Department of Chemistry Semester: II Name of the Course: Organic Chemistry II Subject Code: PG1721

Unit	Modu	le	Topics	Lectur	e	Learning	Pedagogy	Assessment/
				Hours		Outcome		Evaluation
Ι	Subst		on and Elimination Reac	tions				
	1	sub me sub lea on	phatic nucleophilic ostitution: S_N^{1} , S_N^{2} , S_N^{i} chanism. Effect of ostrate, nucleophile, ving group and solvent aliphatic nucleophilic ostitution	2	of	now the mechanism nucleophilic bstitution reaction	Lecture and group discussion	Evaluation through class test and group discussion Formative assessment I
	2	S _N ¹ me sys nuc	¹ , S _N ^{2'} and S _N ^{1'} chanism for allylic tem. Aromatic cleophilic substitution	3	S_N	Sompare $S_N^{1'}$, $S_N^{2'}$ and $s_N^{i'}$ mechanism for lylic system	Lecture	
	3	sub nuc anc nuc Ort dire	Ar, S_N^{-1} and S_N^{-2} . Effect of ostrate, structure, cleophile, leaving group d solvent on aromatic cleophilic substitution. cho-, para- and meta- ecting groups in aromatic cleophilic substitution.	4	pa	istinguish ortho-, ara- and meta- recting groups	Lecture and Seminar	
	4	Ne par ary car sul bor	ighbouring group ticipation of alkyl and l groups, halogens, boxylate anion, oxygen, phur, C=C bond and C-C nd. Elimination - E_1 , E_2 l E_{1CB} mechanisms.	3	gr	fer neighbouring oup participation and imination reactions	Lecture and group discussion	
	5	sol gro rea	ect of substrate, base, vent and the leaving up on elimination ction. Hofmann, Saytzeff l Bredt's rule.	2	Sa	nderstand Hofmann, aytzeff and Bredt's le.	Lecture and Seminar	
II	Arom	atic	ity and Novel Ring System	n				
	1	five me	omaticity: Huckel's rule, e, six, seven and eight mbered rings, fused six mbered aromatic rings.	4	de ar	pply Huckel's rule to etermine the omaticity of the ganic compounds		Evaluation through class test and group discussion

	2 3	Aromaticity of fulvene, fulvalene, azulene, tropolones, ferrocene and fullerenes .Non-benzenoid aromatics - annulenes, heterocyclic compounds. Craig's rule of aromaticity.	2 2 2	Apply Huckel's rule to determine the aromaticity of fulvalene, azulene, tropolones, ferrocene and fullerenes Infer Huckel's rule and Craig's rule of aromaticity	Seminar and group discussion Lecture and group discussion	Formative assessment II
	4	Concept of antiaromaticity and homoaromaticity. Calculation of energy of aromatic and anti-aromatic systems.Alternant and non- alternant hydrocarbons.	2	Calculate the energy of aromatic and anti- aromatic systems	Lecture and group discussion	
	5	Novel ring system: Nomenclature of bicyclic and tricyclic systems – structure and synthesis of adamantane, congressane, cubane and catanene.	4	Predict the nomenclature of novel ring system.	Lecture and group discussion	
III	Organ 1	hic name reactions Mechanism and applications: Sharpless asymmetric epoxidation, Stobbe condensation,.	5	Recognize the mechanism of various organic name reactions	Lecture	Evaluation through class test and group
	3	Meerwein- PonndorfVerley reduction, Wolf-Kishner reduction, Clemmensen reduction and Birch reductions,	2	Know the mechanism and applications of various organic name reactions	Lecture and group discussion	discussion Formative assessment III
IV	4 Chem	Simmon-Smith, Bischler- Napieralski, Chichibabin, Ziegler alkylation and Vilsmeier-Heck reactions istry of bio-active molecules	3	Identify the mechanism of various organic name reactions	Lecture	
	1	Proteins: primary structure of proteins, terminal group analysis, Edman degradation and DNP method.	4	Understand the primary structure of proteins by Edman degradation and DNP method.	Lecture with ppt.	Evaluation through class test and group discussion
	2	Secondary structure of protein principles leading to α –helix and β sheet structure. Tertiary and quaternary structures.	3	Interpret the structures of proteins	Lecture and group discussion	Formative assessment II

	3	Structural elucidation of oxytocin - Tuppy's method (Synthesis not required) and insulin (Biosynthesis).	2	Elucidate the structure of Oxytocin and insulin	Lecture	
	4	Polynucleotides and polynucleotides, role and function of RNA's in protein synthesis, DNA replication, transcription and translation. Lipoproteins: LDL, HDL and their characteristics.	4	Explain the functions of RNA's in protein synthesis.	Lecture with videos	
	5	Antibiotics: Structural activity relationship of penicillins, cephalosphorin, streptomycin and chloramphenicol.	2	Compare the characteristics of LDL and HDL	Lecture	
V	Natura	l Products	1	Γ		
	1	Steroids: Structural elucidation of cholesterol (Synthesis not required), bile acids -Lithocholic acid.	4	Elucidate the structure of cholesterol and lithocholic acid	Lecture	Evaluation through class test, group discussion and quiz
	2	Sex-harmones: Synthesis of Progestrone, oestrone, oestriol, oesterodiol, testosterone and androsterone.	3	Understand the different types of sex harmones.	Lecture	Formative assessment I
	3	Conversion of cholesterol into androsterone, Progestrone and testosterone. Conversion of oestrone into oestriol, oesterodiol	4	Convert cholesterol in to different sex harmones.	Lecture and group discussion	

Course Instructor: Y. Christabel Shaji

Semester: II

Name of the Course: Inorganic Chemistry II Subject Code: PG1722

Unit	Mod	ule	Topics	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Lant	hanio	des and Actinides				
	1	Lan Corr strue	thanides and actinides relation of electronic ctures, occurrence and perties of the elements.	2	Gain knowledge about lanthanides and actinides.	Lecture	Evaluation through class test
	2	Pu proc	mistry of separation of Np and Am from U fission ducts.		Know the separation of Np, Pu and Am from U	Lecture	Formative assessment I
	3	oxic	nmon and uncommon lation states. Lanthanide actinide contractions	4	Differentiate Lanthanide and actinide contractions	Lecture	
	4	prop actin	ctral and magnetic perties of lanthanides and nides, similarities between nides and lanthanides.	3	Understand the similarities between actinides and lanthanides	Lecture	
	5	UF_4	paration and properties of $UO_2(NO_3)_2$. $9H_2OO_2$, $Th(NO_3)_2$.		Know the preparation Uranium and Thorium compounds	Lecture	
II	Inorg	ganic	Photochemistry			•	
	1	Imj Pho cor rea red	portance of photochemist otochemistry of Co(I nplexes - photosubstituti actions, photooxidatic luction reactions (redo otoanation reactions.	II) on on-	Explain the photochemistry of inorganic complexes.	Lecture	Evaluation through class test and group discussion Formative assessment II
	2	cor oct miz	otochemistry of Cr(I mplexes : Photoaquation rahedral complexes, xed-ligand complexes, otoisomerization,	·	Recognise the different photochemical processes in complexes	Lecture	

IV	Appl	ication of spectroscopy to the stud	ly of i	norganic compounds -	1	
	5	Chelate therapy-therapeutic chelating agents and their uses- anticancer platinum complexes and their interaction with DNA.		Recognize the importance of metals in biological reactions and in chelate therapy	Lecture	
	4	Nitrogen fixation - invitro and invivo nitrogen fixation	3	Compare invitro and invivo nitrogen fixation	Lecture	
	3	Non-blue copper proteins. Synthetic oxygen carriers. Vitamin B_1 , B_2 , B_6 and Vitamin B_{12} coenzymes.	2	Predict the structure of proteins	Lecture and group discussion	
	2	Electron transfer agents - cytochromes, iron-sulphur proteins. Blue Copper proteins - Stellacyanin, Plastocyanin, Azurin	3	Explain electron transfer agents	Lecture and seminar	Formative assessment III
	1	Metalloporphyrins, porphyrin ring in chlorophyll. Photosynthetic electron transport sequence. Biological electron transfer	5	Understand the structure of chlorophyll	Lecture	Evaluation through class test and group discussion
III	5 Bio I	Absorption spectroscopy, ground state properties, redox properties, emission spectroscopy, photosubstitution reaction, photo redox reaction and reductive quenching.	3	Explain the properties and reactions of ruthenium polypyridyl complexes	Lecture	
	4	Photochemistry of Ruthenium polypyridyls: Preparation of [Ru(bpy) ₃] ²⁺ , important characteristics of [Ru(bpy) ₃] ²⁺ , properties of [Ru(bpy) ₃] ²⁺	3	Synthesise ruthenium polypyridyl complexes	Lecture and group discussion	
	3	Photoracemization, photoanation, photosubstitution in non-aqueous solvents, photoredox reactions	4	Know about various photochemical reactions in inorganic complexes	Lecture and group discussion	

	1	IR and Raman Spectroscopy: Application of IR and Raman spectra in the study of coordination compounds	4	Apply IR and Raman spectra in coordination compounds.	Lecture	Evaluation through class test and group
	2	Application to metal carbony and nitrosyls. Geometrical an linkage isomerism.		Apply IR and Raman spectra to metal carbonyls and nitrosyls	Lecture and group discussion	discussion Formative assessment II
	3	Detection of inter an intramolecular hydroge bonding. Stretching mod analysis of metal carbonyls.	n	Detect intermolecular and intramolecular hydrogen bonding	Lecture	
	4	Photoelectron Spectroscopy Basic principles, Koopmans theorem.UPS, XPEs of N ₂ , C and NH ₃ -chemical shifts in XPES	$\mathbf{\hat{s}}_{2}$	Understand the principles of Photoelectron spectroscopy	Lecture	
	5	inorganic systems-Auge electron spectroscopy.		List out the applications of ESCA and charge transfer spectrum	Lecture	
V	Appl	ications of spectroscopy to the	study	of inorganic compounds -	· II	
	1	Electronic spectra: Term, states and microstates, term symbols, selection rules, Hund's rule,	4	Gain knowledge about Electronic spectra	Lecture	Evaluation through class test, group discussion
	2	LS coupling, J - J coupling schemes, Racah parameters B and C. Orgel and Tanabe- Sugano diagrams,	5	Understand the LS J - J coupling.		and quiz Formative assessment I
	3	Evaluation of 10 Dq and β for octahedral Ni ²⁺ system, tetrahedral Co ²⁺ complexes.	4	Evaluate 10 Dq and β for octahedral Ni ²⁺ system, tetrahedral Co ²⁺ complexes.	Lecture	
	4	Charge transfer spectra - Applications of charge transfer spectra.	3	List out the applications of charge transfer spectrum	Lecture	
	5	Electronic spectra of lanthanide and actinide complexes	2	Know electronic spectra of lanthanide and actinide complexes	Lecture	

Course Instructor: S. Lizy Roselet

Semester: II

Core VI

Name of the Course: Physical Chemistry II

Subject Code: PG1723

Unit	Mod	ule	Topics	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Elect	troch	emistry – I				
	1	Del dete coe me	bye Huckel limiting law, ermination of activity officient by electrical thod.	4	Gain knowledge about electrochemistry.	Lecture	Evaluation through class test
	2	at a of equ	bye-Huckel limiting law appreciable concentration electrolytes, Huckel nation, Debye Huckel- onsted equation	3	Derive Debye Huckel - Bronsted equation	Lecture	Formative assessment I
	3	ver elee	alitative and quantitative ification. Electrode - ctrolyte interface, ctrolytic interface.	4	Explain the principles and applications of Huckel - Bronstedequation	Lecture and Seminar	
	4	inte elec	sorption at electrified erface - alloy deposition, ctrical double layer.	3	Gainknowledgeaboutthesignificancesofelectronexchange	Lecture	
	5	phe	ctro capillary enomenon - Lippmann lation.	2	Derive Lippmann equation	Lecture	
II	Elect	troch	emistry – II				
	1	Elec mec reac over	trode potential, hanism of electrode tion polarization and potential -theory and ications of over potential	4	Deduce various relations of electrode potential.	Lecture	Evaluation through class test and group discussion
	2	elec Sign exch sym	er-Volmer equation, tron transfer reaction. hificance of electron hange current density and metry factor.	4	Derive Butler-Volmer equation	Lecture	Formative assessment II
	3	sign hydi	nsfer coefficient and its ificance. Mechanism of rogen and oxygen ution reactions.	4	Know about the Transfer coefficients	Lecture and group discussion	

	4	Corrosion- corrosion of common metals, atmospheric and immersed types of corrosion, acid, colloidal, oxide-film, electrochemical and differential aeration theories.	3	Employ the methods of preventing corrosion	Lecture and group discussion	
	5	Passivation of metals - Pourbaix diagram, Evan's diagram. Fuel cells, acid and alkaline storage batteries. Electrode deposition - principle and applications.	2	Employ the methods of the Construction of fuel cells		
III	Phot 1	ochemistry Introduction to photochemistry - laws of photochemistry, quantum yield calculation. Physical properties of electronically	5	Deduce photochemical relations.	Lecture	Evaluation through class test and group discussion
	2	excited molecules. Excited state dipolemoment, acidity constant and redoxpotential. Photophysical processes in electronically excited molecules.	3	Understand excited state dipolemoment, acidity constant and redoxpotential.	Lecture and seminar	Formative assessment III
	3	Jablonski diagram, intersystem crossing, internal conversion, fluorescence, phosphorescence and other deactivation processes.	2	Explain Jablonski diagram	Lecture and group discussion	
	4	Delayed fluorescence. Stern- Volmer equation and its application. Photosensitation and chemiluminescence. Chemical lasers.	3	Derive Stern-Volmer equation	Lecture and seminar	
	5	Photoexplosionanddissociationlaserexperimentaltechniques.Chemicalactinometryflashphotolysis.	5	Understand laser methods	Lecture	
IV	Cata	·				
	1	Homogenous Catalysis: General catalytic mechanism - equilibrium treatment and steady state treatment, general acid - base catalysis	4	Infer the catalytic mechanism of equilibrium.	Lecture	Evaluation through class test and group discussion

	2	Determination of catalytic co-efficient. Discussion of protolytic and prototropic mechanisms of acid catalysis.	3	Compare protolytic and prototropic mechanisms	Lecture and group discussion	Formative assessment II
	3	Bronsted relationships as linear free energy relationships. Acidity functions and correlation of mechanisms.	2	CorrelateBronstedand linear free energy relationships	Lecture	
	4	HeterogeneousCatalysis:Physisorptionandchemisorption-adsorptionisotherm,mechanismofsurfacereactions	4	Differentiate homogeneous and heterogeneous catalysis	Lecture	
	5	Langmuir - Hinshelwood and EleyRideal mechanism. Absolute rate of surface reactions.	2	Identify Langmuir - Hinshelwood and EleyRideal mechanism	Lecture	
V		ntum mechanics – II				
	1	Approximation methods - Variation Theorem - Application of variation principle to Helium atom.	4	Apply variation principle to Helium atom.	Lecture	Evaluation through class test, group discussion and quiz
	2	Perturbation theory - application of perturbation theory to Helium atom. Pauli's exclusion principle		Explain perturbation theory		Formative assessment I
	3	Slater determinant, Secular determinant and secular equation. Chemical bonding in diatomic molecules	4	Determine determinant and secular equation.	Lecture	
	4	Born Oppenheimer approximation. M.O. theory. LCAO approximation.	3	List out the types of approximation.	Lecture with videos	
	5	Application to hydrogen molecule ion H_2^+ - Hydrogen molecule H_2 , Valence bond theory - application to H_2 molecule.	2	Apply quantum mechanics to various molecules	Lecture	

Semester: II

Elective II

Name of the Course: Research Methodology

Subject Code: PG1724

Unit	Mod	ule	Topics		ecture ours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Liter	atur	e Searching and Preparati					Evaluation
	1	Prir	nary, secondary and iary sources of information		2	Identify the sources of information	Lecture and group discussion	Evaluation through class test
	2	Dat Abs Boo	raries abases stracts and Journals oks and Newspapers vernment documents		5	Utilize the e- resources and documents	Lecture and Seminar	Formative assessment I
	3	Dis The	nference proceedings sertations esis ib net		4	Know how to write articles and thesis	Lecture and Seminar	
	4		sentation of seminar by OH powerpoint	Р	2	Create and design presentations	Lecture with PPT	
	5		ject report writing ernational conventions		2	Present project report	Lecture and Seminar	
II	Statis	stica	l Analysis					
	1	Ex Ca Ca	assification of errors pression of errors lculation of errors lculation of errors - ated problems	4		Analyse the errors arising during estimations	Lecture and seminar	Evaluation through class test and group discussion
	2	Pre	ecision and accuracy ecision and accuracy - ated problems	2		Differentiate and determine precision and accuracy	Seminar and group discussion	Formative assessment II
	3	Co	onfidence limits onfidence limits - related oblems	2		Determine confidence limits	Lecture	
	4	tes F-t	test, t-test and chi square t. test, t-test and chi square t related problems	4		Calculate F-test, t- test and chi square test	Lecture and seminar	
	5	Ar Re	nova gression analysis rrelation analysis	3		Correlate regression and correlation analysis	Lecture and seminar	

III	Instru	mental Analysis				
	1	Basic concepts of spectroscopy. UV spectroscopy - Application in structural elucidation	2	Understand the concept and applications of UV spectroscopy	Lecture with videos	Evaluation through class test and group discussion
	2	IR spectroscopy - Application in structural elucidation NMR spectroscopy - Application in structural elucidation Mass spectroscopy - Application in structural elucidation	3	Elucidate the structure of compounds	Lecture with ppt and videos	Formative assessment III
	3	ESR spectroscopy - Principle and its basic concepts ESR spectroscopy - Applications	2	Interpret the structure of compounds	Lecture and group discussion	
	4	XRD - Principle and experimental technique XRD - Applications	2	Determine the particle size of compounds	Lecture and seminar	
	5	SEM - Principle and experimental technique SEM - Applications STM - Principle and experimental technique STM - Applications	4	Predict the surface morphology of compounds	Lecture with videos	
	6	AFM - Principle and experimental technique AFM - Applications	2	Determine the surface morphology using AFM	Lecture with videos	
IV	Comp	uter in Research			•	Evaluation
	1	Introduction - Use of computer in research Basic features common to Word, Excel, Access and Power point	4	Explain the basic features of MS office	Lecture with demo	through class test and quiz Formative assessment I
	2	Toolbars and dialog box	2	List out and identify the tools in toolbars	Lecture with demo	
	3	Internet - introduction and history, Types of internet	2	Explain the types of internet connections	Seminar	
	4	HTML and Web design	2	Design website using HTML	Lecture with demo	1

	5	Hypelinks and HTTP URLs and Internet protocol Domain server static and dynamic ID Internet security	5	Describe various internet protocols	Seminar	
V	Chem	informatics				
	1	Cheminformatics - Introduction and history and applications	2	Understand the history of cheminformatics	Lecture	Evaluation through class test and quiz
	2	Line notation - Inchi and WLN Line notation - SMILES Connection table and line notation versus connection table SMARTS	3	Convert the chemical structure into a line notation and connection tables	Lecture with ppt	Formative assessment II
	3	Nomenclature: IUPAC names, trade names and common names	2	Identify the nomenclature of compounds	Seminar	
	4	Molecular similarity -ways to measure similarity 2D topology 3D configuration	2	Determine molecular similarity	Lecture	
	5	Clustering Physical properties and cheminformatics toolkits	2	Describe cheminformatics toolkits	Seminar	
	6	Chemical registration system Chemistry softwares	2	Apply chemistry softwares for drawing	Lecture with ppt and demo	
	7	Cheminformatics - Applications Drug delivery	2	Explain the applications of cheminformatics	Lecture and seminar	

Course Instructor: S. Santhiya

Core IX

Semester: IV Name of the Course: Organic Chemistry IV Subject Code: PG1741

Unit	Mod	ule	Topics	Lectur Hours	e	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Retr	osyn	thetic Analysis					•
	1	con pro acti mo fun	nning – relay, linear and avergent approach, tecting groups and ivating groups. Target lecule containing one ctional group requiring a gle disconnection.	4		Understand the concept of reterosynthesis	Lecture	Evaluation through class test Formative assessment I
	2	Syr equ Tar fun and	nthons and synthetic nivalents. Latent polarity. get molecules with two ctional groups - 1,3-, 1,5- l 1,4-dicarbonyl npounds.	5		Analyse the reterosynthetic approach of target molecules with two functional groups	Lecture	
	3	inte	nctional group erconversions. Umploung thesis.	3		Generalize functional group interconversions and Umploungsynthesis	Lecture	
	4	bisa	crosynthetic analysis of abolene, cis-Jasmone and gifolene.	3		Explain the retrosynthesis of bisabolene, cis- Jasmone and longifolene	Lecture	
II	Alka	loids	5					1
	1	gen	caloids, Extraction, neral properties and ssification.	4		iscuss the chemistry alkaloids	Lecture	Evaluation through class test and
	2		caloids -general methods determining structure.	3	ge de	now about the eneral methods for etermining the ructure of alkaloids	Lecture	group discussion Formative
	3	mo	uctural elucidation of rphine, atropine and caine.	5	of	ucidate the structure morphine, atropine d cocaine	Lecture and group discussion	assessment II
	4		uctural elucidation of nine and papaverine.	3	of	ucidate the structure quinine and paverine	Lecture and group discussion	
III	Mole	ecula	r rearrangements					

		Classification - electrophilic, nucleophilicand free radical rearrangements. Mechanisms of Di- π - methane rearrangement. Mechanisms of Tiffenev-	2	Classify the types of rearrangements and understand the mechanism of Di- π - methane rearrangement Explain the mechanism	Lecture	Evaluation through class test Formative assessment
		Demyanov, Dienone- Phenol and von-Richter rearrangements.		of Tiffenev-Demyanov, Dienone- Phenol and von-Richter rearrangements		III
		Mechanisms of Favorskii, Fries, Baeyer-Villager rearrangements.	4	Explain the mechanism of Favorskii, Fries and Baeyer-Villager rearrangements	Lecture	
		Mechanisms of Stevens, Neber and Sommelet-Hauser rearrangements.	3	Explain the mechanism of Stevens, Neber and Sommelet-Hauser rearrangements	Lecture	
		Mechanisms of Baker- Venkatraman,Wagner Meerwin and Ullmann rearrangements.	3	Explain the mechanism of Baker- Venkatraman,Wagner Meerwinand Ullmann rearrangements	Lecture	
IV	Orgai	nic Photochemistry				
	1	General introduction. Thermal versus photochemical reactions. Jablonski diagram.	3	Differentiate thermal and photochemical reactions	Lecture	Evaluation through class test and group
	2	Photochemical reactions of ketones– photosensitization, Norrish type - I and Norrish type - II reactions and mechanisms.	3	Know the photochemical reactions of ketones	Lecture and group discussion	discussion Formative assessment II
	3	Paterno–Buchi reaction, photooxidation and photoreduction of ketones,.	3	Identify photooxidation and photoreduction of ketones	Lecture	
	4	Photochemistry of arenes. Photodimerisation and photoisomerisation.	3	Understand the mechanism of photochemical reactions in ketonesandarenes	Lecture	
	5	Reactions involving free radicals – Barton, Huns- diecker, Pschorr and	3	Know the mechanism of photochemical reactions in free radicals	Lecture	
		Gomberg-Bauchman reactions.				

1	Characteristics and classifications of pericyclic reactions - electrocyclic, cycloaddition and sigmatropic reactions.	4	Identify the reactions involving in pericyclic reaction	Lecture	Evaluation through class test, group discussion and quiz
2	Woodward Hofmann rule. 2+2, 2+4 – reactions, Retro- Diels Alder reaction and Diels Alder reaction.	4	Understand the mechanism of photochemical reactions	Lecture	Formative assessment I
3	Cope rearrangements and Claisen rearrangements. Conservation of orbital symmetry. Prediction of reaction conditions using FMO.	4	Know about FMO diagram	Lecture and group discussion	
4	Correlation diagrams and Zimmerman (Mobius-Huckel analysis) approaches.	3	Correlate pericyclic reactions	Lecture	

Course Instructor: Y. Christabel Shaji

Semester: IV

Core X

Name of the Course: Inorganic Chemistry III

Sub Code: PG1742

			Те	ac	hing F	Plan		
Unit	Modu	ule	Topics		ecture	Learning	Pedagogy	Assessment/
					lours	Outcome		Evaluation
Ι	Appli	cati	on of spectroscopy to the	stu	dy of I	norganic compounds	– III	
	1	Pri ap pro	MR Spectroscopy: inciple, ³¹ P, ¹⁹ F, ¹⁵ N, plications in structural oblems. Monitoring the urse of reaction.	4	a I S	Know the principle and applications of NMR spectroscopy in structural letermination	Lecture	Evaluation through class test Formative
	2	NI mo par co	MR of fluxional blecules. NMR of ramagnetic molecules - ntact shift and shift agents.	3	1	Analyse the NMR spectrum of various nolecules	Lecture	assessment I
	3	NC Pri NN gra spl syn fie in	QR Spectroscopy: inciple, comparison with MR, electric field adient, quadrupolar litting of energy levels in mmetric and asymmetric lds, quadrupolar coupling atoms and molecules, ymmetry parameter.	5	ι	Compare and inderstand NQR and NMR spectroscopy	Lecture	
	4	bo sul	oplication - hydrogen nding, phase transition, bstituent effect and uctural information.	3	(Know the applications of NQR spectroscopy	Lecture and Seminar	
II	Appli	cati	ons of spectroscopy to the	e st				
	1	Pro an aff	SR spectroscopy roduction and Principl esentation of the spectru d hyperfine splitting. Facto fecting the magnitude of lues	m rs	3	Understand the concept of ESR spectroscopy	Lecture	Evaluation through class test and group discussion Formative
	2	Kr Ar	ro-field splitting and amer's degeneracy. hisotropy in the hyperfine upling constant		3	Know about zero- field splitting, Kramer's degeneracy and anisotropy	Lecture	assessment II

	3	Covalency of M-L bonding by ESR.Jahn- Teller distortion in Cu (II) complexes from ESR studies.	3	Determine the ESR spectrum of Cu complexes	Lecture and group discussion	
	4	Mossbauer Spectroscopy: Principle, Doppler Effect, recoil energy, minimizing recoil energy, Doppler broadening.	3	Understand the principle and concept of Mossbauer spectroscopy	Lecture and group discussion	
	5	Isomer shift in Fe and Sn compounds. Electro negativity and chemical shift. Quadrupole interaction - quadrupole splitting in the MB spectra of Fe complexes.	3	Differentiate the MB spectrum of Fe ²⁺ and Fe ³⁺ complexes	Lecture	
III	Non-	aqueous solvents				
	1	Non- aqueous solvents- Introduction General properties and classification of solvents	2	Classify solvents	Lecture	Evaluation through class test and group
	2	Self-ionization and leveling effect. Reactions in non- aqueous solvents. Solute- solvent interaction.	2	Understand the reactions in non- aqueous solvents and solute-solvent interaction	Lecture and seminar	discussion Formative assessment III
	3	Solution of metals in liquid ammonia. Reaction in liquid HF, liquid halogens, interhalogens and liquid H ₂ SO ₄ .	3	Identify the reactions in non- aqueous solvents	Lecture and group discussion	
	4	Molten salts as non-aqueous solvents. Titration in non- aqueous solvents.	3	Know about molten salts and titrations in non-aqueous solvents	Lecture and seminar	
	5	HSAB theory and solvent system definitions.	2	Define HSAB theory and solvent systems	Lecture	
	6	Acid base concepts - Arrhenius, Lux flood, Usanovich, Lowry- Bronsted and Lewis concept.	3	Infer acids and bases using various concepts	Lecture	
IV	Elect	trical and magnetic properties of		1	1	
	1	Conductivity of pure metals and Electrical conductivity	2	Explain the conductivity of metals	Lecture	Evaluation through class test and

	2	Photoconductivity, photoconductive device. Solar cell and solar energy conversion.Dielectric properties - permittivity, dielectric constant, electric susceptibility, electronic polarization, ionic polarization,	3		Describe solar cells and solar energy conversion Define the electrical proprieties of metals	Lecture and group discussion Lecture	group discussion Formative assessment II
		orientation, dielectric loss and dielectric break down, ferro electricity.					
	4	Applications of magnetic properties of solids - dia, para, ferro, antiferro and ferrimagnetism.	3		Describe the magnetic properties of metals	Lecture	
	5	Effect of temperature on magnetism - Curie and Weiss law. Calculation of magnetic moments.	3		State Curie and Weiss law and determine the magnetic moment of metals	Lecture	
V	Bio 1	Inorganic Chemistry - II					
	1	Photosynthesis, photosystem I and II and photosynthetic reaction centre.	3	I, I	neralize photosystem I and photosynthetic ction	Lecture	Evaluation through class test, group discussion
	2	Metalloenzymes - enzymes in di-oxygen management.	2	Des	scribemetalloenzymes	Lecture	and quiz Formative
	3	Super oxide dismutase, superoxide toxicity, structure of Cu, Zn-SOD, enzymatic activity and mechanism.	3		ow about superoxide mutase	Lecture and group discussio n	assessment I
	4	Peroxidases, catalases, oxidases and mono oxygeneases.	2	cata	plain peroxidases, alases, oxidases and no oxygeneases	Lecture	
	5	Zinc enzymes - the structural role of zinc and zinc constellations of carbonic anhydrase, carboxy peptidase and alcohol dehydrogenase.	3		derstand the role of c inzinc enzymes	Lecture	
	6	Metal complexes as probes of nucleic acids. Gold compounds and anti-arthritic agents.	2	con	press the role of metal nplexes and its plications	Lecture and group discussio n	

Semester: IV Name of the Course: Physical Chemistry IV Sub Code: PG1743

Teaching Plan

Core XI

Unit	Mo	dule	Topics	Lectu Hour		Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Adv	ance	d topics in electrochemist	rv			I	I
	1	Pho Intr the	oto-electrochemistry - coduction, band bending at semiconductor/solution erface.	3		derstand photo- ctro chemistry	Lecture	Evaluation through class test Formative
	2	by sur	oto-excitation of electrons absorption of light, face effects in photo- ctrochemistry.			plain photo- citation of electrons	Lecture and Seminar	assessment I
	3	pho spli elec CO			ele	neralize photo- ctrochemical ctions	Lecture and Seminar	
	4	eleo pot con	o-electrochemistry – bio- ctrodes, membrane entials. Electrochemical nmunication in biological anisms	3		ow about bio- ctrochemistry	Lecture with PPT	
	5	elee	zymes as electrodes, ctron transfer in p450 zymes	2		derstand the role of zymes as electrodes	Lecture	
	6			3		scribe various isors	Lecture with ppt	
II	Nan	omat	erials for catalysis					
	1	hor	nocatalyst: fundamentals, nogeneous vs erogeneous catalysis	3	hon hete	Terentiate nogeneous and progeneous nano- lysis	Lecture and seminar	Evaluation through class test and group
	2	mo	ect of surface area, shape, rphology, particle size and nposition on catalysis.	3	surf mor size	w the effect of ace area, shape, phology, particle and composition on lysis	Lecture with ppt	discussion Formative assessment II
	3	cata wat	no-materials for photo- alysis - dye degradation, ter splitting, organic asformations.	4		oly nano-materials photo-catalysis	Lecture and group discussion	

	4	Plasmon assisted photo- catalysis and band gap tuning	3	Understand the concept of plasmon assisted photo-catalysis and band gap tuning	Lecture and group discussion	
	5	Nanomaterials for CO_2 capture and conversion.	2	Explain nanomaterials for CO_2 capture and conversion	Lecture	
III	Mol	ecular Spectroscopy - II				
	1	Electronic Spectroscopy: Principle, laws of light absorption, Born- Oppenheimer approximation	3	Know the principle of electronic spectroscopy and Born-Oppenheimer approximation	Lecture	Evaluation through class test and group discussion
	2	Franck-Condon principle, Wave-mechanical formulation, dissociation energy and dissociation products.	3	Understand Franck- Condon principle, dissociation energy and dissociation products	Lecture and seminar	Formative assessment III
	3	Pre-dissociation, fluorescence and phosphorescence - principle and theory.	2	Generalize the principle and theory of fluorescence and phosphorescence	Lecture and group discussion	
	4	Nuclear magnetic resonance spectroscopy: Principle, Nuclear spin and nuclear moment, chemical shift and its measurements.	2	Explain the principle and concept of NMR spectroscopy	Lecture and seminar	
	5	Factors influencing chemical shift, shielding and deshielding effects, spin-spin interactions,	2	Discuss the factors affecting chemical shift and sipn-spin interactions	Lecture	
	6	NMR of simple AMX type molecules, coupling constant, FTNMR, NMR of ¹⁹ F, ³¹ P and ¹³ C.	5	Interpret the concept of FTNMR, ¹⁹ F, ³¹ P and ¹³ C NMR spectroscopy	Lecture	
IV	Mol	ecular Spectroscopy - III				
	1	ESR: Theory, hyperfine interactions in ESR. Double resonance (ENDOR, ELDOR), Mc Connell's relation.	4	Understand the theory of ESR spectroscopy, double resonance and Mc Connell's relation	Lecture	Evaluation through class test and group discussion
	2	Verification of the relation for cyclic polyene radical and calculation of electron density. Experimental techniques.	3	Explain the ESR spectroscopy of cyclic polyene radical and calculation of electron density	Lecture and group discussion	Formative assessment II
I		1				

	3	Laser Raman spectroscopy: Einstein treatment of absorption and emission phenomena. Einstein's coefficients.	2	Know about Laser Raman spectroscopy	Lecture	
	4	Probability of induced emission and its applications to lasers. Conditions for laser action.	4	Describe the applications of laser Raman spectroscopy	Lecture	
	5	Properties and types of lasers. Advantages of lasers in Raman spectroscopy. Experimental Techniques.	2	Discuss the properties and advantages of lasers in Raman spectroscopy	Lecture	
V	Soli	d State Chemistry				
	1	Ionic radii - determination. Gold Schmit'srule.	2	Determine the ionic radii of solids	Lecture	Evaluation through class test, group
	2	Closed packing in solids. Structure of metallic crystals.	3	Explain the structure of metallic crystals		discussion and quiz Formative
	3	Perovskite, CsCl, Zinc blende, Wurtzite, Rutile, fluorite and antifluorite. Covalent crystals. Diamond and graphite.	5	Discuss the structure of covalent crystals, diamond and graphite	Lecture	assessment I
	4	Mechanical properties of solids.	2	Understand the mechanical properties of solids	Lecture with videos	

Course Instructor: S. LizyRoselet

Elective IV

Semester: IV Name of the Course: Energy for the Future Subject Code: PG1744

Unit	Mod	ule	Topics	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Intro	oduct	ion to Energy Sources				
	1	Int en ga wa	roduction, conventional ergy sources like coal, oil, s, agricultural and organic ustes, water power, thermal wer and nuclear power.	4	Know the sources of conventional energy	Lecture with videos	Evaluation through class test and seminar
	2	No so	on-conventional energy arces like solar energy and nd energy.	3	Explain non- conventional energy sources	Lecture and Seminar	Formative assessment I
	3	ga	ergy from bio-mass and bio- s, ocean thermal energy, tida ergy.		Understand various sources of energy	Lecture and Seminar	
	4	hy	othermal energy and drogen energy. Advantages renewable energy.	4	Generalize the advantages of renewable energy	Lecture and seminar	_
Ι	Sola	r Ene	ergy				
	1	So me sol the rac	lar radiation and its easurement - Introduction, lar constant, solar radiation a e earth's surface, solar liation geometry and solar liation data.	4 t	Explain solar radiations and its measurement	Lecture and seminar	Evaluation through class test and seminar Formative
	2	So Int of rac	lar energy collectors - roduction, physical principle the conversion of solar liation into heat, flat plate an ncentration collectors.	d	Understand the principle of solar energy conversion and collectors	Seminar	assessment II
	3	of	lvantages and disadvantages concentration collectors over t collectors.	3	Know the advantages and disadvantages of different collectors	Lecture	
	4		ergy balance equation and llector efficiency.	4	Determine energy balance and collector efficiency	Lecture and seminar	
III	Win	d En	ergy	· .	· · · · · · · · · · · · · · · · · · ·		

	1	Introduction, basic principles of wind energy conversion, power of the wing, forces on the blades.	2	Understand the basis of wind energy	Lecture with videos	Evaluation through class test and seminar
	2	Wind energy conversion, wind data and estimation, site selection.	3	Illustrate wind energy conversion	Lecture with ppt and videos	Formative assessment III
	3	Types of wind machines - Horizontal axis and vertical axis machines.	3	Classify the types of wind machine	Lecture and seminar	
	4	Analysis of aerodynamic forces acting on the blade, performance of wind machines.	3	Analyse the forces acting on the blade	Lecture and seminar	
	5	Generating systems - Introduction, schemes of electric generation, generator control, load control, energy storage. Application of wind energy.	4	Explain generating system and applications of wind energy	Lecture with videos	
IV	Bio-e	nergy				
	1	Introduction, biomass conversion techniques - wet processes and dry processes.	3	Explain biomass and its conversion	Lecture and seminar	Evaluation through class test and quiz Formative
	2	Biogas generation. Classification of biogas plants - floating drum plant and fixed dome type plant. Biogas from plant waste.	4	List out the classification of biogas plants	Lecture and seminar	assessment I
	3	Materials used for biogas generation, selection of site for a biogas plant, digester design. Problems related with biogas plants.	4	Generalize biogas generation and identify the problems related to biogas plant	Seminar	
	4	Fuel properties of biogas and utilization of biogas.	4	Understand the properties of biogas	Lecture and seminar	-
V	Chen	nical energy sources			•	
	1	Fuel cells - Introduction, conversion efficiency of fuel cells, types of electrodes, work output.	2	Understand the basis of fuel cells	Lecture and seminar	Evaluation through class test and quiz
	2	EMF of fuel cells. Applications of fuel cells.	3	Determine the EMF of fuel cells and explain the applications of it	Lecture and seminar	Formative assessment II

3	Hydrogen energy: Hydrogen production – electrolysis, thermo- chemical, fossil fuel and solar energy methods.	4	Explain hydrogen production by various methods	Seminar
4	Hydrogen storage and hydrogen transportation.	2	Know about hydrogen storage and hydrogen transportation	Lecture and seminar
5	Utilization of hygrogen gas. Hydrogen as an alternative fuel for motor vehicles. Safety and management.	4	Describe the utilization and safety measures of hydrogen gas	Seminar

Course Instructor: S. Santhiya