Department of Mathematics

Semester
Name of the Course
Subject code

Major Core IV
: Algebra II
: PM1721
Teaching Plan

| Unit | Modules | Topics | Lecture
 hours | Learning outcomes | | Pedagogy | Assessment/
 evaluation |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| I | Vector spaces and Inner Product Space | | | | | | |

		polynomials		polynomials		
	2	Characteristic polynomial of a linear operator	3	To demonstrate the characteristic polynomial of a linear operator	Online Assignments	Test
	3	Minimal polynomials	3	To determine the minimal polynomials	Lectures, Seminars	Test
	4	Diagonolizable operators	3	To diagonalise the symmetric matrices	Group Discussions, Online Assignments	Assignment
	5	Primary decomposition theorem		To understand and apply the Primary decomposition theorem	Lectures	Formative Assessment Test
IV	Invariant subspaces					
	1	Invariant subspaces	4	To understand the concept Invariant subspaces	Lectures, Group discussion	Test
	2	Triangulable linear operator	3	To use triangulable linear operator in solving problems	Lectures	Test
	3	Cyclic subspaces, T-annihilator	5	To understand the theorems in Cyclic subspaces and T-annihilator	Lectures, Group discussion	Quiz, Test
	4	Projection	2	To demonstrate the concept and to solve problems	Lectures, Assignmen ts	Assignment
V	Fields					
	1	Algebraic extensions	3	To recall the definition of fields and to learn the concept Algebraic extensions	Lectures, Group discussion	Test
	2	Roots of polynomials	3	To determine the roots of polynomials	Lectures, Assignmen ts	Formative Assessment test
	3	Splitting fields	4	To demonstrate the concept and to solve problems	Lectures, Group discussion	Test
Course Instructor(Aided): Dr.J.Befija Minnie Course Instructor(S.F): Ms. S. Kavitha				HOD(Aided) :Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. J. Anne Mary Leema		

Semester	$:$ II
Name of the Course	: Analysis II
Subject code	$:$ PM1722
	Teaching Plan

Uni	Modules	S ${ }^{\text {a }}$ Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	Riemann Stieltjes Integral					
	1	Definition and existence of Riemann Stieltjes integrals	of ${ }^{\text {a }}$	To understand the definition existence of Riemann Stieltjes integrals	Lecture with Illustration	Evaluation through test
	2	Theorems related to Riemann Stieltjes integrals	s	To understand the theorems related to Riemann Stieltjes integrals	Lecture	Q\&A
	3	Properties of Riemann Stieltjes integrals	3	To understand the properties of Riemann Stieltjes integrals	Lecture with Illustration	Open Book Assignment
	4	Fundamental theorem of Calculus and related problems	3	To understand and apply this theorem in various problems	Lecture with Illustration	Quiz
	5	Rectifiable curves and problems	3	To understand rectifiable curves and able to do the problems related to it.	Lecture with Illustration	Group Discussion
II	Sequences and series of functions					
	1	Definition and examples of convergence sequence	f	Recall the definition understand the examples of convergence sequence	Lecture with Illustration	Test
	2	Definition and theorems based on uniform convergence and continuity	y ${ }^{6}$	To distinguish between convergence and uniform convergence	Lecture	Open book assignment
	3	Theorems based on uniform convergence and differentiation	3	To understand the relation between the uniform convergence and differentiation	Lecture	Q\&A
	4	Problems based on sequences and series of functions	3	To analyze and solve the problems	Group Discussion	Formative Assessment Test
III	Equicontinuous families of function					
	1	Definition and theorems based on equicontinuous families of functions	-5	To understand the definition and theorems based on equicontinuous families of functions	Lecture with Illustration	Quiz
	2	Definition of uniformly closed algebra and uniformly clousure	4	To understand the concept of uniformly closed algebra in various	Lecture with Illustration	SlipTest

				theorems		
	3	Stone Weierstrass theorem	2	To learn Stone Weierstrass theorem	Lecture	Test
	4	Problems on equicontinuous families of functions	3	To apply the concept of equicontinuous and solve problems	Group Discussion	Brain Storming
IV	Some special functions					
	1	Definition, Theorems and examples of analytic function and power series	4	To learn the concept of power series	Lecture with Illustration	Quiz
	2	The algebraic completeness of the complex field	3	To get the idea of algebraic completeness of the complex field	Lecture and group discussion	Test
	3	Definition and theorems related to Fourier Series	3	To learn the definition and theorems related to Fourier Series	Lecture with Illustration	Test
	4	Problems related to Fourier Series	4	To understand the significance of Fourier series and apply it in problems	Lecture with Illustration	Formative Assessment Test
V	Differentiation					
	1	Introduction of differentiation, Definition of total derivative and examples	4	To identify total derivative problems	Lecture with Illustration	Test
	2	Theorems and examples based on Partial derivatives	4	To apply the concept of Partial derivatives	Lecture with Illustration	Q\&A
	3	Definition of continuously differentiable and related theorems	3	To utilize the concept of continuously differentiable	Lecture with Illustration	Open Book Assignment
	4	Contraction principle and related theorems	2	To interpret the concept of contraction principle	Lecture with Illustration	Assignment
	5	The inverse function theorem and problems	3	To develop the proof technique and solve problems.	Lecture with Illustration	Quiz and Test

Course Instructor(Aided): Dr. K. Jeya Daisy
Course Instructor(S.F): Ms. R.N. Rajalekshmi

HOD(Aided) :Dr. V. M. Arul Flower Mary
HOD(S.F) :Ms.J. Anne Mary Leema

Semester
Name of the Course
Subject code
: II
Major Core VII
: Partial Differential Equations
: PM1723

Unit	Modules	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	Non -linear partial differential equations of first order					
	1	Explanation of terms, compactible system of first order equations, Examples related to	3	To Recall the definitions of complete integral, particular	Lecture	Quiz

		compactible system		integral and singular integral		
	2	Charpit's Method and problems, Problems related to charpit's method	4	To Analyze Charpit's Method and to solve the problems.	Lecture	Assignment
	3	Problems related to charpit's method	2	To Learn Charpit's Method methods to solve the problems	Lecture	Test
	4	Solving problems using charpit's method	3	To Learn Charpit's Method methods to solve the problems	Lecture with group discussio n	Test
	5	Problems related to charpit's method	3	To Learn Charpit's Method methods to solve the problems	Lecture	Assignment
II	Special methods of solutions applicable to certain standard forms					
	1	Standard form I, Examples related to standard form I	4	To solve problems related to standard form I	Lecture with group discussion	Test
	2	Standard form II, Examples related to standard form II	3	To solve problems related to standard form II	Lecture	Quiz
	3	Standard form III, Problems based on Standard form III	3	To solve problems related to standard form III	Lecture	Formative Assessment
	4	Standard form IV and examples	2	To solve problems related to standard form IV	Lecture	Test
	5	Jacobi's Method for solving a non- linear first order partial differential equation and Examples, Cauchy's Method for solving a non- linear partial differential equation	3	Learn some methods to solve the problems of non- linear partial differential equation	Lecture with group discussion	Test
III	Homogeneous linear partial differential equation with constant coefficient					
	1	Homogeneous and nonhomogeneous linear equation with constant coefficient, Solution of finding homogeneous equation with constant coefficient, Theorem I, II	2	To Analyze homogeneous linear partial differential equations with constant coefficients	Lecture	Test
	2	Method of finding complementary function, Working rule for finding complementary function, Alternative working rule for finding complementary function	2	To Learn some methods to solve the problems of homogeneous linear partial differential equations with constant coefficients	Lecture	Test
	3	Some examples for finding	3	To find Complementary	Lecture	Test

		Complementary function		function		
	4	General method and working rule for finding the particular integral of homogeneous equation and some example	3	To find particular integral of homogeneous equation	Lecture	Test
	5	Examples to find the particular integral	3	To find particular integral	Lecture	Test
IV	Non - homogeneous linear partial differential equations with constant coefficient					
	1	Definition, Reducible and irreducible linear differential operators, Reducible and irreducible linear partial differential equations with constant coefficient, Determination of complementary function	2	Analyze nonhomogeneous linear partial differential equations with constant coefficients and to solve the problems	Lecture with group discussion	Quiz
	2	General solution and particular integral of non-homogeneous equation and some examples of type 1	3	To solve problems related to nonhomogeneous equations of type 1	Lecture	Assignmen t
	3	Some examples of type 2	3	To solve problems related to nonhomogeneous equations of type 2	Lecture	Assignmen t
	4	Some problems related to type 3	3	To solve problems related to nonhomogeneous equations of type 3	Lecture	Formative Assessment
	5	Examples related to type 4, Miscellaneous examples for the determination of particular integral	4	To solve problems related to nonhomogeneous equations of type 4	Lecture	Assignmen t
V	Boundary Value Problem					
	1	A Boundary value problem, Solution by Separation of variables, Solution of one dimensional wave equation, D'Alembert's solution, Solution of two dimensional wave equation	2	To Solve the boundary value problems for the wave equations	Lecture	Quiz
	2	Vibration of a circular membrane, Examples related to vibration of a circular membrane	4	To Solve the boundary value problems related to vibration of a circular membrane	Lecture	Test
	3	Solution of one dimensional heat equation, Problems related to solution of one dimensional heat equation	4	To Solve the boundary value problems for the heat equations	Lecture	Formative Assessment
	4	Solution of two dimensional Laplace's equation	2	To find the Solution of two dimensional	Lecture	Test

				Laplace's equation		
	5	Solution of two dimensional heat equation	2	To Apply the concepts and methods in physical processes like heat transfer and electrostatics	Lecture	Assignment

Course Instructor(Aided): Ms.J.C.Mahizha
Course Instructor(S.F): Ms. V. Mara Narghese
:---
HOD(S.F) :Ms. J. Anne Mary Leema

Semester	$:$ II
Name of the Course $:$ Graph Theory	
Subject Code $:$ PM1724	

Major Core VIII

Teaching Plan

Unit	Modules		Topic	Lect hour		Learning outcomes	Pedagogy	Assessment/ evaluation
I	Connectivity							
	1	Cut vertices - Definitions and Examples, Theorems based on Cut vertices, Theorems based on Cut vertices			4	Recall the basic definitions and fundamental concepts of graph theory	Lecture with illustration	Test
	2	Blocks - Definition and Example, Theorem based on nonseparable, Properties of blocks in a nontrivial connected graph, Connectivity - Definitions and Examples			3 	Identify blocks and understand various versions of connectedness of a graph	Lecture	Test
	3	Hassler Whitney's Theorem, Theorems based on Connectivity, Connectivity and edge-connectivity number for the cubic graph			4	Solve problems involving connectivity	Lecture with Group Discussion	Test
	4	Harary graphs, Theorems based on Harary graphs, Geodetic Sets - Definitions and Examples, Theorem based on Geodetic Sets			4	Understand the concept of Harary graphs and Geodetic Sets.	Lecture	Test
II	Digraphs							
	S	Strong Digraphs - Definitions and Examples, The First Theorem of Digraph Theory, Theorems related to Digraphs			3	To understand the definition of Strong Digraphs and prove theorems related to Digraphs	Lecture	Test
	2	Theorems related to Eulerian, Theorem related to Strong orientation			3	To prove theorems related to Eulerian and Strong orientation	Lecture	Formative Assessment Test

		triangle - free graph				
	4	Theorem based on triangle - free graph, Edge ColoringDefinitions and Examples, Vizing's Theorem, Theorems related to edge chromatic number	3	Understand the concept of Edge Coloring and edge chromatic number	Lecture	Test
	5	The Five Color Theorem, The Heawood Map Coloring Theorem and it's corollary	3	To practice various Theorems	Lecture with group discussion	Test
V	Ramsey Numbers \& Distance					
	1	The Ramsey Number of Graphs, Ramsey's Theorem based on Ramsey Number of Graphs, Illustrations for Ramsey Number	3	Determine the Ramsey number of certain graphs	Lecture with illustration	Quiz
	2	Theorems based on Ramsey Number of Graphs, Turan's Theorem,	3	To practice various Theorems	Lecture	Test
	3	Theorems based on Turan's Theorem, Theorem based on triangle	3	To practice various Theorems	Lecture	Formative Assessment Test
	4	Investigating the maximum size of a non-Hamiltonian graph, Theorem related to Hamiltonian, Distance - The center of a graph, Definitions and examples	3	To identify the center of a graph	Lecture	Assignment
	5	Theorems based on center of a graph, Distant Vertices, Theorems based on eccentricity, Theorems based on boundary vertex	3	To practice various Theorems	Lecture	Assignment

Course Instructor(Aided): Dr.V.Sujin Flower HOD(Aided) :Dr. V. M. Arul Flower Mary Course Instructor(S.F): Ms. J. Anne Mary Leema $\operatorname{HOD}($ S.F) :Ms. J. Anne Mary Leema

Semester
Name of the Course Subject code
: II
: Classical Dynamics : PM1725

Teaching Plan

Unit	Modules	Topics	Lecture hours	Learning outcome	Pedago gy	Assessme nt/ Evaluatio \mathbf{n}
I	The Mechanical System					
	1	Introduction on the Mechanical System, equations of motion,	3	Understanding the generalized co-	Lecture	Short Test

		generalized coordinates, degrees of freedom, configuration space		ordinates, degrees of freedom, configuration space of the Mechanical system.		
	2	Holonomic constraints, Nonholonomic constraints, Unilateral constraints and examples	3	To define Holonomic constraints, Nonholonomic constraints, Unilateral constraints with illustration	Lecture and group discussi on	Test
	3	Virtual displacement and virtual work, Principle of virtual work, D' Alembert's Principle,	3	To identify virtual displacement and virtual work, Principle of virtual work, D' Alembert's Principle,	Lecture	Test
	4	Generalized force and examples, Potential energy, work and kinetic energy, Conservation of energy	3	Define Generalized force with examples, Potential energy, work and kinetic energy, Conservation of energy	Lecture	Test
	5	Equilibrium and stability, angular momentum, generalized momentum and examples.	3	To study generalized momentum, angular momentum and examples.	Lecture	Test
II	Derivation of Lagrange's equations					
	1	Problems using Lagrange's equation, Form of the equations of motion, Non holonomic systems.	3	To solve problems using Lagrange's equation, Form of the equations of motion and Non holonomic systems.	Lecture	Test
	2	Spherical pendulum, Double pendulum, Lagrange Multiplier and constraint forces	3	To define Spherical pendulum, Double pendulum, Lagrange Multiplier and constraint forces	Lecture and discussi on	Test
	3	Particle in whirling tube, A particle with moving support,	3	To understand particle in whirling tube, and the particle with moving support,	Lecture	Formative Assessme nt
	4	Rheonomic constrained system, Ignorable coordinates, Example based on the Kepler Problem	3	To define rheonomic constrained system, Ignorable coordinates and example based on the Kepler Problem	Lecture	Test

	5	Routhian Function, Conservative systems, Natural systems, Liouville's system	3	To understand Routhian Function, Conservative systems, Natural systems and Liouville's system	Lecture	Test
III	Hamilton's Principle					
	1	Stationary values of a function, Constrained Stationary values, Stationary value of a definite integral.	3	To define stationary values of a function, Constrained Stationary values and stationary value of a definite integral.	Lecture and discussi on	Test
	2	Solving The Brachistochrone problem and Geodesic path Case of n independent variables	3	To solve the Brachistochrone problem and Geodesic path Case of n independent variables	Lecture	Test
	3	Multiplier Rule, Derivation of Hamilton's Equations The form of the Hamiltonian function	3	To understand Multiplier Rule, and Derivation of Hamilton's Equations and the form of the Hamiltonian function	Lecture and discussi on	Test
	4	Legendre transformation The form of the Hamiltonian function Problems based on Hamilton's Equations	3	To evaluate the form of the Hamiltonian function Problems based on Hamilton's Equations	Lecture	Test
	5	Modified Hamilton's Principle Principle of least action, Problems based on other Variational Principles	3	To understand Modified Hamilton's Principle ,Principle of least action and Problems based on other Variational Principles	Lecture	Formative Assessme nt
IV	Hamilton's Principal function					
	1	Introduction on Hamilton's Principal function The canonical integral Pfaffian differential forms	3	To understand the foundation of Hamilton's Principle and differential forms.	Lecture	Test
	2	The Hamilton - Jacobi equation, Illustration of the HamiltonJacobi equation	3	To understand The Hamilton - Jacobi equation with Illustration	Lecture	Test
	3	Any complete solution of the Hamilton - Jacobi equation leads to a solution of the Hamilton	3	Evaluating any complete solution of the Hamilton -	Lecture	Test

		Problem		Jacobi equation		
	4	Kepler's Problem. Jacobi's theorem, Conservative systems	3	To learn Kepler's Problem. Jacobi’s theorem and Conservative systems	Lecture	Test
	5	Ignorable coordinates, Modified Hamilton - Jacobi equation Examples on Ignorable coordinates	3	To understand Ignorable coordinates, Modified Hamilton - Jacobi equation with Examples	Lecture and discussi on	Test
V	Canonical Transformations					
	1	Introduction to Differential forms and generating functions, Canonical Transformations Principle form of generating functions	3	To understand Differential forms generating functions, Canonical Transformations and Principle form of generating functions	Lecture	Test
	2	Further comments on the Hamilton- Jacobi method, Examples on Canonical Transformations, Some simple transformations	3	To identify the Hamilton- Jacobi method with Examples on Canonical Transformations and some simple transformations	Lecture	Test
	3	Homogenous canonical transformations, Point transformations, Momentum transformations	3	To understand Homogenous canonical transformations, Point transformations, Momentum transformations	Lecture	Test
	4	. Examples based on Special transformations,	3	To identify examples based on Special transformations	Lecture	Test
	5	Introduction to Lagrange and Poisson brackets, Problems based on Lagrange and Poisson brackets, The bilinear Covariant	3	To understand Lagrange and Poisson brackets, Problems based on Lagrange and Poisson brackets and the bilinear Covariant	Lecture	Formative Assessme nt

Course Instructor(Aided): Ms. T.Sheeba Helen HOD(Aided) :Dr. V. M. Arul Flower Mary
Course Instructor(S.F): Ms. D. Berla Jeyanthy HOD (S.F) :Ms. J. Anne Mary Leema

Semester	$:$ IV	Major
Core XII		
Name of the Course	:Complex Analysis	
Subject code	$:$ PM1741	

Teaching Plan

Unit	Secti on	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment /evaluation
1	Complex Functions					
	1	Introduction to theConcept of Analytic Function Analytic functions	4	To understand the concept of analytic function	Lecture with illustration	Test
	2	Polynomials	2	To understand the concept and practice theorems	Lecture with illustration	Test
	3	Rational functions	4	To understand the concept and practice theorems	Video	Test
	4	Elementary Theory of Power Series-Sequences, Series	r 2	To understand the concept of sequences \& series	Lecture	Test
	5	Uniform Convergence	2	To understand the concept Uniform Convergence and develop theorems	Lecture with group disscussion	Formative Assessment Test I
II	Power series					
	1	Definition and Problems related to Power Series and Radius of Convergence	4	To understand the definition of Power Series and Radius of Convergence and solve problems based on the concept	Lecture with group disscussion	Assignment
	2	Abel's theorem, Abel's limit theorem	3	To understand the concept and practice theorems	Lecture	Quiz
	3	The Exponential	3	To understand the concept and practice theorems and solve problems based on the concept	Lecture with illustration	Formative Assessment Test I \& II
	4	Trigonometric functions, The periodicity	\|	To understand the concept of Trigonometric functions\& The periodicity and solve problems based on the concept	Lecture with group disscussion	Test
III	Analytic functions as mappings					
	1	conformality - Arcs and	5	To understand the	Lecture	Test

		closed curves, Analytic Functions in Regions		definition of Arcs and closed curves\& Analytic Functions in Regions	with illustration	
	2	Conformal Mapping	3	To understand the concept of Conformal Mapping	Lecture	Test
	3	Length and Area, Linear transformations - The linear group	2	To understand the concepts and give illustrations	Lecture	Quiz
	4	The Cross Ratio, Symmetry	5	To understand the concepts of The Cross Ratio\&Symmetry and develop theorems.	Lecture with group disscussion	Formative Assessment Test II
IV	Complex Integration					
	1	Fundamental theorems - Line Integrals ,Rectifiable Arcs	4	To understand the concept and practice theorems	Lecture with illustration	Test
	2	Line Integrals as Functions of Arcs, Cauchy's Theorem for a Rectangle, Cauchy's Theorem in a Disk	4	To practice theorems based on this concepts	Lecture	Test
	3	Cauchy's integral formula, The Index of a Point with Respect to a Closed Curve	3	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Test
	4	The Integral Formula, Higher Derivatives	2	To solve problems using this concepts.	Lecture	Formative Assessment Test II \& III
	5	Local Properties of Analytic Functions - Removable singularties and Taylor's theorem, Zeros and poles.	4	To understand the concepts and give illustrations\& practice theorems	Seminar	
V		The local mapping				
	1	The maximum principle, The General Form of Cauchy's Theorem	5	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Assignment
	2	Chains and Cycles, Simple Connectivity, Homology	3	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Quiz
	3	The General Statement of Cauchy's Theorem (statement only), The Calculus of Residues	3	To understand the concept about Calculus of Residues.	Lecture	Test
	4	The Residue Theorem, The Argument Principle	2	To understand the concept and practice	Lecture with illustration	Formative Assessment

				theorems related to this concepts.	Test III	
	5	Evaluation of Definite Integrals.	2	To solve problems related to Definite Integrals.	Video	Test

Course Instructor(Aided): Sr. Antony Mary
Mary
Course Instructor(S.F): V.Princy Kala

HOD(Aided) :Dr. V. M. Arul Flower
HOD(S.F) :Ms. J. Anne Mary Leema

Semester
Name of the Course
Subject code
: IV
: Functional Analysis
: PM1742
Teaching Plan

Unit	Section		Topic		Lectu hours			Learning outcomes	Pedagogy	Assessment/ evaluation
I	Normed linear space									
	1. Definition and, examples of a normed linear space and a Banach Space, Small preliminary results,Theorem-N/M is a Banach space					2		To understand the concept ofnormed linear space	Lecture	Test
		Properties of a Closed unit sphere Holder's Inequality and Minkowski’s Inequality, Equivalent conditions theorem on continuous linear transformations				3		To understand the Properties of a Closed unit sphere	Lecture with illustration s	Group Discussion
		$\mathrm{B}\left(\mathrm{N}, \mathrm{N}^{1}\right)$ is a Banach space,Functionals and it's properties				2		To understand the concept ofFunctionals and it's properties	Lecture	Test
		Definition of an Operator and small results on operators Side result of Hahn Banach theorem Hahn Banach theorem				4		Defining the Operator	Lecture	Test
		Theorem based onN^{*}, Theorem based on functional in N^{*}, Problems based on Normed linear spaces				2		To apply the definitions to prove the theorem	Lecture with illustration s	Group discussion
II	Conjugate space									
	1. $\begin{aligned} & \text { D } \\ & \\ & \\ & \\ & \\ & \text { i } \\ & \text { t } \\ & \text { t }\end{aligned}$		Definitions of second conjugate space, induced functional,weak topology, weak* topology,strong			5		To understand the definition of conjugate space,weak* topology,strong topology.	Lecture	Test

		topology, $\mathrm{B}(\mathrm{N}, \mathrm{N} 1)$ is a Banach space Functionals and it's properties					
	2.	Theorem on isometric isomorphism of Open mapping theorem) Open mapping theorem		5	To apply the definition and Lemmato prove the theorem	Lecture	Q\&A
	3.	Theorem on Projection Closed Graph TheoremUniform , Boundedness Theorem on isometric isomorphism		5	To practice theorems related to this concepts.	Lecture	Formative Assessment Test
III	Hilbert Space						
	1.	Definition and examples,Properties of a Hilbert Space,Schwarz Inequality,Parallelogram lawTheorem on Convex subset of a Hilbert Space	3		To understand the Definition of a Hilbert Space	Lecture	Quiz
	2.	Theorem on Orthogonal Complements, Theorem on Orthogonal Complements, Theorem on closed linear subspaces	2		To apply the laws to prove the theorem	Lecture with illustration	Test
	3.	Theorem on the direct sum of closed linear subspace M of a Hilbert Space and M^{\perp} Bessel's Inequality Orthonormal Sets	5		To apply the Bessel's Inequality on Theorems	Lecture with group discussion	Brain storming
	4.	Theorems on Orthonormal Sets Gram -Schmidt Orthogonalization Process Theorem on Conjugate Space H*	5		To understand the concept of Schmidt Orthogonalization Process	Lecture	Assignment
IV	Adjoint operator						
	1.	Definition and small results, Theorem on the properties of an adjoint operator Theorem on the properties of an adjoint operator		3	Acquire the knowledge about properties of an adjoint operator	Lecture with illustration	Q\&A
	2.	Theorem-The set of all self adjoint operators is a real Banach space, Theorems on self adjoint operators Theorems on self adjoint		3	Applying theorems on self adjoint operators	Lecture	Q\&A

		operators				
	3.	Properties on Normal and Unitary Operators , Theorems on Normal and Unitary Operators, Theorems on Normal and Unitary Operators, Projections-Definitions and preliminaries Theorems on Projections	5	Acquire the knowledge about Normal and Unitary Operators	Lecture	Slip Test
	4.	Theorems on Projections, Theorems on invariant subspace Projection theorem Problems on Projections	4	Apply the concept of invariant subspace on theorems	Lecture	Formative Assessment Test
V	Eigen vectors and Eigen values					
	1.	Eigen vectors and Eigen values, Results on Eigen vectors and Eigen values, Properties of matrices	3	To understand the definition of Eigen vectors and Eigen values	Lecture with illustration	Quiz
	2.	Properties of matrices Theorems on Matrices, Theorem on similar matricesand Properties of Determinants	4	To categorize the Properties of matrices on Theorems	Lecture	Test
	3.	Properties of Determinants, Theorems on Determinants, Theorems on Determinants and Side results of Spectral Theorem	5	To know Properties of Determinants	Lecture	Slip Test
	4.	Spectral Theorem and Spectral Resolution Theorem on Spectral Resolution	4	To apply the previous results on Spectral Theorem	Lecture	Assignment

Course Instructor(Aided): Dr. V. M. Arul Flower Mary M. Arul Flower Mary

Course Instructor(S.F): V.G.Michael Florance
Mary Leema

HOD(Aided) :Dr. V.
HOD(S.F) :Ms. J. Anne
Semester : IV

Major Core XIV
Name of the course : Operations Research
Course code : PM1743
Teaching Plan

Unit	Module\mathbf{s}		Topics $\quad \begin{aligned} & \text { Le } \\ & \text { ho }\end{aligned}$	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I	Elements of DP model						
	1	Elements of the DP Model, Network model, Backward recursive equation		4	Recall the definitions and basic concepts of linear programming, Express the fundamental concepts of network model	Lecture with illustration	Short Test Formative assessment I
	2	More on the definition of the state Examples of DP models and computation		3	Express the fundamental concepts of dynamic programming	Lecture with PPT illustration	
	3	Reliability problem, Optimal subdivision problem, Forward and backward recursive equation		3	Understand the significance and application of Reliability problem, Optimal subdivision problem , backward recursive equation	Lecture discussion	
	4	Solution of linear programming by dynamic programming		2	Formulate and solve LPP by dynamic programming	Lecture with illustration	
	5	Game theory		3	Express the fundamental concepts of Game theory	Lecture discussion	
II	Arrow (Network) Diagram						
	1	Introduction Arrow (Network) ,Diagram Representations		3	Recall the definitions and basic concepts Arrow (Network) ,Diagram Representations	Lecture with illustration	Short Test Formative assessment
	2	Critical Path Calculations, Problem based on critical Path Calculations, Determination of floats		4	Understand the significance and application of Critical Path Calculations, Problem based on critical Path Calculations, Determination of	Lecture with PPT illustration	I, II Seminar on Arrow (Network) Diagram

				floats		
	3	Construction of the Time Chart and Resource Leveling, Problems based on Time Chart and Resource Leveling	4	Understand the construction of the Time Chart and Resource Leveling, Problems based on Time Chart	Lecture with PPT illustration	
	4	Probability and Cost Considerations in Project Scheduling. Problems based on Probability and Cost Considerations in Project Scheduling .	2	Understand the properties of Probability and Cost Considerations in Project Scheduling	Lecture with discussion	
III	Generalised Inventory model					
	1	Introduction, Generalised Inventory model, Types of Inventory Models	4	Understand the theory of Inventory model	Lecture with illustration	Short Test Formative assessment II
	2	Deterministic Models, Single Item Static Model, Problems based on Single Item Static Model	4	Understand the significance and application of Single Item Static Model	Lecture with illustration	
	3	Single Item Static Model with Price Breaks, Problems based on Single Item Static Model with Price Breaks	3	Understand the theory of Single Item Static Model with Price Breaks	Lecture with illustration	Seminar on Generalised Inventory model
	4	Multiple - Item static Model with Storage Limitations, Problems based on Multiple - Item static Model with Storage Limitations	2	Understand the theory of Multiple Item static Model with Storage Limitations	Lecture with PPT illustration	
	5	Single - Item static Model with Storage Limitations, Planning horizontal theorem	2	Understand the theory of Single Item static Model with Storage Limitations, Planning horizontal theorem	Lecture with discussion	
IV	Queueing Model					
	1	Basic Elements of the Queueing Model, Roles of Poisson Distributions, Roles of Exponential Distributions	3	Understand the theory of Queueing Model	Lecture with PPT illustration	Short Test Formative assessment III
	2	Arrival process, Examples of arrival process	2	Recall the definitions and basic concepts of Poisson	Lecture with illustration	

				Distributions and Exponential Distributions		
	3	Departure process, Queue with Combined Arrivals and Departure	3	Understand the theory of Queue with Combined Arrivals and Departure	Lecture with illustration	
	4	Problems based on Queue with Combined Arrivals and Departure	2	Formulate and solve Problems based on Queue with Combined Arrivals and Departure	Lecture with illustration	
	5	Queueing Models of Type : (M/M/1): (GD/ ∞ / ∞), Problems based on: (M/M/1): (GD/ ∞ / ∞)	3	Understand the theory of Queueing Models of Type : (M/M/1): (GD/ ∞ / ∞)	Lecture with discussion	
	6	(M/M/1): (GD/N/ ∞), Problems based on (M/M/1): (GD/N/ ∞)	3	Understand the theory of Queueing Models of Type : (M/M/1): (GD/N/ ∞)	Lecture with discussion	
V	Types of Queueing Models					
	1	Queueing Model (M/G/1): (GD/ ∞ / ∞), (M/M/C) : (GD/ $\infty / \infty)$	4	Recall the definitions and basic concepts of Queueing Model	Lecture with illustration	Short Test Formative assessment III
	2	Problems based on(M/M/C) $:(\mathrm{GD} / \infty / \infty)$, (M/M/ ∞) : (GD/ ∞ / ∞) Self service Model	4	Develop the knowledge of solving problems based on (M/M/C) : (GD/ ∞ / ∞), (M/M/ ∞) : (GD/ $\infty /$ $\infty)$ model	Lecture with illustration	
	3	(M/M/R) : (GD/K/K) R < K - Machine Service, Problems based on(M/M/R) : (GD/K/K) R < K - Machine Service	4	Develop the knowledge of solving problems based on (M/M/R) : (GD/K/K) R < K Machine Service model	Lecture with illustration	
	4	Tandem or series queues	3	Develop the knowledge of Tandem or series queues	Lecture with PPT illustration	

[^0]HOD(Aided) :Dr. V. M. Arul Flower
HOD(S.F) :Ms. J. Anne Mary Leema

Semester
: IV
Major Core XV
Name of the course : Algorithmic Graph Theory
Course code
: PM1744
Teaching Plan

Unit	Modules		Topic	Lecture hours		Learning outcome	Pedagogy	Assessment/ Evaluation
I	The Role of Algorithms in Computing and Getting Started							
	1	Role of algorithms in computing, Data structures and technique			4	Recall the definitions and basic concepts of graph theory, Express the fundamental concepts of algorithms	Lecture with illustration	Evaluation through: Short Test Formative
	2	Algorithms and other technologies			4	Express the fundamental concepts of technologies	Lecture with PPT illustration	assessment I
	3	Insertion sort and its algorithm, Pseudocode conventions			4	Recall the definitions and basic concepts of graph theory, Express the fundamental concepts of pseudocode	Lecture with illustration	
	4	Worst-case and averagecase analysis			3	Express the fundamental concepts of algorithms, Demonstrate the use of algorithms in worst case and average case analysis	Lecture with illustration	
II	Elementary Graph Algorithms							
	1	Representation of graphs - adjacency list representation, adjacency matrix representation			4	Recall the definitions and basic concepts of graph theory, Express the fundamental concepts of adjacency matrix representation	Lecture with illustration	Short Test Formative assessment I, II
	2	Definitions and Breadth first Search algorithms, Shortest paths and related Lemmas, Corollary and correctness of Breadth			4	Recall the definitions and basic concepts of graph theory, Understand the algorithm of BFS	Lecture with PPT illustration	

		first Search theorem				
	3	Breadth-first trees, related Lemma, Definitions and Depth first search algorithms	4	Recall the definitions and basic concepts of graph theory, Understand the algorithm of DFS	Lecture with PPT illustration	
	4	Parenthesis theorem, Corollary on nesting of descendant's intervals, White-path theorem	5	Understand the properties of DFS, Distinguish between BFS and DFS	Lecture with illustration	
III	Growing a minimum spanning tree and The algorithms of Kruskal and Prim					
	1	Theorem, Corollary related to Growing a minimum spanning tree	3	Understand the theory of spanning tree	Lecture with illustration	Short Test Formative assessment II Assignment on minimum spanning tree
	2	Kruskal's algorithm	3	Recall the definitions and basic concepts of graph theory, Understand the theory of Kruskal's algorithm	Lecture with illustration	
	3	Prim's algorithm, The execution of Prim's algorithm on the graph	4	Understand the theory of Prim's algorithm	Lecture with illustration	
	4	Problems based on minimum spanning tree	3	Recall the definitions and basic concepts of algorithms	Lecture with PPT illustration	
IV	The Bellman - Ford algorithm and Dijkstra's algorithm					
	1	Lemma and Corollary based on correctness of the Bellman-Ford algorithm	5	Understand the theory of BellmanFord algorithm	Lecture with PPT illustration	Short Test Formative assessment III
	2	Theorem and definition related to Single-source shortest paths in directed acyclic graphs	3	Recall the definitions and basic concepts of graph theory	Lecture with illustration	
	3	Dijkstra's algorithm, The execution of Dijkstra's algorithm	3	Understand the theory of Dijkstra's algorithm	Lecture with illustration	
	4	Corollary and analysis of Dijkstra's algorithm	4	Understand the execution of Dijkstra's algorithm	Lecture with illustration	
V	Shortest paths and Matrix multiplication, The Floyd-Warshall algorithm					
	1	Computing the shortest-	3	Recall the	Lecture	Short Test

	2	path weights bottom up algorithm	definitions and basic concepts of graph theory	with illustration multiplication, Improving the running time and technique of repeated squaring	3	Formative Develop the knowledge of shortest paths and establish new relationship in matrix multiplication
3	Lecture with illustration	III she structure of a path, A recursive solution to the all-pairs shortest paths problem	4	Seminar on shortest paths		
4	Develop the knowledge of shortest paths and establish new relationship in matrix multiplication	Computing the shortest- path weights bottom up illustration algorithm, Transitive closure of a directed graph algorithm	4	Develop the knowledge of shortest paths and establish new relationship in matrix multiplication	Lecture illh PPT illustration	

Course Instructor(Aided): Dr. M.K. Angel Jebitha
HOD (Aided) :Dr. V. M. Arul Flower Mary
Course Instructor (S.F): Dr.C.Jenila
HOD(S.F) :Ms. J. Anne Mary Leema

Semester: IV
Elective IV
Name of the Course:Combinatorics
Subject Code:PM1745
Teaching Plan

		Permutations		for Permutations and use them to solve problems	Problem Solving	
III	1.	Recurrence Relations	5	To understand the recurrence relations	Lecture, Group discussion, Problem Solving	Multiple choice questions
	2.	Linear Recurrence Relations with Constant Coefficients	5	To understand the linear recurrence relations with constant coefficients and use them to solve problems	Lecture, Illustration, Problem Solving	Unit test
	3.	Solution by the Technique of Generating Functions	5	To solve problems by the technique of generating functions		Formative assessment- II
IV	1.	The Principle of Inclusion and Exclusion	1	To understand the principle of inclusion and exclusion	Lecture, Group discussion	Formative assessment- II
	2.	The General Formula	1	To understand the general formula	Lecture, Discussion	Seminar on permutations with
	3.	Derangements	5	To dearrange objects and to solve related problems	Lecture, Illustration, Problem Solving	restrictions on relative positions Assignment on
	4.	Permutations with Restrictions on Relative Positions	4	To learn permutations with restrictions on relative positions	Lecture, Discussion, Problem Solving	and the Rook polynomials Formative
	5.	The Rook Polynomials	4	To understand the Rook polynomials and to solve related problems	Lecture, Problem Solving	assessme
V	1.	Polya's Theory of Counting	1	To understand Polya's theory of counting	Lecture, Illustration	Seminar on equivalence

Course Instructor(Aided): Dr. S. Sujitha
Course Instructor(S.F): Ms. S. Kavitha

HOD(Aided) :Dr. V. M. Arul Flower Mary
HOD(S.F) :Ms. J. Anne Mary Leema

[^0]: Course Instructor(Aided): Dr. L. Jesmalar
 Mary
 Course Instructor(S.F): Ms. D.Berla Jeyanthy

