type)

Kinetic properties of colloids - Reflective writing

Sample Questions

PART A

1. Which of the following compounds is not aromatic?

- 2. Halonium ion act as electrophile in halogenation. State True or False
- 3. The structure of AlCl3 monomer is
a) planar_____b) tetrahedralc) square planard) octahedral
- 4. The bond angle in the structure of diamond is a) 109.5° b) 120° c) 110° d) 190°

5. Which of the following gas is released when copper is added to concentrated nitric acid?a) Nitrogen (I) oxideb) Nitrogen (II) oxide

d) Pyridine

- c) Nitrogen (III) oxide d) Nitrogen (IV) oxide
- 6. Identify the product obtained in Haber-Bosch process?a) Ammoniab) Nitric acidc) Nitrous acid
- 8. In lyophilic sols, Tyndall effect is much weaker. State True or False
- 9. Photochemical reactions occur by absorbing
 - a) Heat b) Light c) Both a and b d) X-ray
- 10. An electron in the excited singlet state returns to the ground state by emitting radiation, it is called_____
 - a) Chemiluminiscence b) Fluorescence c) Phosphorescence d)Bioluminescence

PART B

1. Write the synthesis of (i) Naphthalene (ii) Anthracene

- 2. Explain mercuration and formylation reactions in benzene.
- 3. List out the uses of silicones
- 4. Analyze the anomalous behaviour of oxygen.
- 5. Draw and explain the structure of ozone.
- 6. Differentiate lyophillic and lyophobic colloids.
- 7. Compare thermal and photochemical reactions.
- 8. Differentiate fluorescence and phosphorescence.

PART C

- 1. Illustrate the structure of benzene.
- 2. Explain the mechanism of nitration and sulphonation reactions in benzene.
- 3. Explain the preparation and structure of diborane.
- 4. List out the general characteristics of group 15 elements.
- 5. Explain the applications of colloids
- 6. Analyze the kinetics of photochemical reactions in hydrogen molecule.
- 7. Sketch and explain Jablonski diagram.

Head of the Department: Dr. M. Anitha Malbi Course Instructor: Dr. Y.Christabel Shaji

)epartment 'lass	:		Chemistry II B.Sc Chemistry						
Т	Fitle of the Course Elective I : Pharmaceutical Chemistry									
Semester : III										
C	Course Code	:		CC	22032					
	Come Code	т	T	п	C 124-	T	Total		Marks	
Course Code		L	L T P Credits Inst. Hours		Hours	CIA	External	Total		
	CC2032	4	-	-	3	4	60	30	70	100

Objectives:

- To understand the classification, sources, design and action of common drugs.
 - To impart knowledge on various diseases and treatment

Course Outcome

СО	Upon completion of this course,	PSO	Cognitive
	the students will be able to:	addressed	level
CO-1	understand the characteristics,	PSO-1	K ₂ (U)
	classification and sources of drugs		
CO-2	interpret the chemical structure and	PSO-3	$K_5(E)$
	pharmacological activities of drugs		
CO-3	compare the action of various drugs	PSO-2	K ₄ (An)
CO-4	design common drugs and interpret	PSO-5	Ap (K ₃)
	their therapeutic uses		
CO-5	identify common diseases, their	PSO-2	K ₄ (An)
	causes and treatment		

Teaching plan

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Classific	ation and sources of drugs		•		
	1	Important terminologies used in pharmaceutical chemistry – pharmacy – pharmacology – pharmacodynamics – pharmacokinetics-pharmacophore- metabolites-antimetabolites- actionmycetes-chemotherapy- pharmacopoeia-pharmacognosy- pharmacotherapeutics	3	K1(R)	Lecture with ppt	Quiz
	2	Classification of drugs –drugs acting on central and peripheral nervous system-chemotherapeutic drugs – pharmacodynamic agents.	3	K2(U)	Lecture using video	Slip test

	3	Drugs for metabolic diseases and	3	K2(U)	Seminar	Short test
		endocrine function. Nature and sources of drugs – various sources of drugs				
	4	Drug development – pre-clinical and clinical trials – patenting and legal issues – chemical and process development	3	K3(Ap)	Lecture with ppt	Oral test and MCQ
Π	Drug De	sign and chemicals in medicine				
	1	Introduction – physical and chemical properties of drugs – designing of drugs – procedures followed – lead component – methods of lead discovery – lead modification.	2	K2(U)	Lecture using chalk and talk	Short test
	2	Prodrugs – types-applications – drawbacks – soft drug – advantages. Physical and chemical factors of drug design.	4	K4(An)	Lecture using videos	Quiz
	3	Chemical structure and pharmacological activities of drugs.	3	K4(An)	Seminar	Short test and MCQ
	4	Preparation, properties and uses of alum—aluminium hydroxide gel – phosphoric acid – arsenous anhydride –ferrous fumarate – ferric ammonium citrate – mercury with chalk (Grew powder)	3	K3(Ap)	Lecture using chalk and talk	Short test and quiz
III		tion and Metabolism of drugs		1	I	1
		General principles – assay of drugs – biological assay – adsorption – drug distribution – drug metabolism.	3	K2(U)	Think-Pair- share	Short test
		 Biological role of salts of sodium, potassium, calcium, zinc and iodine. Agonist and antagonist. Receptor forces – types – theories Mechanism of drug action – actions at extra cellular site – actions at cellular site .Mechanism of different types of drug action. 		K2(U)	Concept maps	Oral test
	3			K3(An)	Lecture using chalk and talk	Short test
	4	Time response relationships – dose response relationship – biotransformation of drugs. Metabolism of drugs – oxidation – reduction –hydrolysis – conjugation	3	K3(Ap)	Seminar	Slip test and quiz

IV	Common	n Drugs				
	1	Antibacterial drugs – preparation and therapeutic uses of sulpha drugs – sulphanilamide – sulphadiazine - sulphathiazole – sulphafurazole – prontosil.	3	K2(U)	Lecture using chalk and talk	Slip test
	2	Mechanism of action of sulpha drugs – antibiotics – classification based on chemical structure and biological action – structure and therapeutic uses of chloramphenicol – Penicillin – Streptomycin – Tetracyclin – Erythromycin	3	K4(An)	Seminar	Group discussion
	3	Antiseptics and Disinfectant – distinction between antiseptics and disinfectants. Disinfectant – definition – examples – phenol – preparation and uses – chloroxylenol – structure – properties and uses. Antiseptics – Chloramine T – preparation and uses crystal violet – structure and uses.	3	K4(An)	Lecture using videos	Short test
	4	Analgesics – definition – classification – narcotic – non- narcotic – examples – therapeutic uses. Antipyretics – definition – examples – aspirin – methyl salicylate – paracetamol, phenacetin – preparation and therapeutic uses.	3	K2(U)	Peer tutoring	Oral test
V	Common	n diseases and treatment				
	1	Insect born diseases – malaria and filariasis. Airborne diseases – diphtheria-influenza and TB	3	K2(U)	Lecture using ppt	Assignment
	2	Waterborne diseases – cholera and typhoid. Blood pressure – definition—factors affecting blood pressure-systolic pressure – diastolic pressure – pulse pressure – blood pressure levels. Hyper tension-types – control antihypertensive agents. Hypotension – measurement.	3	K2(U)	Panel Discussion	Short test
	3	Anaemia – symptoms and causes – types – antianaemic drugs – types. Cardio-vascular drugs – cardiac glycosides – cardiovascular action	3	K3(An)	Seminar	MCQ

	 antiarrhythmic drugs – functions therapeutic uses 				
4	Vasodilators – definition- examples – antianginal drugs – example. Cancer – causes – antineoplastic agents - cis-platin- vinblastine and mustine	3	K ₂ (U)	Lecture – chalk and talk	Oral test

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em): Think-Pair-Share and Seminar

Assignment: (Mention Topic and Type)

- 1. Insect born diseases malaria and filariasis. Airborne diseases diphtheria-influenza and TB Study Assignments
- 2. Drug development

Seminar: (Mention Topic)

- 1. Chemical structure and pharmacological activities of drugs.
- 2. Drugs for metabolic diseases and endocrine function.
- 3. Time response relationships dose response relationship biotransformation of drugs. Metabolism of drugs – oxidation – reduction – hydrolysis – conjugation
- 4. Anaemia symptoms and causes types antianaemic drugs types. Cardio-vascular drugs cardiac glycosides cardiovascular action antiarrhythmic drugs functions therapeutic uses

Sample questions

Part - A

1. The science of identification, selection, preservation, standardization, compounding and dispensing of medical substances is known as ------

a)Pharmacy b) Pharmacokinetics c) Pharmacognosy d) Pharmacophore

- The science that deals with active principles of drugs is known as ----- a)Pharmacy b) Pharmacology c) Pharmacognosy d) Pharmacophore
- 3. Morphine was isolated from Opium poppy. State true or false.
- 4. The toxicity is measured by its ------ value.
 - a) LD_{50} b) LD_{60} c) LD_{30} d) LD_{40}
- 5. Biological assay is a biological testing procedure for estimating the concentration of pharmaceutically active substance. State true or false.
- 6. Forces that are important in binding of drugs to receptors are -----
 - a) electrostatic b) vanderwaals forces c) dipole –dipole forces
 - d) electrostatic and vanderwaals forces

7. Match the following

Narcotic Analgesics	-	alcohol
Non-narcotic analgesics	-	paracetamol
Antipyretic	-	naloxone
Antiseptic	-	aspirin

- 8. Antiseptics are applied to living tissues. State true or false.
- 9. The group of medicine that dilate blood vessels is called ------

10. Typhoid fever is caused by ------a) bacterium Salmonella typhi.b)plasmodium vivaxc) ratsd) bees

Part - B

1. Write notes on drugs acting on central nervous system.

2. Explain the drugs used to treat metabolic diseases.

3. Discuss the physical and chemical properties of drugs.

4. Explain the types, applications and drawbacks of prodrugs.

5. Write a note on agonist and antagonist.

6. Compare time response and dose response relationships

7. Give the structure and therapeutic uses of chloramphenicol.

8. Distinguish between antiseptics and analgesics.

9. Explain the factors affecting blood pressure.

10. Write the functions and therapeutic uses of antiarrhythmic drugs

Part - C

1. Explain the process of drug development.

2. Discuss the types and action of chemotherapeutic drugs.

3. Explain the procedures followed in designing of drugs .

4. Discuss the physical and chemical factors of drug design.

5. Explain drug metabolism mechanism

6. Explain the steps involved in metabolism of drugs

7. Write the preparation and therapeutic uses of sulphanilamide and sulphadiazine.

8. Explain the types of narcotics with examples and therapeutic action.

9. Discuss the types of blood pressure and the methods of controlling.

10. List the causes for cancer and methods of treatment

Head of the Department: Dr. M. Anitha Malbi

Course Instructor: L. Deva Vijila

De	epartment	:	Chemistry							
Cl	ass	:		Π	B.Sc Physi	cs				
Ti	itle of the Course : Allied : Inorganic and Physical Chemistry									
Semester : IV										
Co	ourse Code	:		CA	2031					
			T	n	a 114		Total		Marks	
	Course Code	L	T	Р	Credits	Inst. Hours	Hours	CIA	External	Total
CA2031 4				•	3	4	60	30	70	100

Objectives

- 1. To acquire knowledge on atomic structure and bonding
- 2. To know about metallurgy and the structure of solids
- 3. To understand the principles of nuclear reactions

Course Outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO-1	remember the structure and bonding in atoms and molecules	PSO-1	K1(R)
CO-2	know about different types of bonding	PSO-2	K4 (An)
CO-2	understand the metallurgical processes and the methods of purification of metals	PSO-6	K2(U)
CO-3	understand the concepts of solid state chemistry and nuclear chemistry	PSO-1	K2(U)

Teaching Plan

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Cognitive level	Pedagogy	Assessment/ Evaluation
I At	omic Stru	cture				
	1	Dual nature of electron - de-Broglie equation.	2	K1 (R)	Lecture, Group discussion	Short test
	2	Davisson and Germer experiment.	1	K2(U)	Power point presentation	Quiz - Slido
	3	Heisenberg's uncertainty principle and its significance.	1	K2(U)	Lecture with illustrations	Assignment

	4	Compton effect - Schrodinger's wave equation and its significance.	1	K2(U)	Lecture, problem solving	Short test
	5	eigen values and eigen functions .	1	K4 (An)	Problem solving and group discussion	MCQ – Google forms
	6	quantum numbers and their significance.	2	K2(U)	Lecture with videos	Short test
	7	Atomic orbitals – shapes - significance - difference between orbit and orbital.	2	K4 (An)	Lecture	MCQ – Google forms
	8	Rules for filling up of orbitals - Pauli's exclusion principle - Aufbau principle - Hund's rule.	2	K2(U)	Problem solving	Short test
	9	Electronic configuration of elements.	2	K2(U)	Lecture, ppt, group discussion	Formative assessment - I
II	C	hemical bonding				
	1	Ionic bond , formation of ionic bond , general characteristics of ionic compounds.	1	K2(U)	Comparative Learning, mind map	Quiz - Quizizz
	2	Lattice energy, Born- Haber cycle and its applications.	2	K2(U)	Lecture, Problem solving	Short test
	3	Covalent bond , formation of covalent bond with examples , general characteristics of covalent compounds.	2	K4 (An)	Lecture, ppt, group discussion	Quiz - Quizizz
	4	Ionic character in covalent compounds, M.O. theory.	1	K1 (R)	Lecture, ppt	Slip test
	5	Fajan's rule. percentage of ionic character and bond moment.	1	K2(U)	Lecture, group discussion	Short test
	6	bonding, antibonding and non-bonding molecular orbitals.	1	K4 (An)	Lecture, ppt	Assignment

	7	M.O diagram of H_2 , N_2 , O_2 and F_2 , bond order	2	K4 (An)	Lecture, ppt	Quiz - Nearpod
	8	Coordinate bond - formation of coordinate bond with examples.	1	K2(U)	Lecture, group discussion	Slip test
	9	Metallic bond, band theory, conductors, insulators and semiconductors.	1	K4 (An)	Lecture, mind map	Slip test
	10	Hydrogen bonding types - inter and intramolecular, effect of hydrogen bonding.	2	K2(U)	Lecture, group discussion	Short test
III	Metal	lurgy and Alloys				I
	1	Difference between minerals and ores, metallurgical processes, gravity separation and magnetic separation	3	K4 (An)	Power point presentation	Short test
	2	Froth floatation process, roasting, calcination, smelting.	1	K2(U)	Lecture, ppt	Assignment
	3	purification of metals , electrolytic refining and zone refining .	1	K1 (R)	Group discussion	Quiz - Nearpod
	4	Van - Arkel de-Boer process, Kroll's process. Extraction and uses of Ti ,V, W and Mo.	3	K2(U)	Lecture, mind map	Slip test
	5	Purpose of making alloys, types of alloys - ferrous alloys and non ferrous alloys and preparation of alloys.	2	K4 (An)	Seminar	MCQ – Google Forms
	6	Heat treatment of alloys, composition and uses of bronze and german silver.	1	K2(U)	Lecture , ppt and discussion	Class Test
	7	Nichrome, monel metal, stainless steel, gun metal and bell metal.	2	K1 (R)	Lecture, ppt	Shor test
IV	Soli	d State Chemistry		1	1	

	1	Amorphousandcrystallinesolids,differencebetweenamorphousandarmetallinesolide	1	K4 (An)	Lecture, ppt videos	MCQ
	2	crystalline solids. Isotropy and anisotropy, elements of symmetry, plane of symmetry, axis of symmetry, centre of symmetry and law of rational indices	2	K2(U)	Lecture, ppt	Quiz – Slido
	3	Miller indices and elements of symmetry of a cubic crystal.	1	K1 (R)	Lecture, ppt	Slip test
	4	Point groups and seven basic crystal system, Bravais lattice.	2	K2(U)	Lecture, ppt	Slip test
	5	Bragg's equation- derivation, determination of crystal structure by powder method.	3	K1 (R)	Problem solving	Short test
	6	Structure of crystals – diamond, graphite and fullerene. Imperfections in a crystal - Point defect, Schottky defect, Frenkel defect, metal excess defect, metal deficiency defect.	1	K2(U)	Problem solving	Slip test
V	Nuc	elear Chemistry		_		1
	1	Nuclear forces, nuclear size, atomic mass unit, N/P ratio, packing fraction, mass defect and binding energy.	2	K2(U)	Lecture, ppt	Shor test
	2	Radioactivity - α , β , γ radiationsandproperties,Soddy'sgroupdisplacementlaw	1	K2(U)	Lecture with videos	Formative assessment - II
	3	Natural radioactivity - detectionand measurementmeasurementof radioactivityby Geiger-Muller method	2	K2(U)	Seminar	Seminar

4	Rate of radioactive disintegration, decay constant, half life period and average life period.	1	K1 (R)	Mind map	Assignment
5	Nuclear reactions - nuclear fission, principle of atom bomb, nuclear reactor, radioactive hazards and disposal of radioactive waste from nuclear reactors.	2	K2(U)	Lecture with videos	Class test
6	Nuclear fusion - principle of hydrogen bomb and stellar energy.	1	K2(U)	Lecture, ppt	Seminar
7	Principle and working of cyclotron. Applications of radio activity	2	K1 (R)	Lecture with videos	Class test
8	Radioactive tracers in agriculture, medicine and industry. Radiocarbon dating.	1	K2(U)	Lecture, ppt	Assignment

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability **Activities (Em):**

Group Discussion Topics :

- 1. Eigen values and eigen functions.
- 2. Electronic configuration of elements (with atomic number 1 to 25).
- 3. Covalent bond and its characteristics.
- 4. Fajan's rule. percentage of ionic character and bond moment.
- 5. Coordinate bond formation of coordinate bond with examples.
- 6. Hydrogen bonding types inter and intramolecular, effect of hydrogen bonding.
- 7. Purification of metals, electrolytic refining and zone refining

Assignment: (Mention Topic and Type)

- 1. Heisenberg's uncertainty principle and its significance.
- 2. Froth floatation process, roasting, calcination, smelting
- 3. Rate of radioactive disintegration, decay constant, half life period and average life period.
- 4. Radioactive tracers in agriculture, medicine and industry. Radiocarbon dating.

Sample questions

Part – A

1. The uncertainty principle is a proof for the	e nature of electron.
---	-----------------------

- 2. Assertion (A): Spin quantum number (s) describes the direction of spin of the electron about its own axis.
 - Reason (R): 's' can have value of $+\frac{1}{2}$ or $-\frac{1}{2}$ a) 'A' and 'R' are correct
 - b) A is correct and R is wrong
 - c) A is wrong and R is correct
- d) A and R are wrong
- 3. Bohr-Haber cycle is used to determine
 - a) lattice energy of ionic crystals
- b) electron affinities of elements
- c) compare the stability of ionic crystals d) all the above
- 4. Higher the bond order stronger will be the bond. Say true or false.
- 5. Match the following ores with its metals :
 - a) Bauxite Barium _
 - b) Barytes aluminum -
 - c) gypsum -Chromium
 - d) Chromite Calcium
- 6. All minerals are not ores but all the ores are minerals. Say true or false ?
- 7. Hybridisation of carbon in graphite is _____
- a) sp^3 b) sp^2 c) sp d) sp^3d 8. A cubic crystal possesses _____ elements of symmetry.
 - a) 24 b) 25 c) 23 d) 27
- 9. Half-life period $t_{1/2} = _$
- 10. Graphite is a moderator in nuclear reactor. Say true or false ?

Part – B

- 1. Differentiate orbit and orbital.
- 2. Draw the shape of s, p and d atomic orbitals.
- 3. List the characteristics of covalent compounds.
- 4. Define the following:
 - i. i. conductors ii. semi-conductors iii. insulators
- 5. Write notes on gravity separation and magnetic separation method.
- 6. What is the purpose of making alloys?
- 7. Write a note on axis of symmetry.
- 8. Differentiate amorphous solids from crystalline solids.
- 9. How will you measure radioactivity by GM counter?
- 10. List the properties of α -rays.

Part – C

- 1. Apply Quantum number to determine the shape, orientation of the orbitals and spin of the electrons
- 2. Apply Pauli's exclusion and Aufbau principles and write the electronic configuration of Calcium and Potassium.
- 3. Determine the lattice energy of ionic crystal using Born Haber cycle.
- 4. Explain Hydrogen bonding, its types and effects.
- 5. How is Molybdenum extracted from its ores?

- 6. Discuss the different preparations of alloys.7. Discuss the seven primitive crystal systems.
- 8. Draw and explain the structures of graphite and fullerene.
- 9. Explain nuclear reactor.
- 10. Derive Decay constant (λ) and half life period (t $\frac{1}{2}$).

Course Instructor

HOD

Dr. M. Anitha Malbi

Dr. M. Anitha Malbi

Cl	Department:ChemistryClass:III B.Sc ChemistryTitle of the Course:Core V: Organic Chemistry - I									
Semester : Course Code :					2051		-			
	a a 1				~		Total		Marks	
	Course Code		Т	Р	Credits	Inst. Hours	Hours	CIA	External	Total
CC2051 5 5 5 75 30 70							70	100		

- To understand symmetry elements, stereo isomerism and conformational analysis of organic compounds.
- To know the methods of synthesis and the reactions of carbonyl, nitrogen containing and heterocyclic compounds.

CO	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive level
CO - 1	understand the concept of optical activity, stereoisomerism and stereo isomers	PSO - 1	K2(U)
CO - 2	remember the preparation and synthesis of carbonyl, nitrogen containing and heterocyclic compounds	PSO - 4	K1(R)
CO - 3	apply the synthetic methods to synthesize new compounds	PSO - 4	K3(Ap)
CO - 4	analyze the synthetic importance of different organic compounds	PSO - 2	K4(An)
CO - 5	create alternate routes to prepare new compounds	PSO - 5	K6(C)

Course Outcomes (COs)

Teaching plan

Total Contact hours:	75 (Including lectures, a	assignments and tests)
-----------------------------	---------------------------	------------------------

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/E valuation
Ι	Stereoche	emistry				
	1	Optical activity-elements of symmetry, optical activity of compounds containing asymmetric carbon atoms - lactic and tartaric acids. Chirality-achiral carbon molecules - (+), (-) and D, L notations.	3	K2(U)	Lecture using models, chalk and talk	Slip test and concept explanations
	2	Projection formulae-Newmann, Fischer, Flying wedge, Sawhorse and projection formulae notation for optical isomers, Cahn - Ingold and Prelog rules, R-S notation.	2	K3(Ap)	Group discussion and problem solving	Problem solving
	3	Enantiomers and diastereomers, racemic and mesoforms. Racemisation-resolution of racemic mixtures. Walden inversion and asymmetric synthesis.	2	K4(An)	Lecture using chalk and talk	Short test
	4	Optical activity of compounds without asymmetric carbon atoms- biphenyl, allenes and spiranes.	2	K2(U)	Lecture using chalk and talk	Slip test and MCQ
	5	Geometrical isomerism: Maleic and fumaric acid- aldoximes and ketoximes. Methods of distinguishing geometrical isomers, determination of configuration of ketoximes - Beckmann rearrangement, E-Z notation.	3	K3(Ap)	Lecture using chalk and talk, group discussion and problem solving	Group discussion and problem solving
	6	Conformational Analysis: Introduction of terms-configuration and conformation, dihedral angle, torsional strain, conformational analysis of ethane, n-butane, 1,2-dichloro ethane and cyclohexane.		K3(Ap)	Lecture using models, chalk and talk	Concept explanations and slip test
II	Carbony	Compounds - I (Aldehydes and Ketor	nes)			
	1	Synthesis of aldehydes from acid chlorides, Stephen's reduction - Gattermann-Koch and Etard reactions.	2	K2(U)	Lecture using chalk and talk	Short test
	2	Synthesis of ketones from nitriles, dialkylcadmium, alkyl lithium and lithium dialkylcuprate and Friedel- Crafts and Hoesch reactions.	3	K3(Ap)	Lecture using chalk and talk	Slip test
	3	Mechanism of nucleophilic additions to carbonyl group -addition of HCN, alcohols, thiols, sodium bisulfite,	2	K4(An)	Lecture using chalk and talk	Short test and MCQ

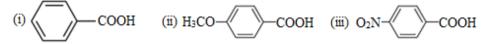
		Grignard reagents -condensation with				
		ammonia and its derivatives				
		animonia and its derivatives				
	4	Aldel Device Deversion and	4		T a stand and in a	
	4	Aldol, Perkin, Benzoin and	4	K3(Ap)	Lecture using	Short test and
		Knoevenagel condensations, Wittig			chalk and talk	quiz
		reaction, Mannich reaction,				
		Reformatsky reaction and Cannizaro				
	5	reaction.	4	$V_2(\Lambda_{re})$	I a atruna main a	Clin toot
	5	Oxidation by Tollen's reagent, $VMnO^4$ have halite. SeQ, and	4	K3(Ap)	Lecture using chalk and talk	Slip test
		KMnO ⁴ , hypohalite, SeO ₂ and			chark and talk	
		peracids. Reduction by H ₂ /Ni, H ₂ -Pd-				
		C, NaBH ₄ , LiAlH ₄ , MPV, Clemmenson and Wolff-Kishner				
		reductions, α , β unsaturated				
		aldehydes and ketones – preparation and reactions.				
TTT	Carbany		d their deri			
III	1	Compounds – II (Carboxylic acids an Preparation of carboxylic acids,	a their deriv	K1(R)	I poturo usino	Concept
	1	acidity of carboxylic acids, effects of	3		Lecture using chalk and talk	Concept
		substituents on acid strength, acidity				explanations
		of aliphatic and aromatic acids.				
		or anphatic and aromatic acids.				
	2	Reactions of carboxylic acids - Hell-	3	K2(U)	Lecture using	Slip test
	2	Volhard-Zelinsky reaction, Synthesis	5	K2(U)	chalk and talk	Sup lest
		of acidchlorides, esters and amides,			chaik and taik	
		Reduction of carboxylic acids,				
		methods and mechanism of				
		decarboxylation.				
	3	Methods of preparation and chemical	3	K3(Ap)	Lecture using	Short test
	5	reactions of halo acids - Hydroxy	5	113(11p)	chalk and talk	Short test
		acids - malic, tartaric and citric acids			churk und turk	
		- unsaturated monocarboxylic acids -				
		dicarboxylic acids.				
	4	Preparation and reactivity of	3	K3(Ap)	Lecture using	Slip test and
		carboxylic acid derivatives - acid	C	110(11p)	chalk and talk	quiz
		chlorides, esters, amides and				1
		anhydrides - Mechanisms of				
		esterification and hydrolysis – acid				
		catalysed reactions.				
	5	Relative stability of acyl derivatives -	3	K2(U)	Lecture using	Concept
		interconversion of acid derivatives by			chalk and talk	explanations
		nucleophilic acyl substitution.				•
IV	Nitrogon	Containing Compounds				
11	1 1	Containing Compounds Preparation of nitroalkanes and	3	K2(U)	Lecture using	Slip test
	1	nitroarenes - Chemical reactions of	5	K2(0)	chalk and talk	Sup test
		nitroalkanes and nitroarenes -				
		reduction in acidic, neutral and				
		alkaline media.				
	2	Methods of preparation of alkyl and	4	K3(Ap)	Lecture using	Slip test and
	۷.	aryl amines – Ritter reaction,	4	K3(Ap)	chalk and talk	quiz
		Hofmann ammonolysis – Hofmann				quiz
		degradation – Schmidt, Curtius				
		reaction - Leuckart reaction-				
	1	Teacholl - Leuchart Teacholl-		1		

		Ullmann reaction - Gabriel phthalimide reaction and Hofmann reaction.				
	3	Separation of a mixture of primary, secondary and tertiary amines - Hinsberg's and Hofmann's method	3	K4(An)	Lecture using chalk and talk	Short test
	4	4 Basicity of amines - basicity of aliphatic and aromatic amines - reactions of amines.		K4(An)	Lecture using chalk and talk	Group discussion
	5	Aryl diazonium salts – benzene diazonium chloride -preparation, reactions and synthetic transformations.	3	K3(Ap)	Lecture using chalk and talk	Short test
V	Heterocy	clic Compounds		·		
	1	Aromatic characteristics of pyrrole, furan, thiophene and pyridine.	2	K2(U)	Lecture using chalk and talk	Slip test
	2	Comparison of the basicity of pyridine, piperidine and pyrrole.	2	K4(An)	Lecture using chalk and talk	Concept explanations
	3	Methods of synthesis and chemical reactions with special emphasis on the mechanism of electrophilic substitution and mechanism of nucleophilic substitution reaction in pyridine derivatives.	3	K4(An)	Lecture using chalk and talk	MCQ
	4	Preparation and reactions of indole, quinoline and isoquinoline - Fischer indole synthesis, Skraup synthesis and Bischler-Napieralski synthesis.	4	K3(Ap)	Lecture using chalk and talk	Short test
	5	Reactions and mechanism of electrophilic substitution reactions of indole, quinoline and isoquinoline.	4	K3(Ap)	Lecture using chalk and talk	Short test

Activities (Em): Group discussion and Problem solving on R,S and E,Z nomenclature

Assignment: (Mention Topic and Type)

- 3. Interpretation of R,S and E,Z nomenclature of stereoisomers Reflective writing
- 4. Methods of preparation of alkyl and aryl amines Study assignment

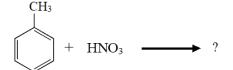

Sample questions

Part A

- 1. Which of the following group has the highest priority according to the Cahn-Ingold-Prelog sequence rules?
 - a) CH₃ b) CH₂Cl c) CH₂OH d) CHO
- 2. Arrange the conformers of cyclohexane in the increasing order of stability.
 - a) Chair < Boat < Twist boat < Half-chair b) Half-chair < Boat < Twist boat < Chair
 - c) Chair < Twist boat < Half-chair <Boat d) Chair < Twist boat < Boat < Half-chair
- 3. Choose the incorrect statement:
 - a) Carbonyl carbon is sp²hybridised
 - b) Aldehydes on reaction with HCN givecyanohydrins
 - c) Ketones can be oxidised by Tollen's reagent
 - d) Grignard reagent provides nucleophile
- 4. Identify the product of the following reaction:

$$+ CH_2 = PPh_3 \longrightarrow ?$$

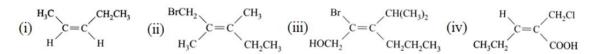
5. Arrange the following acids in the increasing order of acidity:



6. Assertion (A): Malic acid on reduction with HI gives succinic acid

 $Reason\left(R\right) \hspace{0.1in}: Malic \mbox{ acid having two chiral carbon atoms}$

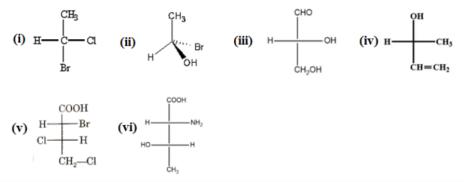
a) Both A and R are true b) A is true but R is false


- c) R is true but A is false d) H
- d) Both A and R are false
- 7. Complete the following reaction:

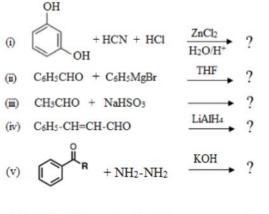
- 8. Which one of the following is least basic?
 - a) Cyclohexamine b) Triethylamine
 - c) Dimethylamine d) Triphenylamine
- 9. Identify the catalyst involved in Fischer Indole synthesis.a) SnCl₂ b) HCl c) NaCl d) ZnCl₂
- 10. Predict the product of the following reaction:

$$(\mathbf{N}) \xrightarrow{\mathrm{KNO}_3/\mathrm{H}_2\mathrm{SO}_4}{300 \ ^{\circ}\mathrm{C}} ?$$

- Part B
- 1. Assign E or Z configuration for the following compounds:


2. How will you determine the configuration of ketoxime using Beckmann rearrangement?

3. Design the mechanism for the synthesis of 4-methylbenzaldehyde using Gattermann-Koch synthesis.


- 4. Predict the mechanism for the conversion of benzaldehyde to cinnamic acid.
- 5. Compare the relative stability of acyl derivatives.
- 6. Interpret the mechanism of esterification with an example.
- 7. Discuss Gabriel phthalimide reaction.
- 8. How will you separate mixture of amines by Hofmann's method?
- 9. Explain the mechanism of electrophilic substitution reaction with an example.
- 10. Discuss the aromatic features of pyrrole and furan.

Part - C

1. Assign R or S configuration for the following compounds:

- 2. Illustrate the optical activity of allenes with examples.
- 3. Complete the following reactions:

- (vi) $CH_3CHO + 2Ag(NH_3)_2^+OH^- \longrightarrow ?$
- 4. Illustrate the mechanism of Knoevenagel and Reformatsky reactions.
- 5. Explain the chemical reactions of tartaric and citric acids.
- 6. Discuss any four reactions of carboxylic acid.
- 7. Deduce the mechanism of Ritter reaction and Hoffmann degradation.
- 8. Compare the basicity of amines.
- 9. Analyse themechanism for the synthesis of quinoline and isoquinoline
- 10. Compare the basicity of pyridine, piperidine and pyrrole.

Head of the Department: Dr. M. Anitha Malbi

Course Instructor: Dr. Sr. K. Francy

Department	:	Chemistry
Class	:	III B.Sc Chemistry
Title of the Course	:	Inorganic Chemistry
Semester	:	V
Course Code	:	CC2052

		Ŧ	Р		T / T	Total		Marks	
Course Code	L	1	Р	Credits	Inst. Hours	Hours	CIA	External	Total
CC2052	4	1	-	5	5	75	30	70	100

- To understand the chemistry of transition, inner transition elements and organometallic compounds
- To know the nomenclature and isomerism in co-ordination compounds
- To learn the principles of analytical chemistry

Course Outcome

CO -	Upon completion of the course	PSO	CL
No.	students will be able to		
CO - 1	acquire knowledge on transition and inner transition elements	PSO – 1	K2(U)
CO - 2	name the co-ordination compounds	PSO – 5	K3(A)
CO – 3	analyse the nature of bonding in co- ordination and organometallic compounds	PSO – 2	K4(An)
CO – 4	predict the geometry and colour and spin of co-ordination compounds	PSO – 4	K5(E)
CO – 5	minimize the errors in chemical analysis	PSO – 2	K4(An)

Teaching plan

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	d and f-	block elements		•		
	1	General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties and ability to form complexes	3	K2(U)	Lecture using models, chalk and talk	Slip test and concept explanations
	2	Difference between the first, second and third transition series. Extraction, properties and uses of Ti, V,Mo and W.Toxicity of Cd and Hg – oxides,	2	K3(A)	Group discussion and problem solving	Problem solving

		mixed oxides, halides, and				
		oxohalides of transition metals				
	3	Synthesis, reactivity and uses of vanadates, chromates, dichromate, molybdates, tungstates, tungsten bronzes, manganate, permanganate, ferrocyanide, ferricyanide,platinum(IV)chloride, chloroplatinic acid and Purple of Cassius	2	K3(A)	Lecture using chalk and talk	Short test
	4	Interstitial compounds – nitrides, carbides, hydrides, borides of Ti, V, Cr, W and their industrial uses.	2	K2(U)	Lecture using chalk and talk	Slip test and MCQ
	5	Electronic configuration, oxidation states, colour, spectral and magnetic properties. Causes and consequences of lanthanide contraction - uses of lanthanides.	3	K3(A)	Lecture using chalk and talk, group discussion and problem solving	Group discussion and problem solving
	6	Comparison between lanthanides and actinides. Extraction, properties and uses of thorium and uranium,compounds of uranium-zinc uranyl acetate and uranium hexa fluoride.	3	K3(A)	Lecture using models, chalk and talk	Concept explanations and slip test
II	Co-ordin	ation chemistry – I				
	1	Double salts and co-ordination compounds-differences- types of ligands. Nomenclature, and isomerism- structural isomerism – ionization, hydrate, co-ordination, linkage and co-ordination position isomerism.	3	K2(U)	Lecture using chalk and talk	Short test
	2	Stereoisomerism – geometrical isomerism in tetrahedral and octahedral complexes - optical isomerism in octahedral complexes.Theories of co-ordination compounds	3	K3(A)	Lecture using chalk and talk	Slip test
	3	Werner's theory- postulates – verification of Werner's theory- cobalt ammine complexes. EAN rule	2	K2(U)	Lecture using chalk and talk	Short test and MCQ
	4	Calculation of EAN in metal complexes and carbonyls. Pauling's theory (VBT) – postulates	4	K3(A)	Lecture using chalk and talk	Short test and quiz
	5	Application of VBT to square planar and tetrahedral complexes, inner and outer complexes – merits and demerits of VBT.	4	K3(A)	Lecture using chalk and talk	Slip test

III	Co-ordina	ation chemistry – II				
	1	Shapes of d-orbitals. Crystal field theory – Crystal field splitting of tetrahedral, square planar and octahedral complexes Factors affecting crystal field stabilisation energy CFSE–crystal field splitting energy values and stability of complexes.	3	K2(U)	Lecture using chalk and talk	Concept explanations
	2	Weak and strong field ligands – spectrochemical series.Distortion from perfect symmetry – Jahn-Tellar theorem and its effect.	3	K2(U)	Lecture using chalk and talk, Group discussion	Slip test
	3	Molecular Orbital Theory (MOT)– MO diagrams of ML ₆ type complexes. Stability of metal complexes	3	K3(A)	Lecture using powerpoint	Short test
	4	Relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data.	3	K4(An)	Lecture using chalk and talk , Seminar	Slip test and quiz
	5	Irving William series – stabilization of unstable oxidation state. Substitution reactions of square planar complexes – trans effect.	3	K2(U)	Lecture using chalk and talk	Concept explanations
IV	IV Analy	tical Chemistry				
	1	Types of errors- determinate and indeterminate errors- minimization of errors. Precision and accuracy- ways of expressing precision.	3	K2(U)	Lecture using powerpoint	Slip test
	2	Standard deviation- mean deviation – relative mean deviation and coefficient of variance.	4	K2(U)	Lecture using chalk and talk	Slip test and quiz
	3	Accuracy- absolute error- relative error- confidence limit- Rejection of a doubtful value – Q Test and related problems.	3	K3(A)	Lecture using chalk and talk	Short test
	4	Principles and requirements of gravimetric analysis- mechanism of precipitation – digestion, filtration, washing, drying and ignition.	2	K2(U)	Lecture using chalk and talk	Group discussion
	5	Factors affecting solubility of precipitate - co-precipitation and post precipitation – prevention and difference between co-precipitation and post precipitation, precipitation from homogenous solution.	3	K3(A)	Lecture using chalk and talk, Seminar	Short test

V	Organon	netallic Chemistry				
	1	Introduction - structure and application of metal carbonyls -mono and poly nuclear carbonyls of Ni, Fe, Cr, Co and Mn -synthesis and structure -nitrosyl compounds	2	K2(U)	Lecture using chalk and talk	Slip test
	2	Classification, preparation and properties -structure of nitrosyl chloride and sodium nitroprusside.	2	K4(An)	Lecture using powerpoint,Se minar	Concept explanations
	3	Nomenclature of organometallic compounds, 16- and 18- electron rule. Structure and bonding in transition metal carbonyls-polynuclear carbonyls.	3	K4(An)	Lecture using chalk and talk, Group discussion	MCQ
	4	Bridging and terminal carbonyls, transition metal alkyls, carbenes, and carbynes, and metallocenes	3	K2(U)	Lecture using chalk and talk	Short test
	5	Photochemistry of organometallic compounds Wilkinson's catalyst and alkene hydrogenation, hydroformylation,	3	K2(U)	Lecture using chalk and talk	Short test
	6	Monsanto acetic acid process, Ziegler – Natta catalyst and polymerization of olefins.	2	K2(U)	Power point	Long answer test

Activities (Em): Assignment, Endowment Lecture, Group discussion and Seminar

Assignment :

- 1. Characteristics of d-block elements.
- 2. General Characteristics of f-block elements.
- 3.Metal Carbonyls and their types
- 4. Types of Errors and aways to minimise errors
- 5. Theory of co-ordination complexes.

Seminar Topic:

- 1.Lanthanide Contraction
- 2.Colour and catalytic properties of d-block elements
- 3.Polynuclear metal carbonyls.

Sample questions

Part A

- 1. Rutile is the ore of ______.
- a)tungsten b)titanium c) uranium d)copper
- 2. Potassium permanganate is used as an oxidizing agent. Say true or false.
- 3. Which one of the following complexes is anionic?
- a) $[Cu(NH_3)_4]SO_4$ b) $K_4[Fe(CN)_6]$ c) $[Cr(NH_3)_3Cl_3]$ d) $[Ag(NH_3)_2]Cl_3$
- 4. In the complex $[Co(NH_3)_6]Cl_3$ the ammine ligands are monodentate. Say true or false.
- 5. A coordination complex contains 2 unpaired electrons. Its magnetic moment is _____.

6. According to Crystal Field Theory the bond between metal and ligand is purely ionic. State true or false.

7. If precipitation occurs due to the impurities in the mother liquor then the process is called_____.

Part - B

1. Give the magnetic and catalytic properties of d-block elements.

2. What are the causes and consequences of lanthanide contraction?

3. Write the IUPAC names of the following complexes:

i) [CoCO₃(NH₃)₅]Cl

ii) [Co(NH₃)₆]³⁺

iii) Li[AlH₄]

iv) [(NH₃)₅Co-NH₂-Co(NH₃)₅](NO₃)₅

4. Apply EAN rule and predict the stability of the following complexes

i) $[Zn (NH_3)_4]^{2+}$ ii) $[Co(NH_3)_6]^{2+}$ iii) $[Ni(CO)_4]$ iv) $[Fe(CN)_6]^{3-}$

5. Write the postulates of Crystal Field theory

6.Explain Jahn-Teller Theorem.

7. Give the differences between co-precipitation and post precipitation.

8. Write the differences between precision and accuracy.

9. Write the preparation and properties of sodium nitro prusside.

10. Write a note on Wilkinson's catalyst.

Part - C

1. How is tungsten extracted from its ore? Name its ores.

2. List out the ores of Uranium. How is it extracted from its ore?

3. Co-ordination complexes show different structural isomerism. Justify this statement by giving appropriate examples.

4. Apply Valence Bond theory and predict the geometries of $[Ni(CN)_4]^{2-}$, $[PtCl_4]^{2-}$ and $[Cu(NH_3)_4]^{2+}$

5. Explain Crystal Field theory. Apply it for octahedral and tetrahedral complexes.

6. Apply Molecular Orbital theory to ML₆ type of complexes.

7. What are the requirements of gravimetric analysis? Explain the various Steps.

8. What are the different types of errors? How will you minimise them?

9. Draw the structures of poly nuclear carbonyls of Ni, Fe, Cr, Co and Mn.

10. Explain the structure and bonding in carbynes and metallocenes.

Head of the Department

Course Instructor

Dr. M. Anitha Malbi

Dr. R. Gladis Latha

	Department : Chemistry									
Cl	lass : III B.Sc Chemistry									
Ti	Title of the Course : Core VII: Physical Chemistry									
Semester : V										
Co	ourse Code	:		CC	2053					
	a a 1	~		a 114		Total	Marks			
Course Code		L	Т	Р	Credits	Inst. Hours	Hours	CIA	External	Total
	CC2053 5 -				5	6	75	30	70	100

- To know the concepts of conductance, strong and weak electrolytes
- To understand the working of electro chemical cells, EMF measurement and their applications
- To learn the basic principles and applications of spectroscopy

Course Outcomes (COs)

CO - No.	Upon completion of the course, students will be able to	PSO	CL
CO - 1	understand the basic principles of electrochemistry	PSO - 1	K2(U)
CO - 2	apply EMF measurements in different fields of chemistry	PSO - 2	K3(Ap)
CO - 3	analyzethe working of electrical appliances in day to day life	PSO - 5	K4(An)
CO - 4	remember the principle and applications of the different spectral techniques	PSO - 7	K1(R)
CO - 5	interpret the IR,NMR and ESR spectra of simple molecules	PSO - 3	K5(E)

Teaching plan

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Electroch	emistry – I			1	1
	1	Definition of conductance, specific conductance, equivalent conductance and molar conductance and factors affecting conductance of a solution.	3	K2(U)	Lecture using models, chalk and talk	Slip test
	2	Strong and weak electrolytes, variation of equivalent conductance with dilution. Debye-Huckel theory of strong electrolytes and Debye- Huckel– Onsagar equation.	2	K3(Ap)	Group discussion and problem solving	Problem solving
	3	Kohlrausch's law and its applications, Applications of conductance measurements, Determination of λ_{∞} of weak acid and weak base-degree of dissociation of weak electrolytes, solubility and solubility products of sparingly soluble salts and conductometric titrations.	2	K4(An)	Lecture using chalk and talk	Short test
	4	Transport number, determination of transport number by Hittorff's method and moving boundary method.	2	K2(U)	Lecture using chalk and talk	Slip test and MCQ
	5	Hydrolysis, hydrolysis constant,degree of hydrolysis of salts of weak acids and strong bases, weak bases and strong acids	3	K3(Ap)	Lecture using chalk and talk, group discussion and problem solving	Group discussion and problem solving
	6	Determination of degree of hydrolysis by conduction and distribution methods.	3	K3(Ap)	Lecture using models, chalk and talk	Slip test
II	Electroch	emistry – II		•		
	1	Electrochemical cells , reversible and irreversible cells , EMF of cells , determination , cell representation.	2	K2(U)	Lecture using chalk and talk	Short test
	2	Single electrode potential, types of electrodes, metal- metal ion electrodes, amalgam electrodes, gas electrodes, metal –insoluble metal salt electrodes and oxidation - reduction electrodes . Standard	3	K3(Ap)	Lecture using chalk and talk	Group discussion

		hydrogen electrode (SHE) and calomel electrode.				
	3	Nernst equation for electrode potential, Nernst equation for emf of cells, standard electrode potential and its determination.	2	K4(An)	Lecture using chalk and talk	Short test and MCQ
	4	Electro chemical series, thermodynamics of galvanic cells ΔG , ΔH , ΔS and equilibrium constant (K).	2	K3(Ap)	Lecture using chalk and talk	Short test and quiz
	5	Concentration cells with transference and without transference and liquid junction potential and its elimination.	2	K3(Ap)	Lecture using chalk and talk	Slip test
	6	Applications of EMF measurements, determination of transport number, valency of an ion, pH of a solution using hydrogen, quinhydrone and glass electrode.	2	K3(Ap)	Lecture using ppt	Short test and MCQ
	7	Potentiometric titrations, acid-base, oxidation reduction and precipitation titrations. Decomposition potential and overvoltage	2	K2(U)	Lecture using using videos	Short test and quiz
III	Applied I	Electro Chemistry				
	1	Application of electrochemical principle in inorganic chemistry , manufacture of NaOH and H ₂ O ₂ .	3	K1(R)	Lecture using videos	Concept explanations
	2	Electroplating , principle , electro plating of copper, nickel and cadmium	3	K2(U)	Lecture using chalk and talk	Slip test
	3	Types of coating , protection of pipelines , protection of ships in sea.	3	K3(Ap)	Lecture using videos	Short test
	4	Power sources , primary cells , Lechlanche cell, principle , selection of anode and cathode and alkaline MnO_2 cells	3	K3(Ap)	Lecture using ppt	Slip test and quiz
	5	Secondary cells, characteristics, lead storage, lithium and nickel-cadmium battery. Fuel cells, principle, hydrogen - oxygen fuel cells and alkaline fuel cells.	3	K2(U)	Lecture using chalk and talk	Oral test
IV	Spectroso		2	TTO (TT)	T	
	1	Electromagnetic radiation, electromagnetic spectrum, general spectroscopic methods, Born- Oppenheimer approximation and types of molecular spectra.	3	K2(U)	Lecture using videos	Slip test
	2	Microwave spectra, principle, intensity, selection rule and applications and determination of bond distances in diatomic molecules.	4	K3(Ap)	Lecture using ppt	Slip test and quiz

	3	Infra Red spectra , principle , harmonic oscillator , unharmonicity , selection rules , intensity , modes of vibrations and types ,force constant and its determination	3	K4(An)	Lecture using chalk and talk	Short test
	4	Applications of IR, important functional groups and elucidation of structure, hydrogen bonding, Fermi resonance, overtones and combination bands.	2	K4(An)	Lecture using chalk and talk	Group discussion
	5	Electronic spectra , selection rules , Frank Condon Principle , types of transitions and its applications.	3	K3(Ap)	Lecture using ppt	Solving problems
V	Spectrosc	copy –II				
	1	NMR, introduction, conditions, principle, types, origin, Larmor procession and signals	2	K2(U)	Lecture using ppt	Slip test
	2	Chemical shift, screening constant, spin-spin coupling .Applications of NMR, elucidation of molecular structure, hydrogen bonding, and tautomerism	2	K4(An)	Lecture using chalk and talk	Solving problems
	3	Study of water of crystallization in solids and Nuclear magnetic resonance imaging	3	K4(An)	Lecture using chalk and talk	MCQ
	4	ESR spectroscopy , principle , hyperfine structure , application of ESR to hydrogen and methyl radicals. Raman Spectra , introduction - Rayleigh scattering and quantum theory	4	K3(Ap)	Lecture using videos	Group discussion
	5	Raman effect , Raman scattering , conditions for Raman spectra , selection rule , mutual exclusion principle , Raman spectra of CO_2 and HCN and differences between Raman and IR spectra.	4	K3(Ap)	Lecture using chalk and talk	Short test

Activities (Em): Group discussion on IR and ESR spectroscopy

Problem solving on electronic and NMR spectroscopy

Assignment: (Mention Topic and Type)

- 1. Applications of conductance measurements Reflective writing
- 2. Primary and Secondary cells Study assignment

Sample questions

PART A

1. The unit of molar conductance is _

- c) 10^{-3} Sm² mol⁻¹ d) 10^{-1} Sm² mol⁻¹ a) 10^{-4} Sm² mol⁻¹ b) 10^{-2} Sm² mol⁻¹
- 2. Give an example for strong electrolyte.
- 3. Calomel electrode is represented as
- 4. The value of specific conductance of water at 25°C is
- a) 5.1×10^{-8} mho cm⁻¹ c) 5.5×10^{-8} mho cm⁻¹ b) $5.2 \times 10^{-8} \text{ mho cm}^{-1}$
- d) 5.6 x 10⁻⁸ mho cm⁻¹
- 5. Which is used as an electrolyte in Lechlanche cell ?
- 6. The nickel-cadmium battery is a secondary cell. Say true or false.
- 7. A vibrational transition occurs on absorption of quantized energy .Say true or false.
- 8. The energy of IR radiation is weaker than that of visible and ultraviolet radiation. Say true or false.
- 9. Zero point energy of a diatomic SHO is ------
- b) ½ hv a) hv c) ¼ hv d) 0
- 10. The ESR spectrum of deuterium consists of ------ lines a) 2 b) 3 c) 6 d) 8

Part - B

- 1. State Hittorf's law. How will you determine the transport number of ions by Hittorf's method?
- 2. How will you calculate the λc value and degree of dissociation of weak electrolytes using Kohlraush'slaw?
- 3. Explain liquid junction potential .How can it be eliminated ?
- 4. Write a note on the following potentiometric titrations.
 - a. Acid -base ii) Oxidation -reduction
- 5. Explain the manufacture of NaOH and H_2O_2 .
- 6. Explain Kolbe's synthesis and adiponitrile synthesis.
- 7. Explain the types of molecular spectra.
- 8. Explain the principle and applications of microwave spectra.
- 9. How are hydrogen bonding and tautomerism studied using NMR spectroscopy ?
- 10. Illustrate the hyper fine structure of Hydrogen radical.

Part- C

- 1. Discuss the applications of conductance measurements.
- 2. i)How does equivalent conductance vary with dilution?
 - ii)Explain Debye-Huckel theory of strong electrolytes.
- 3. (i) Derive Nernst equation for electrode potential. ii) Write notes on hydrogen and calomel electrodes.
- 4. Discuss the applications of EMF measurements
- 5. Explain the principle of electroplating. How is copper and nickel electro plated ?
- 6. i)Explain the principle and working of Lechlanche cell.
- ii) Discuss the principle and working of hydrogen oxygen fuel cell.
- 7. Explain the applications of IR spectroscopy.
- 8. i) Explain Frank Condon Principle.
- ii) Write the applications of electronic spectroscopy.
- 9. Discuss the quantum theory of Raman spectroscopy and show how stokes and anti- stokes lines appear in the Raman spectrum of a molecule?
- 10. Discuss the applications of NMR spectroscopy.

Head of the Department: Dr. M. Anitha Malbi Course Instructor: Dr. S.Ajith Sinthuja

	Department : Chemistry									
Cl	ass	:		III B.Sc Chemistry						
Title of the Course : Elective III: Bio Chemistry										
Semester : V										
Co	ourse Code	:		CC	2054					
					T / T	Total		Marks		
Course Code L				Р	Credits	Inst. Hours	Hours	CIA	External	Total
	CC2051	4	-	-	3	4	60	30	70	100

- To understand the biological action of carbohydrates
- To know the functions of lipids, amino acids, proteins and nucleic acids

Course Outcomes (COs)

СО	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive level
CO - 1	understand the function and metabolism of biomolecules	PSO - 1	K2(U)
CO - 2	recall the importance of biomolecules	PSO - 2	K1(R)
CO - 3	compare DNA and RNA	PSO - 5	K4(An)
CO - 4	elucidate the structure of different biomolecules	PSO - 2	K3(Ap)
CO - 5	illustrate the industrial and medical applications of enzymes	PSO - 8	K2(U)

Teaching plan

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Carbohyo	Irates		•	•	
	1	Carbohydrates -definition and classification. Glycosides physiological significance. Amino sugars - importance	3	K1(R)	Lecture with ppt	Quiz
	2	Chemistry of poly saccharides - starch, glycogen, cellulose, inuline, hemi-celluloses, chitin, pectin and lignin	3	K2(U)	Seminar	Slip test
	3	Glycosaminoglycans - hyaluronic acid, chondroitin sulphate, keratin sulphate, heparin and dermatan sulphate	3	K2(U)	Lecture using chalk and talk	Short test

	4	Blood group substances. Carbohydrate metabolism - Embden - Meyerhof pathway- TCA cycle	3	K3(Ap)	Lecture using chalk and talk	Oral test and MCQ
Π	Lipids					
	1	Lipids - definition and classification. Types of fatty acids - saturated, unsaturated, unusual and essential fatty acids	2	K2(U)	Lecture using chalk and talk	Short test
	2	2 Triacylglycerols - chemistry. Characterization - saponification number, iodine number, acid number, RM value and acetyl value		K4(An)	Seminar	Quiz
	3 Chemistry and functions of phospholipids - lecithin and cephalin. Sphingolipids - sphingomycin.		3	K4(An)	Lecture using ppt	Short test and MCQ
	4	Glycolipids - cerebroside, ganglioside Cholesterol - spot tests and structure. Biochemical functions of cholesterol	3	K3(Ap)	Lecture using chalk and talk	Short test and quiz
III	Amino A	cids and Proteins				
	1	Amino acids and proteins - structure, classification and biochemical importance - one method each to identify 'C' terminal and N terminal amino acids	3	K1(R)	Seminar	Short test
	2	Secondary, tertiary and quaternary structures	3	K2(U)	Lecture using videos	Oral test
	3	Abbreviated names - structure and importance of simple peptide - glutathione, carnosine, anserine, vasopressin and oxytocin	3	K3(Ap)	Lecture using chalk and talk	Short test
	4	Peptide antibiotics - Geramicidin, bacitracin and actinomycin. Transamination - deamination - urea cycle	3	K3(Ap)	Lecture using chalk and talk	Slip test and quiz
IV	Nucleic A		3			1
	1	1 Components of nucleic acid - organic nitrogeneous bases - Purines - pyrimidines - sugars - deoxyribose - ribose		K2(U)	Lecture using chalk and talk	Slip test
	2	Nucelosides - ribonucleoside deoxyribonucleoside. Nucleotides ribonucleotide -deoxyribonucleotide - cyclic nucleotides	3	K4(An)	Seminar	Group discussion
	3	DNA - Structure and functions - RNA - types (m-RNA, t-RNA and rRNA). Nucleases - Endonucleases - DNase - RNase- Exonucleases	3	K4(An)	Lecture using videos	Short test

	4	Cyclic nucleotides - functions of cyclic AMP - and cyclic GMP - Nucleoproteins - nucleohistones - nucleoprotamines	3	K2(U)	Lecture using ppt	Oral test
V	Enzymes					
	1	Enzymes - characteristics - classification, enzyme specificity. Factors affecting enzyme reaction	4	K2(U)	Lecture using ppt	Slip test
	2	Michaelis-Menten equation - derivation - inhibition of enzyme action - competitive, non - competitive and uncompetitive coenzymes	4	K2(U)	Lecture using chalk and talk	Short test
	3	Mechanism of NAD+ and PLP. Immobilisation of enzymes - industrial and medical application of enzymes	4	K3(Ap)	Seminar	MCQ

Activities (Em): Group discussion and Seminar

Assignment: (Mention Topic and Type)

- **3.** Chemistry and functions of phospholipids lecithin and cephalin. Sphingolipids sphingomycin. Study Assignments
- **4.** Enzymes characteristics classification, enzyme specificity. Factors affecting enzyme reaction. Study Assignments

Seminar: (Mention Topic)

- 11. Chemistry of poly saccharides starch, glycogen, cellulose, inuline, hemi-celluloses, chitin, pectin and lignin
- 12. Triacylglycerols chemistry. Characterization saponification number, iodine number, acid number, RM value and acetyl value
- 13. Amino acids and proteins structure, classification and biochemical importance identify 'C' terminal and N terminal amino acids
- 14. Nucelosides ribonucleoside deoxyribonucleoside. Nucleotides ribonucleotide deoxyribonucleotide cyclic nucleotides
- 15. Mechanism of NAD⁺ and PLP. Immobilisation of enzymes industrial and medical application of enzymes

Sample questions

Part - A

- 1. The metabolism of glucose is controlled by ------
- a) Insulinb) Glycogenc) Pepsind) Adrenalin2. Identify the disaccharide present in milk.
 - a) Sucrose b) Lactose c) Maltose d) Cellobiose
- 3. Which of the following alcohol is present in sphingolipids?

- a) Glycerol b) Sphingosine c) Ethanol d) Inositol
- 4. Cholesterol is a -----
- b) Simple lipidb) Complex lipidc) Neutral lipidd) Derived lipid5. The helical structure of proteins is stabilized by ------
- a) Peptide bondsb) Hydrogen bondsc) Sulphide bondsd) double bondsd) double bondsd) double bonds

Peptide

Structure

- a) Glutathione (i) Dipeptide
- b) Gramicidin (ii) Nonapeptide
- c) Vasopressin (iii) Tripeptide
- d) Carnosine (iv) Cyclic peptide
- 7. Ribosomal RNA constitutes about 20-25 % of total RNA of the cell. State True or False
- 8. Which of the following unusual base is present in cocoa beans?
 - a) Xanthine b) Theophylline c) Theobromine d) Theotramine
- 9. Assertion (A): The activity of an enzyme is minimum at the optimum temperature Reason (R) :The optimum temperature of human enzyme is 37°C
 - a) Both A and R are true
 - b) A is true but R is false
 - c) R is true but A is false
 - d) Both A and R are false
- 10. Identify the coenzyme of Niacin.a) FAD b) NAD c) PLP d) NADP

Part - B

- 1. Explain the major classes of glycosides. Give its physiological significances.
- 2. Discuss the importance of amino sugars.
- 3. Classify fatty acids on the basis of composition and physical properties.
- 4. Point out the biochemical functions of cholesterol.
- 5. Categorize amino acids based on their structure and biological importance.
- 6. Draw the structures of glutathione and carnosine.
- 7. Differentiate DNA and RNA.
- 8. Describe the functions of cyclic AMP.
- 9. Analyze the influence of temperature and pH on enzyme activity.
- 10. Compare the characteristics of non-competitive and uncompetitive enzyme inhibitions.

Part - C

- 1. Apply Embden-Meyerhof-Parnas pathway for the conversion of glucose to pyruvate.
- 2. Illustrate the reactions and significance of TCA cycle.
- 3. Discuss the classification of lipids.
- 4. Explain the chemistry and functions of lecithin and cephalin.
- 5. Outline the primary and secondary structures of proteins.
- 6. Infer the structure and biomedical applications of bacitracin and actinomycin.
- 7. Correlate the structures of DNA and RNA.
- 8. Differentiate ribonucleosides and ribonucleotides with examples.
- 9. Derive Michaelis-Menten equation.
- 10. Generalize the industrial and medical applications of enzymes.

Head of the Department: Dr. M. Anitha Malbi

Course Instructor: Dr. Sheeba Daniel