Department of Mathematics

Semester : II Major Core IV

Name of the Course : Algebra II Subject code : PM1721

	1			g Flaii				
Unit	Module	S Topics	Lecture hours	e I	Learning outcomes	Pedagogy	Assessment/ evaluation	
I	Vecto	r spaces and Inner Pro	duct Spa	ace				
	1	Subspaces, Quotient Spaces	4		recall and apply the inition of vector spaces	Lectures, Assignmen ts	Test	
	2	Homomorphisms of Linear Transformations	4		recall the definitions of momorphism	Lectures, Assignmen ts	Test	
	3	Linear Span , Linear Dependence and Independence	4	din nul	use the basic concepts nension, basis, rank and lity in analyzing trices	Lectures, Assignmen ts	Test	
	4	Inner Product Space - Norm of a vector, Orthogonality and Orthonormal sets	4	and orth spa Sch	mpute inner products I determine hogonality on vector aces, including Gram- midt chogonalization.	Lectures, Online Assignmen ts	Test	
II	Linear	Linear Transformations			•			
	1	Algebra of lir transformations	near 4	1	To use the definition and properties of Linear transformation in solving problems	Lectures, Assignment	Test	
	2	Invertible linear transformations	3	i i	To understand the concept matrices of Linear transformations and change of basis including kernel and range.	Lectures, Seminars	Test	
	3	Matrix of a linear transformation	3	;	To apply the principles and properties of matrix algebra in linear transformations	Lectures, Group Discussion	Quiz	
	4	Dual spaces	5	; '	To understand the theorems in dual spaces	Lectures, Assignmen ts	Test	
	5	Transpose of a linear transformation		To understand the concept Transpose of a linear transformation and to solve problems		Lectures, Seminars	Assignment	
III	Ejgen ve	alues and Eigen vectors		- '	and to solve problems	1	<u> </u>	
***	-	Characteristic	4		To write the characteristic	Lectures, Assignments	Quiz	

	polynomials		polynomials		
2	Characteristic polynomial of a linear operator	3	To demonstrate the characteristic polynomial of a linear operator	Online Assignments	Test
3	Minimal polynomials	3	To determine the minimal polynomials	Lectures, Seminars	Test
4	Diagonolizable operators	3	To diagonalise the symmetric matrices	Group Discussions, Online Assignments	Assignment
5	Primary decomposition theorem		To understand and apply the Primary decomposition theorem	Lectures	Formative Assessment Test
Invar	iant subspaces	1	T	1	T
1	Invariant subspaces	4	To understand the concept Invariant subspaces	Lectures, Group discussion	Test
2	Triangulable linear operator	3	To use triangulable linear operator in solving problems	Lectures	Test
3	Cyclic subspaces, T-annihilator	5	To understand the theorems in Cyclic subspaces and T-annihilator	Lectures, Group discussion	Quiz, Test
4	Projection	2	To demonstrate the concept and to solve problems	Lectures, Assignmen ts	Assignment
Fields	5			•	
1	Algebraic extensions	3	To recall the definition of fields and to learn the concept Algebraic extensions	Lectures, Group discussion	Test
2	Roots of polynomials	3	To determine the roots of polynomials	Lectures, Assignmen ts	Formative Assessment test
3	Splitting fields	4	To demonstrate the concept and to solve problems	Lectures, Group discussion	Test
	3 4 5 Invar 1 2 3 4 Fields 1	2 Characteristic polynomial of a linear operator 3 Minimal polynomials 4 Diagonolizable operators 5 Primary decomposition theorem Invariant subspaces 1 Invariant subspaces 2 Triangulable linear operator 3 Cyclic subspaces, T-annihilator 4 Projection Fields 1 Algebraic extensions	2 Characteristic polynomial of a linear operator 3 Minimal polynomials 3 4 Diagonolizable operators 3 5 Primary decomposition theorem Invariant subspaces 1 Invariant subspaces 4 2 Triangulable linear operator 3 Cyclic subspaces, 5 T-annihilator 5 Fields 1 Algebraic extensions 3 2 Roots of polynomials 3	2 Characteristic polynomial of a linear operator 3 Minimal polynomials 4 Diagonolizable operators 5 Primary decomposition theorem Invariant subspaces 1 Invariant subspaces 2 Triangulable linear operator 3 To understand the concept Invariant subspaces 4 To understand the concept Invariant subspaces 2 Triangulable linear operator 3 To use triangulable linear operator in solving problems 3 Cyclic subspaces, T-annihilator 4 Projection 2 To understand the theorems in Cyclic subspaces and T-annihilator 4 Projection 2 To demonstrate the concept and to solve problems Fields 1 Algebraic extensions 3 To recall the definition of fields and to learn the concept Algebraic extensions 2 Roots of polynomials 3 Splitting fields 4 To demonstrate the concept and to solve	2 Characteristic polynomial of a linear operator

Course Instructor(Aided): Dr.J.Befija Minnie Course Instructor(S.F): Ms. S. Kavitha HOD(Aided) :Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. J. Anne Mary Leema Semester : II Major Core VI

Name of the Course : Analysis II Subject code : PM1722

Uni t	Module	es	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	Rien	ann S	Stieltjes Integral	nours			evaluation
	1	Defi	inition and existence mann Stieltjes integra		To understand the definition existence of Riemann Stieltjes integrals	Lecture with Illustration	Evaluation through test
	2		orems related to mann Stieltjes integra	als 3	To understand the theorems related to Riemann Stieltjes integrals	Lecture	Q&A
	3	Stie	perties of Riemann ltjes integrals	3	To understand the properties of Riemann Stieltjes integrals	Lecture with Illustration	Open Book Assignment
	4	Fundamental theorem of Calculus and related problems		3	To understand and apply this theorem in various problems	Lecture with Illustration	Quiz
	5	Rectifiable curves and problems		3	To understand rectifiable curves and able to do the problems related to it.	Lecture with Illustration	Group Discussion
II	Sequen	ces ar	nd series of function	S			,
	1	Defin	nition and examples of ergence sequence		Recall the definition understand the examples of convergence sequence	Lecture with Illustration	Test
	2	based	nition and theorems d on uniform ergence and continuit	6 ty	To distinguish between convergence and uniform convergence	Lecture	Open book assignment
	3	Theorems based on uniform convergence and differentiation		3	To understand the relation between the uniform convergence and differentiation	Lecture	Q&A
	4		lems based on ences and series of ions	3	To analyze and solve the problems	Group Discussion	Formative Assessment Test
III	Equico		ous families of funct				
	1	based famil	nition and theorems d on equicontinuous lies of functions	5	To understand the definition and theorems based on equicontinuous families of functions	Lecture with Illustration	Quiz
	2	close	nition of uniformly ad algebra and ormly clousure	4	To understand the concept of uniformly closed algebra in various	Lecture with Illustration	SlipTest

				theorems		
	3	Stone Weierstrass theorem	2	To learn Stone Weierstrass theorem	Lecture	Test
	4	Problems on equicontinuous families of functions	3	To apply the concept of equicontinuous and solve problems	Group Discussion	Brain Storming
IV	Son	ne special functions				
	1	Definition, Theorems and examples of analytic function and power series	4	To learn the concept of power series	Lecture with Illustration	Quiz
	2	The algebraic completeness of the complex field	3	To get the idea of algebraic completeness of the complex field	Lecture and group discussion	Test
	3	Definition and theorems related to Fourier Series		To learn the definition and theorems related to Fourier Series	Lecture with Illustration	Test
	4	Problems related to Fourier Series	4	To understand the significance of Fourier series and apply it in problems	Lecture with Illustration	Formative Assessment Test
V	Diffe	erentiation				
	1	Introduction of differentiation, Definition of total derivative and examples	4	To identify total derivative problems	To identify total Lecture derivative problems with Illustration	
	2	Theorems and examples based on Partial derivatives	4	To apply the concept of Partial derivatives	Lecture with Illustration	Q&A
	3	3 Definition of continuously differentiable and related theorems		To utilize the concept of continuously differentiable	Lecture with Illustration	Open Book Assignment
	4	Contraction principle and related theorems	3	To interpret the concept of contraction principle	Lecture with Illustration	Assignment
	5	The inverse function theorem and problems		To develop the proof technique and solve problems.	Lecture with Illustration	Quiz and Test

Course Instructor(Aided): Dr. K. Jeya Daisy
Course Instructor(S.F): Ms. R.N. Rajalekshmi
HOD(S.F): Ms.J. Anne Mary Leema

Semester : II Major Core VII

Name of the Course : Partial Differential Equations

Subject code : PM1723

Unit	Mod	ules	Topics	Lectur hours	re	Learning outcomes	Pedagogy	Assessment/ evaluation	
I	Non -linear partial differential equations of first order								
	1	Expl	anation of terms,		3	To Recall the	Lecture	Quiz	
		compactible system of first order		order		definitions of complete			
		equa	tions, Examples related	to		integral, particular			

		compactible system		integral and singular integral		
	2	Charpit's Method and problems, Problems related to charpit's method	4	To Analyze Charpit's Method and to solve the problems.	Lecture	Assignment
	3	Problems related to charpit's method	2	To Learn Charpit's Method methods to solve the problems	Lecture	Test
	4	Solving problems using charpit's method	3	To Learn Charpit's Method methods to solve the problems	Lecture with group discussio n	Test
	5	Problems related to charpit's method	3	To Learn Charpit's Method methods to solve the problems	Lecture	Assignment
II	Spec	ial methods of solutions applicable	to ce	rtain standard forms		
	1	Standard form I, Examples related to standard form I	4	To solve problems related to standard form I	Lecture with group discussion	Test
	2	Standard form II, Examples related to standard form II	3	To solve problems related to standard form II	Lecture	Quiz
	3	Standard form III, Problems based on Standard form III	3	To solve problems related to standard form III	Lecture	Formative Assessment
	4	Standard form IV and examples	2	To solve problems related to standard form IV	Lecture	Test
	5	Jacobi's Method for solving a non- linear first order partial differential equation and Examples, Cauchy's Method for solving a non- linear partial differential equation	3	Learn some methods to solve the problems of non- linear partial differential equation	Lecture with group discussion	Test
III	Hom	ogeneous linear partial differentia	l equa	ation with constant coeff	icient	
	1	Homogeneous and non- homogeneous linear equation with constant coefficient, Solution of finding homogeneous equation with constant coefficient, Theorem I, II	2	To Analyze homogeneous linear partial differential equations with constant coefficients	Lecture	Test
	2	Method of finding complementary function, Working rule for finding complementary function, Alternative working rule for finding complementary function	2	To Learn some methods to solve the problems of homogeneous linear partial differential equations with constant coefficients	Lecture	Test
	3	Some examples for finding	3	To find Complementary	Lecture	Test
				· · · · · · · · · · · · · · · · · · ·		

		Complementary function		function		
	4	General method and working rule	3	To find particular	Lecture	Test
		for finding the particular integral		integral of		
		of homogeneous equation and		homogeneous equation		
		some example				
	5	Examples to find the particular	3	To find particular	Lecture	Test
		integral		integral		
IV	Non -	- homogeneous linear partial diffe	rentia	al equations with constan	t coefficien	t
	1	Definition, Reducible and	2	Analyze non-	Lecture	Quiz
		irreducible linear differential		homogeneous linear	with	
		operators, Reducible and		partial differential	group	
		irreducible linear partial		equations with constant	discussion	ı
		differential equations with		coefficients and to solve		
		constant coefficient,		the problems		
		Determination of complementary				
		function				
	2	General solution and particular	3	To solve problems	Lecture	Assignmen
		integral of non-homogeneous		related to non-		t
		equation and some examples of		homogeneous equations		
	_	type 1		of type 1		
	3	Some examples of type 2	3	To solve problems	Lecture	Assignmen
				related to non-		t
				homogeneous equations		
			-	of type 2	-	
	4	Some problems related to type 3	3	To solve problems	Lecture	Formative
				related to non-		Assessment
				homogeneous equations		
	5	Evamples related to type 4	4	of type 3 To solve problems	Lecture	Assisanman
	3	Examples related to type 4, Miscellaneous examples for the	4	related to non-	Lecture	Assignmen t
		determination of particular		homogeneous equations		1
		integral		of type 4		
V	Roun	dary Value Problem		or type 4		
•	1	A Boundary value problem,	2	To Solve the boundary	Lecture	Quiz
		Solution by Separation of		value problems for the		
		variables, Solution of one		wave equations		
		dimensional wave equation,		1		
		D'Alembert's solution, Solution				
		of two dimensional wave				
		equation				
	2	Vibration of a circular	4	To Solve the boundary	Lecture	Test
		membrane, Examples related to		value problems related		
		vibration of a circular membrane		to vibration of a circular		
				membrane		
	3	Solution of one dimensional heat	4	To Solve the boundary	Lecture	Formative
		equation, Problems related to		value problems for the		Assessment
		solution of one dimensional heat		heat equations		
		equation				
	4	Solution of two dimensional	2	To find the Solution of	Lecture	Test
		Laplace's equation		two dimensional		

			Laplace's equation		
5	Solution of two dimensional heat equation	2	To Apply the concepts and methods in physical	Lecture	Assignment
	equation		processes like heat		
			transfer and		
			electrostatics		

Course Instructor(Aided): Ms.J.C.Mahizha Course Instructor(S.F): Ms. V. Mara Narghese HOD(Aided) :Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. J. Anne Mary Leema

Semester : II

Name of the Course : Graph Theory Major Core VIII

Subject Code : PM1724

TT *4	Teaching Figure								
Unit	Modu	iles	Topics	Lect		Learning outcomes	Pedagogy	Assessment/	
				houi	rs .			evaluation	
I	Conn	ectivit							
	1	Cut v	vertices - Definition	s and	4	Recall the basic	Lecture	Test	
		Exan	nples, Theorems bas	sed on		definitions and	with		
		Cut v	vertices, Theorems b	based		fundamental concepts of	illustration		
		on C	ut vertices			graph theory			
	2	Bloc	ks - Definition and		3	Identify blocks and	Lecture	Test	
			nple, Theorem base	d on		understand various			
			eparable, Properties			versions of			
			ks in a nontrivial	, 01		connectedness of a			
			ected graph,			graph			
			nectivity - Definition	ne and		graph			
		Exan	•	iis aiiu					
	3		<u> </u>		1	C - 1 1-1	T4	T4	
	3		ler Whitney's Theo	rem,	4	Solve problems	Lecture	Test	
			rems based on	٠,		involving connectivity	with Group		
			nectivity, Connectiv	-			Discussion		
			edge-connectivity no	umber					
			ne cubic graph						
	4		ry graphs, Theoren		4	Understand the concept	Lecture	Test	
			d on Harary graphs,			of Harary graphs and			
			letic Sets - Definition			Geodetic Sets.			
		and I	Examples, Theorem						
		based	d on Geodetic Sets						
II		Digra	aphs						
		O	•						
	1	Strong	g Digraphs - Definit	tions	3	To understand the	Lecture	Test	
		and E	xamples, The First			definition of Strong			
			em of Digraph The			Digraphs and prove			
			ems related to Digr			theorems related to			
				1		Digraphs			
	2	Theor	ems related to Eule	rian	3	To prove theorems	Lecture	Formative	
			em related to Strong			related to Eulerian and		Assessment	
		orient	,	5		Strong orientation		Test	
		orient	unon			Strong offentation	l	1031	

	3	Tournaments - Definitions and	3	To practice various	Lecture	Test
	3)	Theorems related to	Lecture	1681
		Examples, Theorem related to				
		Tournaments		Tournaments	_	
	4	Theorem based on Tournament	3	Understand the concept	Lecture	Test
		and Hamiltonian path, Theorem		of Hamiltonian path,		
		based on strong tournament		and strong tournament		
III		Matchings and Factorization				
	1	Matchings - Definitions and Examples, Theorem related to matching, Theorem related to system of distinct representatives	3	Identify Matchingsand prove theorems	Lecture	Quiz
	2	The Marriage Theorem, Theorem based on perfect matching, Gallai identities	3	To practice various Theorems	Lecture with illustration	Test
	3	Factorization - Definitions and Examples, Tutte's Theorem, Petersen's Theorem	3	To understand the concept Factorization with examples and theorems	Lecture with group discussion	Test
	4	Theorem based on 1- factor, Theorem based on 2- factorable, Hamiltonian Factorization, Theorem based on Hamiltonian Factorization	3	To compare the concepts 1- factor and 2-factorable, Hamiltonian and Factorization	Lecture	Assignment
	5	Theorem based on Kirkman triple system, Theorem based on Hamiltonian cycles and 1-factor, Decompositions and Graceful Labelings- Definitions and examples, Theorems related to Graceful labelling	3	To understand the definitions of Hamiltonian cycles, Decompositions and Graceful Labelings		
IV		Planarity and Coloring				
	1	Planar Graphs Planar Graphs - Definitions and Examples, The Euler Identity, Consequence of Euler Identity, Theorems related to Planar Graphs	3	Cite examples of planar and nonplanar graphs	Lecture with illustration	Quiz
	2	Necessary condition for a graph to be planar, Kuratowski's Theorem, Vertex Coloring - Definitions and Examples, The Four Color Theorem	3	Learn necessary conditions for planar graphs	Lecture	Test
	3	Theorems and Examples related to chromatic number, An upper bound for the chromatic number of a graph in terms of its maximum degree, Brook's Theorem, Theorem based on	3	To practice various Theorems	Lecture	Test

		triangle - free graph				
	4	Theorem based on triangle - free graph, Edge Coloring-Definitions and Examples, Vizing's Theorem, Theorems related to edge chromatic number	3	Understand the concept of Edge Coloring and edge chromatic number	Lecture	Test
	5	The Five Color Theorem, The Heawood Map Coloring Theorem and it's corollary	3	To practice various Theorems	Lecture with group discussion	Test
V		Ramsey Numbers & Distance				
	1	The Ramsey Number of Graphs, Ramsey's Theorem based on Ramsey Number of Graphs, Illustrations for Ramsey Number	3	Determine the Ramsey number of certain graphs	Lecture with illustration	Quiz
	2	Theorems based on Ramsey Number of Graphs, Turan's Theorem,	3	To practice various Theorems	Lecture	Test
	3	Theorems based on Turan's Theorem, Theorem based on triangle	3	To practice various Theorems	Lecture	Formative Assessment Test
	4	Investigating the maximum size of a non-Hamiltonian graph, Theorem related to Hamiltonian, Distance - The center of a graph, Definitions and examples	3	To identify the center of a graph	Lecture	Assignment
	5	Theorems based on center of a graph, Distant Vertices, Theorems based on eccentricity, Theorems based on boundary vertex	3	To practice various Theorems	Lecture	Assignment

Course Instructor(Aided): Dr. V. Sujin Flower HOD(Aided): Dr. V. M. Arul Flower Mary Course Instructor(S.F): Ms. J. Anne Mary Leema HOD(S.F): Ms. J. Anne Mary Leema

Semester : II Elective II

Name of the Course : Classical Dynamics

Subject code : PM1725

Unit	Mod	dules	Topics		ture urs	Learning outcome	Pedago gy	Assessme nt/ Evaluatio n
I	The	Mech	anical System					
	1	Introd	uction on the Mechanical		3	Understanding the	Lecture	Short Test
		Syste	m. equations of motion	equations of motion,		generalized co-		

		generalized coordinates, degrees		ordinates, degrees of		
		of freedom, configuration space		freedom,		
				configuration space		
				of the Mechanical		
	2	Holonomic constraints,	3	system. To define	Lecture	Test
	2	Nonholonomic constraints,	3	Holonomic	and	Test
		Unilateral constraints and		constraints,	group	
		examples		Nonholonomic	discussi	
		•		constraints,	on	
				Unilateral constraints		
				with illustration		
	3	Virtual displacement and virtual	3	To identify virtual	Lecture	Test
		work, Principle of virtual work, D' Alembert's Principle,		displacement and virtual work,		
		D'Alemoert's Finicipie,		Principle of virtual		
				work, D' Alembert's		
				Principle,		
	4	Generalized force and examples,	3	Define Generalized	Lecture	Test
		Potential energy, work and		force with examples,		
		kinetic energy, Conservation of		Potential energy,		
		energy		work and kinetic		
				energy, Conservation of energy		
	5	Equilibrium and stability, angular	3	To study generalized	Lecture	Test
		momentum, generalized	3	momentum, angular	Lecture	1030
		momentum and examples.		momentum and		
		2		examples.		
II		rivation of Lagrange's equations	-			
	1	Problems using Lagrange's	3	To solve problems	Lecture	Test
		equation, Form of the equations of motion, Non holonomic systems.		using Lagrange's equation, Form of the		
		motion, Ivon notonomic systems.		equations of motion		
				and Non holonomic		
				systems.		
	2	Spherical pendulum, Double	3	To define Spherical	Lecture	Test
		pendulum, Lagrange Multiplier		pendulum, Double	and	
		and constraint forces		pendulum, Lagrange	discussi	
				Multiplier and constraint forces	on	
	3	Particle in whirling tube, A	3	To understand	Lecture	Formative
		particle with moving support,		particle in whirling		Assessme
				tube, and the particle		nt
				with moving support,		
	4	Rheonomic constrained system,	3	To define rheonomic	Lecture	Test
		Ignorable coordinates, Example		constrained system,		
		based on the Kepler Problem		Ignorable coordinates and example based		
				on the Kepler		
				Problem		
	1				l	1

III	5 Han 1	Routhian Function, Conservative systems, Natural systems, Liouville's system milton's Principle Stationary values of a function, Constrained Stationary values, Stationary value of a definite integral.	3	To understand Routhian Function, Conservative systems, Natural systems and Liouville's system To define stationary values of a function, Constrained Stationary values and stationary value of a	Lecture Lecture and discussi on	Test
	2	Solving The Brachistochrone problem and Geodesic path Case of n independent variables	3	definite integral. To solve the Brachistochrone problem and Geodesic path Case of n independent variables	Lecture	Test
	3	Multiplier Rule, Derivation of Hamilton's Equations The form of the Hamiltonian function	3	To understand Multiplier Rule, and Derivation of Hamilton's Equations and the form of the Hamiltonian function	Lecture and discussi on	Test
	4	Legendre transformation The form of the Hamiltonian function Problems based on Hamilton's Equations	3	To evaluate the form of the Hamiltonian function Problems based on Hamilton's Equations	Lecture	Test
	5	Modified Hamilton's Principle Principle of least action, Problems based on other Variational Principles	3	To understand Modified Hamilton's Principle ,Principle of least action and Problems based on other Variational Principles	Lecture	Formative Assessme nt
IV	Har	milton's Principal function	ı			
	1	Introduction on Hamilton's Principal function The canonical integral Pfaffian differential forms	3	To understand the foundation of Hamilton's Principle and differential forms.	Lecture	Test
	2	The Hamilton - Jacobi equation, Illustration of the Hamilton- Jacobi equation	3	To understand The Hamilton - Jacobi equation with Illustration	Lecture	Test
	3	Any complete solution of the Hamilton - Jacobi equation leads to a solution of the Hamilton	3	Evaluating any complete solution of the Hamilton -	Lecture	Test

		Problem		Jacobi equation		
	4	Kepler's Problem. Jacobi's theorem, Conservative systems	3	To learn Kepler's Problem. Jacobi's theorem and Conservative systems	Lecture	Test
	5	Ignorable coordinates, Modified Hamilton - Jacobi equation Examples on Ignorable coordinates	3	To understand Ignorable coordinates, Modified Hamilton - Jacobi equation with Examples	Lecture and discussi on	Test
V	Can	onical Transformations				
	1	Introduction to Differential forms and generating functions, Canonical Transformations Principle form of generating functions	3	To understand Differential forms generating functions, Canonical Transformations and Principle form of generating functions	Lecture	Test
	2	Further comments on the Hamilton- Jacobi method, Examples on Canonical Transformations, Some simple transformations	3	To identify the Hamilton- Jacobi method with Examples on Canonical Transformations and some simple transformations	Lecture	Test
	3	Homogenous canonical transformations, Point transformations, Momentum transformations	3	To understand Homogenous canonical transformations, Point transformations, Momentum transformations	Lecture	Test
	4	. Examples based on Special transformations,	3	To identify examples based on Special transformations	Lecture	Test
	5	Introduction to Lagrange and Poisson brackets, Problems based on Lagrange and Poisson brackets, The bilinear Covariant	3	To understand Lagrange and Poisson brackets, Problems based on Lagrange and Poisson brackets and the bilinear Covariant	Lecture	Formative Assessme nt

Course Instructor(Aided): Ms. T.Sheeba Helen Course Instructor(S.F): Ms. D. Berla Jeyanthy HOD(Aided) :Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. J. Anne Mary Leema

: IV Semester Major

Core XII

:Complex Analysis : PM1741 Name of the Course

Subject code

		Topics	Lecture	Learning outcomes	Pedagogy	Assessment		
(Secti on	Topics	hours	Learning vaccomes	redugogy	/evaluation		
I	Comp	lex Functions						
	1	Introduction to theConcept of Analytic Function - Analytic functions	4	To understand the concept of analytic function	Lecture with illustration	Test		
	2	Polynomials	2	To understand the concept and practice theorems	Lecture with illustration	Test		
	3	Rational functions	4	To understand the concept and practice theorems	Video	Test		
	4	Elementary Theory of Pow Series-Sequences, Series	er 2	To understand the concept of sequences & series	Lecture	Test		
	5	Uniform Convergence	2	To understand the concept Uniform Convergence and develop theorems	Lecture with group disscussion	Formative Assessment Test I		
II	Power series							
		Definition and Problems related to Power Series and Radius of Convergence	4	To understand the definition of Power Series and Radius of Convergence and solve problems based on the concept	Lecture with group disscussion	Assignment		
		Abel's theorem, Abel's limi theorem	t 3	To understand the concept and practice theorems	Lecture	Quiz		
	3	The Exponential	3	To understand the concept and practice theorems and solve problems based on the concept	Lecture with illustration	Formative Assessment Test I &II		
		Trigonometric functions, The periodicity	4	To understand the concept of Trigonometric functions& The periodicity and solve problems based on the concept	Lecture with group disscussion	Test		
III		Analytic functions as mappi	ngs					
	1 c	conformality - Arcs and	5	To understand the	Lecture	Test		

		closed curves, Analytic		definition of Arcs and	with	
		Functions in Regions		closed curves& Analytic	illustration	
				Functions in Regions		
	2	Conformal Mapping		To understand the	Lecture	Test
			3	concept of Conformal		
			-	Mapping		
	3	Length and Area, Linear		To understand the	Lecture	Quiz
		transformations - The linear	2	concepts and give		
		group		illustrations		
	4	The Cross Ratio, Symmetry		To understand the	Lecture	Formative
		, ,	~	concepts of The Cross	with group	Assessment
			5	Ratio&Symmetry and	disscussion	Test II
				develop theorems.		
IV		Complex Integration		.	4	
		complex integration				
	1	Fundamental theorems - Line		To understand the	Lecture with	Test
		Integrals ,Rectifiable Arcs	4	concept and practice	illustration	
		-		theorems		
	2	Line Integrals as Functions of		To practice theorems	Lecture	Test
		Arcs, Cauchy's Theorem for a	4	based on this concepts		
		Rectangle, Cauchy's Theorem	4	_		
		in a Disk				
	3	Cauchy's integral formula,		To understand the	Lecture with	Test
		The Index of a Point with	3	concept and practice	illustration	
		Respect to a Closed Curve	3	theorems related to this		
				concepts.		
	4	The Integral Formula, Higher		To solve problems	Lecture	Formative
		Derivatives	2	using this concepts.		Assessment
						Test II &III
	5	Local Properties of Analytic		To understand the	Seminar	
		Functions - Removable	4	concepts and give		
		singularties and Taylor's	•	illustrations& practice		
		theorem, Zeros and poles.		theorems		
\mathbf{V}		The local mapping				
	1	The maximum principle,	5	To understand the	Lecture with	Assignment
		The General Form of		concept and practice	illustration	
		Cauchy's Theorem		theorems related to this		
				concepts.		
	2	Chains and Cycles, Simple	3	To understand the	Lecture with	Quiz
		Connectivity, Homology		concept and practice	illustration	
				theorems related to this		
				concepts.		
	3	The General Statement of	3	To understand the	Lecture	Test
		Cauchy's Theorem		concept about Calculus		
		(statement only), The		of Residues.		
		Calculus of Residues				
	4	The Residue Theorem, The	2	To understand the	Lecture with	Formative
		Argument Principle		concept and practice	illustration	Assessment

			theorems related to this		Test III
			concepts.		
5	Evaluation of Definite	2	To solve problems	Video	Test
	Integrals.		related to Definite		
	_		Integrals.		

Course Instructor(Aided): Sr. Antony Mary

HOD(Aided): Dr. V. M. Arul Flower

Major Core XIII

Mary

Course Instructor(S.F): V.Princy Kala

HOD(S.F): Ms. J. Anne Mary Leema

Semester : IV
Name of the Course : Functional Analysis

Subject code : PM1742

TT . *4	G 4		Lecture Learni		C	D. 1	
Unit	Section	Topics		re	Learning outcomes	Pedagogy	Assessment/
	**	111	hours				evaluation
I		l linear space		•		T +	
	1. Definition and, examples of a normed linear space and a		2	To understand the	Lecture	Test	
				concept of normed linear			
	B	anach Space, Small			space		
	p ₁	reliminary					
	re	sults, Theorem-N/M i	s a				
	В	anach space					
	2. P	roperties of a Closed	unit	3	To understand the	Lecture	Group
		ohere Holder's Inequa			Properties of a Closed	with	Discussion
	and Minkowski's Inequal Equivalent conditions		•		unit sphere	illustration	
			,			S	
		eorem on continuous					
		near transformations					
		(N,N^1) is a Banach		2	To understand the	Lecture	Test
		pace, Functionals and	it'e	_	concept ofFunctionals	Lecture	1050
		roperties	ıı s		and it's properties		
		efinition of an Operat	tor	4	Defining the Operator	Lecture	Test
	-	nd small results on	101	7	Demning the Operator	Lecture	1030
		perators Side result of	2				
		ahn Banach theorem					
			паш				
		anach theorem	T Tale	2	7D 1 1 1 C 1	T .	C
		heorem based on	,	2	To apply the definitions	Lecture with	Group discussion
		heorem based	on		to prove the theorem	illustration	discussion
		ınctional					
		N*, Problems based	on			S	
	Normed linear spaces						
II	(Conjugate space					
	1.	Definitions of second		5	To understand the	Lecture	Test
		conjugate space,			definition of conjugate		
		induced functional, wea	ık		space,weak*		
		topology, weak*			topology,strong		
		topology,strong			topology.		

	1	1 DAININ'		1	T		
		topology,B(N,N1)is a					
		Banach space Functionals					
		and it's properties					
	2.	Theorem on isometric		5	To apply the definition	Lecture	Q&A
		isomorphism of Open			and Lemmato prove the		
		mapping theorem) Open			theorem		
		mapping theorem					
	3.	Theorem on Projection		5	To practice theorems	Lecture	Formative
		Closed Graph			related to this concepts.		Assessment
		TheoremUniform,					Test
		Boundedness Theorem on					
		isometric isomorphism					
III	Hilber	t Space					
	1.	Definition and	3		To understand the	Lecture	Quiz
		examples, Properties of a			Definition of a Hilbert		,
		Hilbert Space, Schwarz			Space		
		Inequality, Parallelogram			•		
		lawTheorem on Convex					
		subset of a Hilbert Space					
	2.	Theorem on Orthogonal	2		To apply the laws to	Lecture	Test
		Complements,			prove the theorem	with	
		Theorem on Orthogonal			prove the theorem	illustration	
		Complements,					
		Theorem on closed linear					
		subspaces					
	3.	Theorem on the direct	5		To apply the Bessel's	Lecture	Brain
		sum of closed linear			Inequality on Theorems	with group	storming
		subspace M of a Hilbert			inequality on Theorems	discussion	sterming
		Space and M [⊥]					
		Bessel's Inequality					
		Orthonormal Sets					
	4.	Theorems on	5		To understand the	Lecture	Assignment
		Orthonormal Sets			concept of Schmidt	Zeetare	11551811110111
		Gram –Schmidt			Orthogonalization		
		Orthogonalization			Process		
		Process			Trocess		
		Theorem on Conjugate					
		Space H*					
IV	Adioir	nt operator	l			1	
		Definition and small results	s.	3	Acquire the knowledge	Lecture	Q&A
		Theorem on the properties		-	about properties of an	with	
		of an adjoint operator			adjoint operator	illustration	
		Theorem on the properties					
		of an adjoint operator					
	2.	Theorem-The set of all self	2 .	3	Applying theorems on	Lecture	Q&A
		adjoint operators is a real	· '	_	self adjoint operators	Lecture	Zur i
		Banach space,			sen adjoint operators		
		Theorems on self adjoint					
		operators					
		Theorems on self adjoint					
ĺ		Theorems on sen aujoint					

	2	operators	-	A	T .	CI. T
	3.	Properties on Normal and	5	Acquire the knowledge	Lecture	Slip Test
		Unitary Operators,		about Normal and		
		Theorems on Normal and		Unitary Operators		
		Unitary Operators,				
		Theorems on Normal and				
		Unitary Operators,				
		Projections-Definitions and				
		preliminaries				
		Theorems on Projections				
	4.	Theorems on Projections,	4	Apply the concept of	Lecture	Formative
		Theorems on invariant		invariant subspace on		Assessment
		subspace		theorems		Test
		Projection theorem				
		Problems on Projections				
\mathbf{V}		Eigen vectors and Eigen value	e S			
	1.	Eigen vectors and Eigen	3	To understand the	Lecture	Quiz
		values,		definition of Eigen	with	
		Results on Eigen vectors		vectors and Eigen	illustration	
		and Eigen values,		values		
		Properties of matrices				
	2.	Properties of matrices	4	To categorize the	Lecture	Test
		Theorems on Matrices,		Properties of matrices		
		Theorem on similar		on		
		matricesand		Theorems		
		Properties of Determinants				
	3.	Properties of Determinants,	5	To know Properties of	Lecture	Slip Test
		Theorems on Determinants,		Determinants		
		Theorems on Determinants				
		and				
		Side results of Spectral				
		Theorem				
	4.	I	4	To apply the previous	Lecture	Assignment
		and Spectral Resolution		results on Spectral		
		Theorem on Spectral		Theorem		
		Resolution				

Course Instructor(Aided): Dr. V. M. Arul Flower Mary HOD(Aided): Dr. V.

M. Arul Flower Mary

Course Instructor(S.F): V.G.Michael Florance HOD(S.F) :Ms. J. Anne

Mary Leema

Major Core XIV : **IV** Semester

Name of the course : Operations Research Course code : PM1743

	Teaching Plan								
Unit	Mo	odule	Topics	Lecture	Learning outcome	Pedagogy	Assessment/		
	S			hours			Evaluation		
I	Ele	ement	s of DP model						
	1	Elem	ents of the DP	4	Recall the definitions and basic	Lecture with	Short Test		
		Mode	·						
			ork model,		concepts of linear	illustration	F		
		Backward recursive equation			programming,		Formative		
		equai	non		Express the fundamental		assessment I		
					concepts of network				
					model				
	2	More	on the definition	of 3	Express the	Lecture			
		the state			fundamental	with PPT			
			nples of DP model	S	concepts of dynamic	illustration			
			computation		programming				
	3		bility problem,	3	Understand the	Lecture			
		Optimal subdivision			significance and	discussion			
		problem,			application of				
			ard and backward		Reliability problem,				
		recur	sive equation		Optimal subdivision				
					problem				
					, backward recursive				
	1	0.1			equation	T .			
	4		ion of linear	. 2	Formulate and solve	Lecture			
			ramming by dynar	nic	LPP by dynamic	with			
	-		ramming	3	programming	illustration			
	5	Game	e theory	3	Express the fundamental	Lecture			
						discussion			
					concepts of Game				
TT	A .	(N	I.A I.\ D'	_	theory				
II			letwork) Diagran		D 11.4	Ι τ			
	1		duction	3	Recall the	Lecture	Short Test		
			w (Network)	one	definitions and basic	with			
		Jiag	gram Representation	JIIS	concepts Arrow (Network), Diagram	illustration	Formative		
					Representations		assessment		
	2	Critic	cal Path Calculation	ons. 4	Understand the	Lecture	I, II		
			lem based on critic	/	significance and	with PPT	1, 11		
			Calculations,	-uı	application of	illustration	Seminar on		
			rmination of floats		Critical Path	IIIasiiaiioii	Arrow		
			illimution of floats		Calculations,		(Network)		
					Problem based on		Diagram		
					critical Path				
					Calculations,				
					Determination of				
L		1			Determination of	1	l		

				floats		
	3	Construction of the Time	4	Understand the	Lecture	
	3		4			
		Chart and Resource		construction of the	with PPT	
		Leveling,		Time Chart and	illustration	
		Problems based on Time		Resource Leveling,		
		Chart and Resource		Problems based on		
		Leveling		Time Chart		
	4	3	2	Understand the	Lecture	
		Considerations in Project		properties of	with	
		Scheduling .		Probability and Cost	discussion	
		Problems based on		Considerations in		
		Probability and Cost		Project Scheduling		
		Considerations in Project				
		Scheduling .				
III	Ge	neralised Inventory model				
	1	Introduction,	4	Understand the	Lecture	Short Test
		Generalised Inventory		theory of Inventory	with	
		model,		model	illustration	Formative
		Types of Inventory Models				assessment
	2	Deterministic Models,	4	Understand the	Lecture	II
		Single Item Static Model,		significance and	with	
		Problems based on Single		application of Single	illustration	
		Item Static Model		Item Static Model	mastration	Seminar on
	3	Single Item Static Model	3	Understand the	Lecture	Generalised
		with Price Breaks,		theory of Single	with	Inventory
		Problems based on Single		Item Static Model	illustration	model
		Item Static Model with		with Price Breaks	mustration	model
		Price Breaks		willi file bleaks		
	4	Multiple - Item static Model	2	Understand the	Lecture	
	-	with Storage Limitations,		theory of Multiple -	with PPT	
		_		Item static Model	illustration	
		Problems based on Multiple			mustration	
		- Item static Model with		with Storage		
	-	Storage Limitations Single Item static Model	2	Limitations Understand the	Lastres	
	5	Single – Item static Model	2	Understand the	Lecture	
		with Storage Limitations,		theory of Single –	with	
		Planning horizontal theorem		Item static Model	discussion	
				with Storage		
				Limitations,		
				Planning horizontal		
***				theorem		
IV		eueing Model	12	TT 1 / 1/1	Τ .	CI m
	1	Basic Elements of the	3	Understand the	Lecture	Short Test
		Queueing Model,		theory of Queueing	with PPT	
1		Roles of Poisson		Model	illustration	
1		Distributions,				Formative
		Roles of Exponential				assessment
		Distributions				III
	2	Arrival process,	2	Recall the	Lecture	
		Examples of arrival process		definitions and basic	with	
1				concepts of Poisson	illustration	

	3	Departure process, Queue with Combined Arrivals and Departure	3	Distributions and Exponential Distributions Understand the theory of Queue with Combined Arrivals and Departure	Lecture with illustration	
	4	Problems based on Queue with Combined Arrivals and Departure	2	Formulate and solve Problems based on Queue with Combined Arrivals and Departure	Lecture with illustration	
	5	Queueing Models of Type : $(M/M/1)$: $(GD/\infty/\infty)$, Problems based on: $(M/M/1)$: $(GD/\infty/\infty)$	3	Understand the theory of Queueing Models of Type: $(M/M/1)$: $(GD/\infty/\infty)$	Lecture with discussion	
	6	$(M/M/1)$: $(GD/N/\infty)$, Problems based on $(M/M/1)$: $(GD/N/\infty)$	3	Understand the theory of Queueing Models of Type: (M/M/1): (GD/N/∞)	Lecture with discussion	
V	1 1	pes of Queueing Models Queueing Model (M/G/1): (GD/ ∞ / ∞), (M/M/C): (GD/ ∞ / ∞)	4	Recall the definitions and basic concepts of Queueing Model	Lecture with illustration	Short Test Formative
	2	Problems based on(M/M/C) : $(GD/\infty/\infty)$, $(M/M/\infty)$: $(GD/\infty/\infty)$ Self service Model	4	Develop the knowledge of solving problems based on $(M/M/C)$: $(GD/\infty/\infty)$, $(M/M/\infty)$: $(GD/\infty/\infty)$ model	Lecture with illustration	assessment III
	3	(M/M/R): (GD/K/K) R < K - Machine Service, Problems based on(M/M/R) : (GD/K/K) R < K - Machine Service	4	Develop the knowledge of solving problems based on (M/M/R): (GD/K/K) R < K - Machine Service model	Lecture with illustration	
	4	Tandem or series queues	3	Develop the knowledge of Tandem or series queues	Lecture with PPT illustration	

Course Instructor(Aided): Dr. L. Jesmalar Mary HOD(Aided): Dr. V. M. Arul Flower

Course Instructor(S.F): Ms. D.Berla Jeyanthy

HOD(S.F) :Ms. J. Anne Mary Leema

Semester : IV **Major Core XV**

Name of the course : Algorithmic Graph Theory
Course code : PM1744

Unit	Mo	dules	Topics	Lecture	Learning outcome	Pedagogy	Assessment/
				hours			Evaluation
I	Th	e Role	of Algorithms				
	1	Role of algorithms in computing, Data structures and technique			Recall the definitions and basic concepts of graph theory, Express the fundamental concepts of algorithms	Lecture with illustration	Evaluation through: Short Test Formative
	2	techno	ithms and other ologies		Express the fundamental concepts of technologies	Lecture with PPT illustration	assessment I
	3	algori	ion sort and its thm, Pseudocoon entions		Recall the definitions and basic concepts of graph theory, Express the fundamental concepts of pseudocode	Lecture with illustration	
	4		t-case and avera	age- 3	Express the fundamental concepts of algorithms, Demonstrate the use of algorithms in worst case and average case analysis	Lecture with illustration	
II	Ele	ementa	ry Graph Algo	orithms			
	1	graph repres	sentation of s – adjacency li sentation, ency matrix sentation	st 4	Recall the definitions and basic concepts of graph theory, Express the fundamental concepts of adjacency matrix representation	Lecture with illustration	Formative assessment I, II
	2	first S Shorte relate Corol	itions and Breadearch algorithmest paths and demmas, lary and etness of Breadt	18,	Recall the definitions and basic concepts of graph theory, Understand the algorithm of BFS	Lecture with PPT illustration	

		first Search theorem				
	3	Breadth-first trees, related Lemma, Definitions and Depth first search algorithms	4	Recall the definitions and basic concepts of graph theory, Understand the algorithm of DFS	Lecture with PPT illustration	
	4	Parenthesis theorem, Corollary on nesting of descendant's intervals, White-path theorem	5	Understand the properties of DFS, Distinguish between BFS and DFS	Lecture with illustration	
III	Gr	owing a minimum spannii	ng tre	e and The algorithm	s of Kruska	al and Prim
	1 2	Theorem, Corollary related to Growing a minimum spanning tree Kruskal's algorithm	3	Understand the theory of spanning tree Recall the	Lecture with illustration	Short Test Formative assessment
	2	Kruskai s aigoriumi	3	definitions and basic concepts of graph theory, Understand the theory of Kruskal's algorithm	with illustration	II Assignment on minimum spanning tree
	3	Prim's algorithm, The execution of Prim's algorithm on the graph	4	Understand the theory of Prim's algorithm	Lecture with illustration	
	4	Problems based on minimum spanning tree	3	Recall the definitions and basic concepts of algorithms	Lecture with PPT illustration	
IV	Th	e Bellman – Ford algorith	m an	d Dijkstra's algorith	m	
	1	Lemma and Corollary based on correctness of the Bellman-Ford algorithm	5	Understand the theory of Bellman- Ford algorithm	Lecture with PPT illustration	Short Test Formative
	2	Theorem and definition related to Single-source shortest paths in directed acyclic graphs	3	Recall the definitions and basic concepts of graph theory	Lecture with illustration	assessment III
	3	Dijkstra's algorithm, The execution of Dijkstra's algorithm	3	Understand the theory of Dijkstra's algorithm	Lecture with illustration	
	4	Corollary and analysis of Dijkstra's algorithm	4	Understand the execution of Dijkstra's algorithm	Lecture with illustration	
V		ortest paths and Matrix m				
	1	Computing the shortest-	3	Recall the	Lecture	Short Test

2	path weights bottom up algorithm Algorithm for matrix multiplication, Improving the running time and technique of repeated squaring	3	definitions and basic concepts of graph theory Develop the knowledge of shortest paths and establish new relationship in matrix multiplication	with illustration Lecture with illustration	Formative assessment III Seminar on shortest paths
3	The structure of a shortest path, A recursive solution to the all-pairs shortest paths problem	4	Develop the knowledge of shortest paths and establish new relationship in matrix multiplication	Lecture with illustration	
4	Computing the shortest- path weights bottom up algorithm, Transitive closure of a directed graph algorithm	4	Develop the knowledge of shortest paths and establish new relationship in matrix multiplication	Lecture with PPT illustration	

Course Instructor(Aided): Dr. M.K. Angel Jebitha HOD (Aided) :Dr. V. M. Arul Flower Mary

Course Instructor (S.F): Dr.C.Jenila HOD(S.F) :Ms. J. Anne Mary Leema

Semester: IV Elective IV

Name of the Course:Combinatorics

Subject Code:PM1745

		I		Jillig I lali	- ·	
Unit	Modules	Topics	Lectur e hours	Learning Outcome	Pedagogy	Assessment Evaluation
I	1.	Permutations and combinations	1	To understand Permutations and combinations	Lecture, Illustration	Evaluation through:
	2.	The Rules of sum and product	6	To define the Rules of sum and product and to apply those definitions to solve problems	Lecture, Illustration, Group discussion, Problem Solving	Class test Quiz
	3.	Permutations	4	To understand Permutations in detail and to apply the concepts to solve problems	Lecture, Illustration, Discussion, Problem Solving	Formative assessment- I
	4.	Combinations	3	To understand Combinations in detail and to apply the concepts to solve problems	Lecture, Illustration, Problem Solving	
	5.	Distribution of Distinct Objects	1	To understand the distribution of distinct objects	Lecture, Illustration	
II	1.	Generating Functions	5	To understand generating functions and their types	Lecture, Discussion	Formative assessment- I Multiple choice
	2.	Generating Functions for Combinations	5	To understand the generating functions for combinations and use them to solve problems	Lecture, Group discussion, Problem Solving	questions Short test Formative
	3.	Enumerators for	5	To understand the Enumerators	Lecture, Illustration,	assessment-II

		Permutations .		for Permutations and use them to solve problems	Problem Solving	
III	1.	Recurrence Relations	5	To understand the recurrence relations	Lecture, Group discussion, Problem Solving	Multiple choice questions
	2.	Linear Recurrence Relations with Constant Coefficients	5	To understand the linear recurrence relations with constant coefficients and use them to solve problems	Lecture, Illustration, Problem Solving	Unit test
	3.	Solution by the Technique of Generating Functions	5	To solve problems by the technique of generating functions	Lecture, Problem Solving	Formative assessment- II
IV	1.	The Principle of Inclusion and Exclusion	1	To understand the principle of inclusion and exclusion	Lecture, Group discussion	Formative assessment- II
	2.	The General Formula	1	To understand the general formula	Lecture, Discussion	Seminar on permutations with
	3.	Derangements	5	To dearrange objects and to solve related problems	Lecture, Illustration, Problem Solving	restrictions on relative positions Assignment on derangements and the Rook polynomials Formative
	4.	Permutations with Restrictions on Relative Positions	4	To learn permutations with restrictions on relative positions	Lecture, Discussion, Problem Solving	
	5.	The Rook Polynomials	4	To understand the Rook polynomials and to solve related problems	Lecture, Problem Solving	assessment- III
V	1.	Polya's Theory of Counting	1	To understand Polya's theory of counting	Lecture, Illustration	Seminar on equivalence

2.	Equivalence Classes under a Permutation Group	5	To understand equivalence classes under a permutation group	Lecture, Discussion, Problem Solving Problem Solving	classes under a permutation group and functions Short test
3.	Equivalence classes of Function	4	To understand equivalence classes of function	Lecture, Group discussion, Problem Solving	
4.	Weights and Inventories of Functions	4	To understand weights and inventories of functions	Lecture, Illustration, Problem Solving	Formative assessment- III
5.	Polya's Fundamental Theorem.	1	To understand and prove Polya's fundamental theorem	Lecture	

Course Instructor(Aided): Dr. S. Sujitha Course Instructor(S.F): Ms. S. Kavitha

HOD(Aided) :Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. J. Anne Mary Leema