

DEPARTMENT OF MATHEMATICS S.F

Vision

To empower women globally competent with human values and ethics acquiring academic and entrepreneurship skills through holistic education.

Mission

- 1. To create opportunities which will ensure academic excellence in critical thinking, humanistic and scientific inquiry.
- 2. To develop application oriented courses with the necessary input of values.
- 3. To create a possible environment for innovation, team spirit and entrepreneurial leadership.
- 4. To form young women of competence, commitment and compassion.

Programme Educational Objectives (PEO)

PEO 1	The graduates will apply appropriate theory and scientific knowledge to participate in activities that support humanity and economic development nationally and globally, developing as leaders in their fields of expertise.
PEO 2	The graduates pursue lifelong learning and continuous improvement of the knowledge and skills with the highest professional and ethical standards.
PEO 3	The graduates will demonstrate the ability to utilize effectively the variety of teaching techniques and class room strategies and develop confidence to appear for competitive examinations and occupy higher levels of academic and administrative fields.

Programme Outcomes (PO)

РО	Upon completion of the B.Sc. Degree Programme, the graduates will be able to:
PO - 1	equip students with hands on training through various courses to enhance entrepreneurship skills.
PO - 2	impart communicative skills and ethical values.
PO - 3	face challenging competitive examinations that offer rewarding careers in science and education.
PO - 4	apply the acquired scientific knowledge to face day to day needs and reflect upon green initiatives to build a sustainable environment.

PSO	Upon completion of the B.Sc. Degree Programme, the	PO addressed
	graduates will be able to:	
PSO - 1	acquire a strong foundation in various branches of mathematics to	PO 4
	formulate real life problems into mathematical models	
PSO - 2	apply the mathematical knowledge and skills to develop problem	PO 3, 4
	solving skills cultivating logical thinking and face competitive	
	examinations with confidence.	
PSO - 3	develop entrepreneurial skills based on ethical values, become	PO 1,2
	empowered and self-dependent in society.	
PSO - 4	enhance numerical ability and address problems in	PO 1
	interdisciplinary areas which would help in project and field works.	
PSO - 5	pursue scientific research and develop new findings with global	PO 4
	impact using latest technologies.	

Programme Specific Outcomes (PSO)

III UG Teaching Plan

Complex Analysis

Semester	: VI									
Name of the C	: Complex Analysis									
Course code	: MC2061									
CourseCode	L	T	Р	S	Credits	Inst. Hours	Total Hours	Marks CIA External		arks
MC2061	5	1	-	-	5	6	90	Total 25	75	100

Objectives:

- 1. To introduce the basic concepts of differentiation and integration of Complex functions
- 2. To apply the related concepts in higher studies

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	understand the geometric representation of mappings	PSO - 1	K2(U)
CO - 2	use differentiation rules to compute derivatives and express complex- differentiable functions as power series	PSO - 4	K5(E)
CO - 3	compute line integrals by using Cauchy's integral theorem and formula	PSO - 3	K5(E)
CO - 4	identify the isolated singularities of a function and determine whether they are removable, poles or essential	PSO - 1	K2(U)
CO - 5	evaluate definite integrals by using residues theorem	PSO - 5	K6(C)

Total contact hours: 90 (Including lectures, a	assignments and tests)
--	------------------------

				Cogni			Assess
Unit	Module	Topics	Lectur	tive	Learning	Pedagogy	ment/
			e hours	ievei	Outcomes	8-87	evaluat
			Dif	Formation	ilitx [,]		101
Ι			Di	iei entiaŭ	inty		
				K1(R)			Recall
		Differentiability		K2(U)	To analyze the		basic
	1	definitions and	3		basic	Lecture	definitions
	-	theorems	C		properties of	using videos	on
					differentiability		differentia
							bility
		Cauchy Riemann		K2(U)			Concept
		equations, theorems			To got the second		definitions
		and examples,			and sufficient	Dlanding	, Quastionin
	2	2 Alternate forms of C.R equations	7		condition for	method	Questionin
					differentiability	method	5 Formative
		theorems and			uniterentiaonity		Assessmen
		problems					t
				K4(An)			Class test,
		Analytic functions			To discuss some	Locturo	Simple
	3	definition and	5		properties of an	using PPT	definitions
		problems			analytic function	using 111	,examples,
							MCQ Test
							Recall
		Harmonic functions,		K3(Ap)		_	steps,
		definitions,	_		To find an	Lecture	Questionin
	4	theorems and	7		analytic	with Group	g and
	problems			functions	Discussion	Home	
							Assignme
			T		•		II
II			Tra	instormat	lons		
	4	Bilinear	_		To determine the	Lecture with	Concept
	1	transformations,	1	K2(U)	image of given	PPT	definitions
	1	transformations,	7	K2(U)	image of given	PPT	definitions

		elementary			region under		,
		transformation and			bilinear		Questionin
		cross ratio			transformation		g
							Formative
							Assessmen
							t
				K4(An)	T 14 C 1		Class test,
		Fixed Points of			To obtain fixed	D 11	Simple
	2	Bilinear	2		pointsunder	Problem	definitions
		Transformation			varies bilinear	solving	,examples,
					transformation		MCQ Test
		Mapping by		K3(Ap)			Recall
		Elementary			T 1. 1		steps,
		Functions-			To explain the	Lecture with	Questionin
	3	$w=z^2, w=z^n,$	3		properties of	Gamma	g and
		$w = e^z, w = \sin z,$			elementary	PPT	Home
		$w = \cos z, w = \cosh z$			Tunctions		Assignme
		Ζ					nt
тт			(Cauchy's	Integral	I	
111					1	1	
						Lecture	C
		Definite internal		K2(U)		with videos	Simple
		Definite integral,			T	, Group	definitions
	1	definitions,	4		10 evaluate	Discussion	,examples,
		averalles			definiteIntegral	and	Acciermo
		examples				Problem	Assignme
						solving.	IIL
				K4(An)			Concept
						Lecture	definitions
						with	
						Illustration.	Ouestionin
		Cauchy's theorem,			To prove	Group	g
	2	definition and	5		Cauchy's	Discussion,	Formative
		theorems	-		theorems	Lecture	Assessmen
						using PPT	t
						and Peer	Evaluation
					-		
						teaching	through

		Cauchy's	integral		K3(Ap)		Lecture with	Recall
	3	formula –	theorems	5		To evaluate	Group	steps,
	_	and		-		integrals	Discussion	Open book
		problems						test
IV					Taylo	or's and Laurent'	s Series	
					K2(U),		Lecture	Concert
					K4(An)		method,	Concept
						To ownerd the	Group	definitions
		Taylor's s	series-			To expand the	Discussion,	, Overtinnin
	1	Taylor's t	heorem	5		given function	Lecture	Questionin
		and proble	ems			as Taylor s	using videos	g
						series	and	Assassman
							Problem	A55055111011
							solving.	L
							Group	Class test,
					K2(U)		Discussion	Simple
		T . 1	a .			To expand the	Lecture	definitions
	2	Laurent's theorem	Series –	F		given	using videos	,examples,
	2	Laurent's	theorem	5		function as	and	MCQ Test
		and proble	ems			Laurent'sseries	Problem	Formative
							solving.	Assessmen
							0	t
					K4(An)		Lecture	Class test,
		Zeros of a	nalytic			To determine the	using PPT	Simple
		functions –				To determine the	and Peer	definitions
	3	3 definition and	and	3		analytic	teaching	,examples,
		problems				functions	Lecture	MCQ Test
		problems				Tunetions	withGroup	Assignme
							Discussion	nt
					K3(Ap)			Simple
							Lecture	definitions
		Singularit	ies –			To find the	withGroup	,examples,
	4	definition	s and	1		singularity ofa	Discussion	Solving
		examples				given function	and Peer	problems,
							teaching	MCQ, Slip
								Test
V					Cauchy H	Kesidues		

1	Residues – definition, lemmas	5	K2(U)	To find the residue of a	Lecture using PPT	Concept definitions , Questionin g Formative
	and problems			given function	teaching	Assessmen t Evaluation through short test.
2	Cauchy's residue theorem – theorems and examples	3	K4(An)	To apply Cauchy's residue theorem by evaluating the integrals	Lecture with Illustration, Group Discussion, Lecture using PPT and Peer teaching	Concept definitions , Questionin g Formative Assessmen t
3	Evaluation of definite integrals – method and problems	5	K3(Ap)	To evaluate the definite integrals by using the given method	Problem solving, Lecture with PPT, Lecture with Illustration	Class test, Simple definitions ,examples, MCQ Test

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Solving the Problems, Group discussion, Seminar, Online Assignment

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues: Nil

Assignment: Bilinear transformations, elementary transformation and cross ratio

Seminar Topic: Cauchy's integral formula, theorems and problems

Part A

- 1. What are the necessary conditions for a function f(z) to be analytic in a given domain?
 - a) Existence of partial derivatives
 - b) Existence of Cauchy-Riemann equations
 - c) Satisfying the Laplace equation
 - d) All of the above
- 2. For an analytic function f(z), which of the following statements is true?
 - a) It is always a real-valued function
 - b) Its derivative is not unique
 - c) It satisfies the Cauchy-Riemann equations
 - d) It has a singularity at every point
- 3. What is the cross ratio of four distinct complex numbers z1, z2, z3, z4?
 - a) $(z^2-z^1)(z^4-z^3)/(z^3-z^1)(z^4-z^2)$
 - b) (*z*2–*z*1)/(*z*4–*z*3)
 - c) (z1-z3)(z2-z4)/(z1-z4)(z2-z3)
 - d) (z3-z1)/(z4-z2)
- 4. Which theorem guarantees the existence of anti derivatives for holomorphic functions?a) Cauchy's Residue Theorem
 - b) Fundamental Theorem of Algebra
 - c) Maximum Modulus Theorem
 - d) Cauchy's Integral Theorem
- 5. In a Laurent series expansion, if all the coefficients corresponding to negative powers of (z-a) are zero, what type of singularity does the function have at z=a?
 - a) Essential singularity b) Removable singularity c) Pole d) Branch point

Part B

- 6. Consider the function $f(z)=3z^2+2i$. Determine whether this function is analytic, and if so, find its derivative.
- 7. Given the bilinear transformation $w = \frac{2z+i}{3z-2i}$, find the expression for z in terms of w. Also, map the points $z_1=1$ and $z_2 = -i$ under this transformation and express the results in terms of w.
- 8. Evaluate the following complex integral $\int_C \frac{e^z}{z-1} dz$ where C is the circle |z|=2 traversed counterclockwise.
- 9. Find the Taylor series expansion of the function $f(z)=\frac{1}{z^2-4}$ centered at z=0. Determine the radius of convergence and identify any singularities.
- 10. Use the Residue theorem to evaluate the following integral $\oint_C \frac{\cos(z)}{(z-1)(z-2)}$ where *C* is the positively oriented circle |z|=3.

Part C

- 11. State and prove Taylor's Theorem.
- 12. Prove that any bilinear transformation can be expressed as product of translation, rotation, magnification and inversion.
- 13. Prove that the cross ratio is preserved by a Bilinear transformation.
- 14. State and prove residue theorem.
- 15. Find the bilinear transformation which maps the points $z_1 = 2$, $z_2=i$, $z_3 = -2$ onto w_1
 - = 1, w_2 = i, w_3 = -1 respectively.

Stauen

Course Instructor Dr. P.C. Priyanka Nair

Head of the Department Dr. S. Kavitha

Mechanics

Department	:	Mathematics (SF)
Class	:	III B.Sc. Mathematics (SF)
Title of the Course	:	Major Core XI- Mechanics
Semester	:	VI
Course Code	:	MC2062

Course Code	L	Т	Р	Credits	Inst. Hours	Total Hours		Marks	
						liouis .	CIA	External	Total
MP231CC1	4	2	-	5	6	90	40	60	100

Objectives:

- 1. To visualize the application of Mathematics in Physical Sciences
- 2. To develop the capacity to predict the effects of force and motion

СО	Upon completion of this course the students will be able	PSO Addressed	CL
		1 uui esseu	
CO -1	calculate the reactions necessary to ensure static equilibrium	PSO - 2	K2(U)
CO - 2	apply the principles of static equilibrium to particles and rigid bodies	PSO - 4	K3(Ap)
CO - 3	understand the ways of distributing loads	PSO - 5	K6 (C)
CO - 4	identify internal forces and moments of a rigid body	PSO - 3	K3(Ap)
CO - 5	apply the basic principles of projectiles into real world problems	PSO - 2	K3(Ap)

CO - 6	classify the laws of friction	PSO - 4	K4(An)

Total contact hours: 90 (Including lectures, assignments and tests)

		Teaching	Toophing			Assessme
Unit	Modul	Topics	Hours	Cognitive level	Pedagogy	nt/
	e		110015			evaluation
Ι		Forces Actin	ng at a Point	, Parallel Forces an	d Moments	
	1	Introduction to types of Forces and equilibrium of forces	1	K2(U)	Introductory session	Simple definitions, Recall basic definitions
	2	Forces Acting at a Point:Resultant and Components - Sample cases of finding the resultant, Analytical expression for the resultant of two forces acting at a point, Triangle forces, Perperndicular Triangular forces, Converse of the Trigangle of Forces, The Polygon of Forces, Lami's Theorem, Problems based on Lami's Theorem	3	K2(U) K3(Ap)	Interactive PPT using Gamma AI tool	Quiz using slido
	3	Resultant of two like parallel forces, two unlike and unequal parallel forces, Resultant of number of parallel forces, equilibrium of three coplanar parallel forces	3	K3(Ap) K6 (C)	Lecture using Chalk and talk	Evaluation through slip test

	4	Moment of a force, Geometrical representation, Varignon's theorem of moments	4	K3(Ap)	Flipped Classroom	Group Discussion
	5	Generalised theorem of moments, Problems based on Varignon's theorem of moments, Generalised theorem of moments	4	K3(Ap)	Lecture with interactive video	MCQ Using Nearpod
Π			Couples,	Coplanar Forces		
	1	Couples – Equilibrium oftwo couples – Representation of a couple by a vector – Resultant of coplanar couples – Resultant of couple and a force – Problems based on Couples, Introduction and reduction of any number of coplanar forces, Analytical proof	4	K2(U) K3(Ap)	Interactive PPT using Gamma AI tool	Oral test
	2	to reduce a single force or couple, Change of the base point & Equation to the line of action of the resultant	3	K2(U) K3(Ap)	Lecture with Interactive video	Quizziz
	3	Problems based on reduction of number of coplanar forces	2	K3(Ap)	Demonstratio n	Slip test
	4	Problems based on forces to reduce a single force or couple	3	K3(Ap)	Blended Classroom	MCQ
	5	Problems based on Equation to the line of action of the resultant	3	K3(Ap)	Flipped Classroom	MCQ using Nearpod
III				Friction		

		Introduction, Statical,					
		Dynamical, Limiting					
	1	friction and Laws of			Lecture with interactive PPT		
		friction, Coefficient of	4	K2(U)		Quiz using	
		friction. Angle of		K4(An)		Slido	
		friction. Cone of					
		friction					
		Equilibrium of a					
		particle on a rough					
		inclined plane					
		Equilibrium of a body					
		on a rough inclined		K2(U)	Evaluative	Formative	
	2	plane under a force	3	$K_4(An)$	Learning	Assessment	
		parallel to the plane.			Louining	Test I	
		Equilibrium of a body					
		on a rough inclined					
		planeunder any force					
		Problems based on					
	3	Coefficient of friction.	4	K2(U)	Blended	Assignment	
	U	angle of friction		K4(An)	Classroom	- L	
		Problems based on					
		Equilibrium of a					
		particle on a rough					
		inclined plane and		K2(U) K4(An)	Flipped Classroom	Group Discussion	
	4	equilibrium of a body	4				
		on a rough inclined			Chubbiooni	Discussion	
		plane under a force					
		parallel to the plane					
		I I					
IV				Projectiles			
		Fundamental			Lecture with		
		principles, Path of a			interactive	Evaluation	
	1	projectile,	3	K3(Ap)	PPT using	through short	
		Characteristics of the			Gamma AI	test	
		motion of a projectile			tool		
		Path of a projectile at a					
		certain height above					
		the ground, Problems					
	2	based on Path of a			Demonstratio	Practical	
	2	projectile, Problems	4	K3(Ap)	n	Exercises	
		based on					
		Characteristics of the					
		motion of a projectile					

	3	Maximum horizontal range, Two possible directions of projection,Problems based on maximum horizontal range and Two possibledirections of projection	4	K2(U) K3(Ap)	Inquiry Based Teaching	Oral Test
	4	Velocity of the projectile, Velocity of the projectile falling freely from the directrix, Problems based on Velocity of theprojectile	4	K2(U) K3(Ap)	Lecture with interactive video	Quiz using Nearpad
V		Ν	lotion under	the action of centra	al forces	
	1	Motion under the action of central forces – Introduction – Velocity and Acceleration in Polar Coordinates	4	K3(Ap)	Lecture with interactive PPT using Gamma AI tool	Quiz using Slido
	2	Equation of Motion in Polar Coordinates – Noteon the equiangular spiral – Motion under a central force	4	K3(Ap)	Lecture using Chalk and talk	Slip test
	3	Differential Equation ofcentral orbits – Perpendicular from the pole on the tangent – Pedal equation of the central orbit – Pedal equation of some of the well-known curves	4	K3(Ap)	Blended Classroom	Assignment
	4	Velocities in a central orbit – Two – fold problems in central orbits	3	K3(Ap)	Evaluative Learning	Formative Assessment Test II
	5	Johnson's Algorithm for Sparse Graphs- Preserving shortest	2	K3(Ap)	Demonstration	Assignment

paths by reweighting		
and related Lemma		

Course Focusing on Employability/Entrepreneurship/Skill Development : Skill Development

Activities(Em/En/SD) : 1. Evaluation through short test, Quiz competition

2. Model Making, Puzzles

Assignment: Preparation of quiz questions, Velocity of the projectile

Seminar Topic: Friction, Velocities in a centralorbit – Two – fold problems in central orbits.

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues : Nil

Sample questions

Part-A

1.State Lami's Theorem

2.If the force tends to turn the body in a clockwise direction, its moment is said to be

3. The conditions of equilibrium depend only on								
	a) couples	a) resultant	a)forces	e)none of these				
4.Co-effic	cient of frictio	on is						
a) FR b) F/R c) μ F d) μ R								
5.Greates 6. Force o	 Greatest height attained by a projectile is Force of friction depends on 							
	a) weight of t	he object b) s	peed c)Tin	d) None of these				

- 1. ABC is a given triangle Forces P,Q,R acting along the lines OA,OB,OC are in equilibrium. Prove that $P:Q:R = \cos{\frac{A}{2}}:\cos{\frac{B}{2}}:\cos{\frac{C}{2}}$ if O is the in centre of the triangle.
- 2. Forces P,4P,2P,6P act along the sides AB,BC,CD,DA of a square of side a. Show that the equation to the line of action of the resultant is 2x-y+6a = 0 with AB and AD as axes of coordinates.
- 3. State the laws of friction
- 4. A particle is projected horizontally from a point at a certain height above the ground show that the path described by it is a parabola.
- 5. If h and h¹ be the greatest heights in the two paths of a projectile with a given velocity for a given range R. Prove that $R = 4\sqrt{hh^1}$.

Part - C

1.State and prove Lami's theorem

2. State and prove Varigons theorem of moments.

3.Forces F₁, F₂, F₃, F₄, F₅, F₆ act along the sides of a regular hexagon taken in order. Show that they will be in equilibrium if (i) F₁+ F₂+ F₃+ F₄+F₅+ F₆=0 and (ii) F₁- F₄= F₃- F₆= F₅- F₂. 4. A uniform ladder is in equilibrium with one end resting on the ground and the other against a vertical wall; if the ground and wall be both rough, the coefficients of friction being μ and μ^1 respectively, and if the ladder be on the point of slipping at both ends, show that θ , the inclination of the ladder to the horizon is given by $tan \theta = \frac{1-\mu\mu^1}{2\mu}$

5. Show that the path of a projectile is a parabola.

6. Show that the greatest height which a particle with initial velocity v can reach on a vertical wall at a distance a from the point of projection is $\frac{v^2}{2g} - \frac{ga^2}{2v^2}$. Prove also that the greatest height above the point of projection attained by the particle in its flight is $\frac{V^6}{2g(v^4 + g^2a^2)}$.

Course Instructor Dr. S.Kavitha

Head of the Department Dr. S.Kavitha

Number Theory

Semester			: VI								
Name of the C	ourse		: Nur	nber T	`heory						
Course code			: MC	2063							
CourseCode	L	Т	Р	S	Credits	Inst. Hours	Total Hours		Μ	arks	
							Hours -	CIA	Extern	al	Total
MC2063	4	1	-	-	4	5	75	25	75		100

Objectives:

- 1. To introduce the fundamental principles and concepts in Number Theory
- 2. To apply these principles in other branches of Mathematics

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	express the concepts and results of divisibility of integers effectively	PSO - 1	U
CO - 2	construct mathematical proofs of theorems and find counter examples for false statements	PSO - 2	Ap
CO - 3	collect and use numerical data to form conjectures about the integers	PSO - 5	Ap
CO -4	understand the logic and methods behind the major proofs in Number Theory	PSO - 4	An

CO - 5	solve challenging problems related to Chinese remainder theorem effectively	PSO - 3	Ε
CO - 6	build up the basic theory of the integers from a list of axioms	PSO - 1	U

Total contact hours:90 (Including lectures, assignments and tests)

Unit	Modul e	Topics	Teachi ng hours	Cognitive Level	Pedagogy	Assessment/ evaluation
Ι		Di	visibility T	Theory in the Integer	s	
	1	Preliminaries–Numbers ,integers, Divisors and Divisibility Theory in the Integers	3	K1(R)	Lecture with Illustration	Evaluation through appreciative inquiry
	2	The Division Algorithm theorem and its applications	3	K2(U)	Lecture using PPT	Evaluation through quizzes and discussions.
	3	The greatest common divisor and least common multiple	3	K3(Ap)	Lecture using videos	Evaluation Through SlipTest
	4	Euclid's lemma and Euclidean Algorithm	3	K4(An)	Problem Solving	Evaluation through Quiz andTest
II			Diopha	antine Equation		
	1	The Diophantine Equation <i>ax+by=c</i>	3	K2(U)	Lecture with chalk and talk	Evaluation Through discussions.
	2	Primes and their Distribution.	3	K2(U)	Problem Solving	Evaluation through Appreciative inquiry

	3	The fundamental theorem of arithmetic	3	K3(Ap)	Lecture using PPT	Evaluation through Formative Assessment Test Evaluation
	4	The Sieve of Eratosthenes	3	K4(An)	Group Discussion	through Formative Assessment Test
III			The	ory of Congruences		
	1	Theory of Congruences	3	K2(U)	Lecture with Illustration	Evaluation through appreciative inquiry
	2	Basic properties of congruences	3	K3(Ap)	Flipped Class	Evaluation through quizzes and discussions
	3	Linear congruences and The Chinese remainder theorem.	3	K4(An)	Lecture using PPT	Evaluation through SlipTest
	4	Problems based on Chinese remainder theorem	3	K3(Ap)	Discussion with Illustration	Evaluation through Quiz andTest
IV				Pseudo primes		
	1	Fermat's Little theorem and Pseudo primes	2	K2(U)	Lecture with PPT Illustration	Evaluation through discussions
	2	Absolute Pseudo primes	3	K3(Ap)	Flipped Class	Evaluation through appreciative inquiry
	3	Wilsons theorem	3	K3(Ap)	Lecture with Illustration	Evaluation through Formative Assessment Test
	4	Quadratic Congruence	3	K5(E)	Group Discussion	Evaluation through SlipTest
V			Numbe	er Theoretic Function	ns	

1	Number Theoretic Functions	3	K2(U)	Lecture with Illustration	Evaluation through discussions.
2	The sum and number of divisors	3	K3(Ap)	Lecture and Group Discussion	Evaluation Through Assignment
3	The Mobius Inversion formula.	3	K4(An)	Flipped Class	Evaluation through FormativeAssess ment Test
4	The greatest integer function	3	K5(E)	Lecture with Illustration	Evaluation through SlipTest

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development

Activities (Em/ En/SD): Solving the Problems, Group discussion, Seminar, Assignment

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues: Nil

Assignment : The sum and number of divisors, The Mobius Inversion formula.

Seminar Topic: Basic properties of congruences, Problems based on Chinese remainder Theorem

Sample Questions

PART-A

- 1. Find gcd(12378,3024) using Euclidean algorithm.
- 2. The gcd (12,30) is
 - a) 7 b)6 c)3 d)1
- 3. A solution of the Diophantine equation is

4. An equation of the form $ax \equiv b(modn)$ is called as _____.

- a) Congruence b) Modular congruence c) Linear Congruence 5. $2^{31} \equiv (\mod 11)$
 - (a)11 (b)31 c)1 (d)2

PART-B

1. ABC is a given triangle Forces P,Q,R acting along the lines OA,OB,OC are in equilibrium. Prove that $P:Q: R = \cos{\frac{A}{2}}: \cos{\frac{B}{2}}: \cos{\frac{C}{2}}$ if O is the incentre of the triangle.

2. A body is projected with a velocity of 98 m/sec in a direction making an angle $\tan^{-1}3$ with the horizon; Show that it rises to a vertical height of 441 meters and that its time of flight is about 19 secs. Find also horizontal range through the point of projection. (g=9.8 m/sec²).

3. If $v_1 \& v_2$ be the velocities of a projectile at the ends of a focal chord of its path and

U is the velocity at the vertex prove that $v_1^{-2} + v_2^{-2} = U^{-2}$.

4. State and prove Fermat's theorem.

5. Show that the system of linear congruence $ax + br \equiv r(modn), cx + dy \equiv s(modn)$ has a unique solution modulo n whenever gcd (ad- bc, n) = 1.

PART-C

1. A and B are two fixed points on a horizontal line at a distance C apart. Two fine light strings AC and BC of lengths b and a respectively support a mass at

C. Show that the tensions of the strings are in the ratio $b(a^2 + c^2 - b^2) : a(b^2 + c^2 - a^2)$.

2. Prove that equation of the path of the projectile is a parabola.

3. State and prove Chinese RemainderTheorem.

4. Prove that the number $\sqrt{2}$ is irrational.

5. State and prove Wilson's theorem. Is the converse true?

Dr. S. Kavitha

Dr. J. Nesa Golden Flower

Course Instructor

Head of the Department

Linear Programming

Department	:	Mathematics (SF)
Class	:	III B.Sc. Mathematics (SF)
Title of the Course	:	Core XIII: Linear Programming
Semester	:	VI
Course Code	:	MC2064

Course Code	L	Т	Р	Credits	Inst. Hours	Total Hours		Marks	
							CIA	External	Total
MC2064	5	-	-	4	5	75	25	75	100

Objectives:

- 1. To formulate real life problems into mathematical problems.
- 2. To solve life oriented and decision making problems by optimizing the objective function.

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO -1	understand the methods of optimization and to solve the problems	PSO - 1	K2 (U)
CO - 2	explain what is an LPP	PSO - 1	K2 (U)
CO - 3	define how to formulate an LPP with linear constraints	PSO - 1	K1 (R)
CO - 4	maximize the profit, minimize the cost, minimize the time in transportation problem , Travelling salesman problem, Assignment problem	PSO - 3	K3 (Ap)

CO - 5	identify a problem in your locality, formulate it as an LPP and solve	PSO - 4	K6 (C)

Total contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Topics	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι						
	1	Formulation of LPP, Mathematical Formulation of LPP, Solution of LPP	3	K2 (U)	Introductory session, Lecture with illustration	Questioning, Recall steps, concept with examples
	2	Graphical method	4	K3 (Ap)	Flipped classroom	Group discussion
	3	Algorithm for Simplexmethod	1	K2 (U)	Lecture with illustration	Slip Test
	4	Simplex method problems	3	K3 (Ap)	PPT	Quiz using slido
	5	Algorithm for Big-M Method, Big-M Method problems	4	K2 (U)	Lecture Method	concept explanations

Π						
	1	Two phase method - Phase I: Solving auxiliary LPP using Simplex method	4	K3 (Ap)	Computational thinking	Evaluation through short test
	2	Phase II: finding optimal basic feasible solution	3	K3 (Ap)	Flipped classroom	concept definitions, concept with examples
	3	Duality in L.P.P, Primal, Formation of dual L.P.P, Matrix form of primal and its dual, Fundamental theorem of duality	3	K2 (U)	Blended learning	Quiz using Nearpod
	4	Dual Simplex Algorithm, Dual simplex problems	3	K2 (U)	Problem solving	Slip Test, Quiz using google forms
	5	Degeneracy and cycling in L.P.P.	2	K3 (Ap)	Lecture using videos	Brainstorming, Formative Assessment I
III						
	1	Mathematical formulation of Transportation Problems, Dual of a Transportation Problem	3	K1 (R)	Demonstrative	concept with examples, Questioning
	2	Solution of a Transportation Problem, North-West corner rule	3	K3 (Ap)	Lecture Method	Evaluation through short test
	3	Row minima method, Column minima method, Least Cost Method	3	K2 (U)	РРТ	Group discussion
	4		3	K2 (U)	Lecture with illustration	Brain storming

		Vogel's				
		Approximation				
		Method				
		Degeneracy in				
	5	Transportation	3	K3 (Ap)	Problem solving	Slip Test
		Problems				
IV					•	
		Assignment			Introductory	concept with
		Problems,			session	examples
	1	Mathematical	~	\mathbf{W}		
	1	formulation, Solution	5	КЗ (Ар)		
		to Assignment				
		Problems				
						concept
					Problem solving	explanations, Quiz
		Hungarian Algorithm				using Slido
	2	for solving	5	K3 (Ap)		
		AssignmentProblem				
	2	Travelling Salesman	F	$V2(\Lambda n)$	Computational	Group discussion,
	3	Problem	5	Кэ (Ар)	thinking	Assignment
V						
		Introduction to				concept with
	1	Sequencing	3	K1 (R)	Lecture Method	examples
		1 0		$K_{2}(\Lambda n)$	Problem solving	
	2	Processing n jobs in	4	кэ (Ар)	Floblem solving	Slip Test
		two machines				
		Processing n jobs in m		K3 (Ap)	Problem solving	Quiz using google
	3	machines	4			forms, Seminar
				$K_{3}(\Lambda_{n})$	Problem solving	Quiz using
		Processing two jobs		ng (np)	r toolein sorving	Mentimeter
	4	in m machines	4			Formative
		in in machines				Assessment II
						Assessment II

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Entrepreneurship

Activities (Em/ En/SD): Identify a problem in the locality, formulate it as an LPP and solve it.

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues: Nil

Assignment: Travelling Salesman Problem

Seminar Topic: Processing n jobs in m machines

Sample questions

Part A

- 1. A basic solution is said to be ______ if none of the basic variable is zero.
- (a) optimal (b) degenerate (c) non-degenerate (d) feasible
- 2. In Two phase method, the solution is obtained in _____ phases.
- State True or False: If the primal problem is of maximizing type then the dual problem is of minimizing type.
- 4. The assignment problem is said to be balanced if _____.
- State True or False: No machine may process more than one job simultaneously for sequencing problems.

Part B

- An egg contains 6 units of Vitamin A per gram and 7 units of Vitamin B per gram and costs 12 paise per gram. Milk contains 8 units of Vitamin A and 12 units of Vitamin B per gram and costs 20 paise per gram. The daily minimum requirements of Vitamin A and Vitamin B are 100 units and 120 units. Find the optimal product mix. Formulate a LP model for the above problem.
- 2. Write the algorithm of Two Phase Method.
- 3. Using Least Cost Method, find a basic feasible solution to the following transportation problem.

	\mathbf{W}_1	W_2	W ₃	a_i
F_1	8	10	12	900
F ₂	12	13	12	1000
F ₃	14	10	11	1200

b_j	1200	1000	900	3100

4. Solve the following Assignment problem

	А	В	С
Х	19	28	31
Y	11	17	16
Z	12	15	13

5. Write the algorithm to find the optimum sequence for n jobs in 2 machines.

Part C

- 1. Solve the following LPP by Big-M method: Minimize $z = 60x_1 + 80x_2$ subject to $20x_1 + 30x_2 \ge 900$ $40x_1 + 30x_2 \ge 1200$ $x_1, x_2 \ge 0.$
- 2. Explain Dual Simplex algorithm.
- 3. Solve the following transportation problem

	C	D	E	Availability
А	3	7	3	6
В	2	3	9	8
Requirement	4	7	3	14

4. A travelling salesman has to visit 5 cities. He wishes to start from a particular city, visit each city once and return to his starting point. Cost of travelling from one city to another it shown in the table below. Find the least cost route.

	А	В	С	D	E
A	8	4	10	14	2
В	12	8	6	10	4
С	16	14	8	8	14
D	24	8	12	8	10

E	2	6	4	14	8

5. Write the algorithm to find the optimum sequence for n jobs in m machines.

Stauen

Head of the Department: Dr.S.Kavitha

The ٠

Course Instructor: Dr.C.Jenila

Astronomy

Class	: III B.Sc Mathematics
Title of the course	: Major: Astronomy
Semester	: VI
Name of the Course	: Astronomy
Course code	: MC2065

Course	L	Т	Р	Credits	Inst.Hours	Total No. of	l Marks of		
coue						Hours	CIA	External	Total
MC2065	4	2	-	6	6	90	25	75	100

Objectives:

- 1. To introduce space science and to familiarize the important features of theplanets, sun, moon and stellar universe
- 2. To predict lunar and solar eclipses and study the seasonal changes

CO	Upon completion of this course the students will be	PSO	Cognitive
	able to	Addressed	level
CO - 1	define the spherical trigonometry of the celestial sphere	PSO - 4	K3
CO - 2	discuss the Kepler's laws	PSO - 4	К3
CO - 3	calculate the motion of two particles relative to the common mass centre	PSO - 3	K3 & K5

CO -4	interpret latitude and longitude and apply this to find the latitude and longitude of a particular place	PSO - 2	K2
CO - 5	distinguish between Geometric Parallax and Horizontal Parallax	PSO - 4	K4

Total Contact Hours:90 (Includinglectures, assignments and tests)

Unit	Module	Topics	Teaching Hours	Cognitive level	Pedagogy	Assessment/Ev aluation
Ι						
	1	Spherical trigonometry(only the fourformulae)- Celestialsphere	3	K2(U)	LectureIllustrati on	Simple definitions, Recall basic concepts
	2	Four systems of coordinates	3	K4(An)	Problem solving	oral,test
	3	Diurnalmotion- SiderealTime	3	K3(Ap)	Lecturewith Illustration	Evaluation through slip test
	4	Hour angle and Azimuthatrising	4	K3(Ap)	Flipped Classroom	MCQ using Nearpod
	5	MorningandEveningstars	3	K4(An)	Problem solving	Assignment
	6	Circumpolarstars	2	K4(An)	Computational learning	Home Assignment
п						
	1	The Earth - Zones of the earth	3	K4(An)	Lecture with chalk and talk Illustration	HomeAssignment
	2	PerpetualDayandPerpetualn ight	4	K2(U)	LectureIllustrati on	Evaluation through slip test
	3	Terrestrial attitude andlongitude	3	K3(Ap)	Experimental learning	MCQ using Nearpod

	4	Dip ofHorizon	4	K2(U)	Blended learning	FormativeAssessme nt Test I
	5	Twilight, Duration ofTwilight, Twilight throughout the night,Shortest Twilight.	4	K4(An)	Seminar	Quiz
ш						
	1	Geocentric parallax – Parallax, Effects of Geocentric parallax	3	K3(Ap)	Lecture with Illustration	Simple definitions
	2	Changes in R.A andDeclination of a bodydue to GeocentricParallax	4	K2(U)	Lecture using videos	Solving problems
	3	Angular diameter Equatorialhorizontal parallax	4	K4(An)	Flipped classroom	MCQ using slido
	4	HeliocentricParallax, Effect of HeliocentricParallax	3	K3(Ap)	Blended learning	Formative Assessment Test I
	5	To find the effectofParallax on theLongitudeandLatitudeof aStar-Parsec	4	K2(U)	LectureIllustration	OnlineAssignment
IV			ŀ	Kepler's laws		
	1	Kepler'slaws- EccentricityofEarth'sorbit	3	K4(An)	LectureIllustratio	n OralTest
	2	Verification ofKepler'sLaws(1)and(2)- Newton'sdeductions from Kepler'slaws	3	K3(Ap)	Computational learning	Short summary
	3	ToderiveKepler'sThird LawfromNewton'slaw ofGravitation, Tofind Themassofaplanet	4	K2(U)	Problem solving	Recall steps
	4	To fixthepositionofaplanetin itselliptic orbit, Geocentric andHeliocentric latitudesandlongitudes	4	K4(An)	LectureIllustratio	n FormativeTest, OnlineQuiz

	5	To prove that theHeliocentriclongitudeof the Earth andGeocentric longitudeof the Sun differ by180°	4	K2(U)	LectureIllustrati	on SlipTest	
V	Two Body Problem						
	1	Two Body Problem – Introduction, Newton's FundamentalequationofMot ion	4	K2(U)	Introductory to Two body Problems	Recall basic definitions	
	2	Motionofoneparticle relativetoanother	3	K3(Ap)	Experimental learning	Evaluation through online quiz	
	3	The motion of the common center of mass	3	K4(An)	Blended learning	FormativeAssessme nt Test II	
	4	The motion of two particles relative to the common mass center	4	K4(An)	Problem solving	Online Assignment	
	5	The motion of a planetwith respect totheSun	4	K2(U)	Lecture using videos	Solving problems	

Course Focusing on Employability/Entrepreneurship/Skill Development : Skill Development

Activities (Em/En/SD): Evaluation through short test, Seminar

Course Focusing on Cross Cutting Issues(Professional Ethics/Human Values/Environment Sustainability/Gender Equity)-Nil

Assignment:

1.To prove that the Helio centric longitude of the Earth and Geocentric longitude of the Sun differ by180°

2. The motion of the common center of mass

Seminar Topic:

Motion of two particles relative to the common mass center.

Sample questions:

Part-A

1. The Zenith distance is the complement of the.....

2. The observer observes the line of horizon at the point.....

3.State True or False: The direction in which the body is seen from the centre of earth is called heliocentric direction.

4. State Kepler's first law

5. Perigee and apogee are together called.....

Part – B

11. Write a short note on cardinal points

12. Write a short note on Dip of horizon

13. Derive tangent formula

14. Write a short note on Kepler's third law

15.Derive motion of one particle relative to another

Part – C

Answer all the questions:

16. Explain about morning and evening stars

17. Find the duration of twilight when it is shortest

18. Derive Cassin's formula for refraction

19.Explain interpretation of Newton's laws

20.Explain about Eclipses of sun

Head of the Department

Dr.S. KAVITHA

Dr.Y.A.SHINY