Department of Mathematics

Semester	: II	Major Core II
Name of the Course	: Classical Algebra and Integral C	Calculus
Subject code	: MC1721	

Teaching Plan

Unit	Modules	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι		Theory of equations	1100115	040001105		•••••••••
	equ the Fun Alg Pro the Pro Fun	eliminaries about nations and reminder orem ndamental theorem of gebra oblems based on reminder orem oblems based on ndamental theorem of gebra	4	Explain the primary concepts of Fundamental theorem of Algebra Problems based on reminder theorem	Lecture with Illustration	Evaluation through appreciative inquiry
	2 In coe occ In coe occ Re	an equation with real efficients, imaginary roots cur in pairs an equation with rational efficients, irrational roots cur in pairs lations between roots and efficients of equations	3	To distinguish between imaginary roots occur in pairs and irrational roots occur in pairs	Lecture	Evaluation through quizzes and discussions.
	3 For roc of For roc For roc For	rming the equation whose ots are functions of roots the given equation rming the equation whose ots are in A.P rming the equation whose ots are in G.P. rming the equation whose ots are in H.P	4	To understand the Formation of the equation whose roots are in A.P,GP,HP	Lecture with Illustration	Slip Test
	roc Sur roc Ne of Pro the	m of r th powers of the ots wton's theorem on the sum the powers of the roots. oblems based on Newton's orem	4	To understand Newton's theorem on the sum of the powers of the roots	Discussion with Illustration	Quiz and Test
II		mation of Equations			-	-
		cansform an equation into	4 7	To identify the	Lecture	Evaluation

		another whose roots are the roots of the given equation with signs changed Transform an equation into another whose roots are m times the roots of the given equation Reciprocal equations Standard form of reciprocal equations		Reciprocal equations Standard form of reciprocal equations	with Examples	through discussions.
	2	Any reciprocal equation can be reduced to a Standard reciprocal equation Solving different types of reciprocal equations Increasing or decreasing the roots of a given equation by a given quantity	4	To solve different types of reciprocal equations	Lecture	Evaluation through appreciative inquiry
	3	Removal of terms Descarte's rule of signs Descarte's rule of signs for negative roots Problems related to Descarte's rule of signs	4	To calculate problems related to Descarte's rule of signs	Lecture with Illustration	Formative Assessment Test
	4	Rolle's theorem. Problems related to Rolle's theorem.	3	To calculate problems related to Rolle's theorem	Group Discussion	Slip Test
III	Doubl	e integrals				
	1	Introduction about integration and Double integrals Evaluation of double integrals with constant limits in cartesian co- ordinates Evaluation of double integrals with constant limits in polar co-ordinates	3	Explain the primary concepts of Double integrals	Lecture with Illustration	Evaluation through discussions.
	2	Evaluation of double integrals with variable limits in cartesian co-ordinates Evaluation of double integrals with variable limits in polar co-ordinates Evaluation of double integrals over a specified region bounded by straight lines	4	Calculate the integrals over a specified region bounded by straight lines	Lecture with Illustration	Evaluation through appreciative inquiry

	4	integrals over a specified region bounded by different curves Working rule for changing the order of integration Problems on changing the order of integration Introduction about triple integrals Evaluation of double integrals with constant limits Evaluation of double integrals with variable	4	integrals over a specified region bounded by different curves Evaluate the double integrals and triple integrals	Lecture and group discussion	Assessment Test Slip Test
137	Dot-	limits				
IV	Beta a	Ind Gamma functionsDefinition and existence of Beta and Gamma functionsProperties of Gamma functionProperties of Beta function Relation between Beta and Gamma functions	4	Explain the primary concepts of Beta and Gamma functions	Lecture with Illustration	Evaluation through discussions.
	2	Computation of Beta and Gamma functions Evaluation of integrals using properties of Gamma function Equivalent definitions of Beta function	4	To understand the theorems and problems based on Beta and Gamma functions	Lecture and group discussion	Evaluation through Assignment
	3	Evaluation of integrals using properties of Beta function Finding the value of standard definite integrals in terms of Beta and Gamma functions	4	To know about properties of Beta function	Lecture with Illustration	Formative Assessment Test
	4	Duplication formulaDeductionsusing	2	To understand Duplication formula	Lecture with	Slip Test
•	F •	Duplication formula			Illustration	
V	Fourie 1	er series Definition and basic	4	Explain the basic	Lecture	Evaluation
		properties of odd and even functions Introduction of Fourier series expansion Computation of Fourier coefficients		properties of odd and even functions		through discussions.
	2	Development of Fourier series over an interval of	4	To understand Fourier series expansion and	Lecture with	Formative Assessment

	length 2π Deduction of sum of series from Fourier series expansion		half range Fourier series expansion	Illustration	test
	Introduction of half range Fourier series expansion				
3	Development of half range sine series over an interval of length π Development of half range cosine series over an interval of length π Deduction of sum of series from half range Fourier series expansion	3	To calculate Problems based on half range sine, cosine series over an interval of length π	Lecture with Illustration	Slip Test
4	Development of Fourier series over an arbitrary interval Development of half range sine series over an arbitrary interval Development of half range cosine series over an arbitrary interval	4	To differentiate half range sine series over an arbitrary interval And half range cosine series over an arbitrary interval	Lecture with Illustration	Home Assignment

Course Instructor(Aided): : Ms. A. Jancy Vini Course Instructor(S.F): Ms. S. Kavitha

HOD(Aided) :Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. Anne Mary Leema

Semeste	er			: []	[Allied II
Name	of	the	Course	:	Vector	Calculus	and	Differential	Equations
					(for Physic	cs and Chen	nistry)		
Subject	code	•		:	MA1721				

Teaching Plan

Unit	Modu	les	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Vec	tor Di	fferentiation				
	1	produ and t	sion of dot and cross act of vectors, Definition heorems on rentiation of Vectors	4 1	To recall the operations on vectors and understand its functions	Lecture with Illustration	Brainstormin g
	2	and i	ient of a scalar function ts properties, Problems I on Gradient	3	To study gradient in detail and apply its properties to solve problems	Lecture. Group discussion	Appreciative inquiry
	3	norm	tion of tangent plane and al line for a single ce, Equation of tangent	1 4	To understand the tangent plane and normal line and its	Lecture, Small groups	Test

		line and normal plane for the		various functions		
		intersection of two surfaces,				
		Angle between two surfaces				
	4	Divergence of vectors and its	4	To study in detail	Lecture,	Quiz
		properties, Curl of vectors		divergence, curl,	Jigsaw	
		and its properties, Solenoidal		solenoidal and		
		and irrotational vectors		irrotational vectors		
II	Vecto	r Integration				
	1	Definition of line integrals	3	To practice the	Lecture,	Slip test
		and work done by a force,		computation of line	problem	
		Parametric equation of		integrals		
		curves				
	2	Evaluation of line integrals	5	To evaluate line	Inquiry	Assignment
		over curves in a plane,		integrals over	based	
		Evaluation of line integrals		different surface		
		over curves in a surface				
	3	Computation of work done	3	To compute work	Lecture,	Formative
		by a force, Projection of a		done and understand	inductive	Assessment
	4	surface over a plane Definition of surface	4	projection	method Group	Test Seminar
	4		4	To practice the	Discussion	Seminar
		integrals, Evaluation of surface integrals over a		computation of surface integrals	Discussion	
		plane		surface integrals		
III	I inear	· Differential equations				
111	1	Introduction of Linear	4	To study the basics of	Lecture,	Multiple
	1	Differential equations with	т	linear differential	Debate	choice
		constant coefficients,		equations and to find	Debute	questions
		Formation of auxiliary		the complementary		questions
		equation and finding the		function by using an		
		complementary function		appropriate method		
	2	Finding the particular integral	4	To find the particular	Lecture	Test
		for e ^{ax,} Finding the particular		integral of a	with	
		integral for cos ax, sin ax		differential equation	Illustration	
				by using an		
				appropriate method		
	3	Finding the particular integral	3	To find the particular	Lab	Slip test
		for $e^{ax}f(x)$, Finding the		integral of a		
		particular integral for $x^n f(x)$		differential equation		
				by using an		
			<u> </u>	appropriate method		
	4	Introduction of homogeneous	4	To study few	Group	Formative
		linear equations, Conversion		methods to convert	Discussion	Assessment
		of homogeneous linear		the homogeneous		Test
		equations into linear		linear equations into		
		differential equations with constant coefficients		differential equations		
IV	Dow	tial Differential equations	1		1	
1 1	1	Introduction of Partial	3	To understand the	Lecture	Quiz
	1	differential equations,	5	basics and the	with	Zuiz
		Formation of Partial		formation of partial	Illustration	
		i ormanon or i arnar			musuation	1

		differential equations by eliminating the unknown constants,		differential equations		
	2	Formation of Partial differential equations by eliminating the arbitrary functions, Methods of solving Partial differential equations	3	To study the methods of formation and the solution of partial differential equations	Lecture and small groups	Test
	3	Standard form of Lagrange's equation, General solution of Lagrange's equation	3	To study about Lagrange's equation and the methods to find its solutions	Discussion	Test
	4	Solving Lagrange's equation by method of grouping	3	To use computational tool to solve problems and applications of partial differential equation of first order	Lecture and Discussion	Brain storming
	5	Solving Lagrange's equation by method of multipliers	3	To use computational tool to solve problems and applications of partial differential equation of first order	Lecture with Illustration	Test
V	Laplac	e Transform				
	1	Definition of Laplace Transform, Properties of Laplace Transform	3	To know the basics and the properties of Laplace Transform	Lecture and Debate	Test
	2	Computation of Laplace Transform of standard functions, Problems on Laplace Transform	3	To solve problems on Laplace Transform	Lecture with Illustration	Formative Assessment test
	3	Definition of Inverse Laplace Transform, Properties of Inverse Laplace Transform	3	To know the basics and the properties of Inverse Laplace Transform	Lecture and Lab	Short test
	4	Computation of Inverse Laplace Transform of specific functions, Problems on Inverse Laplace Transform	3	To use the Inverse Laplace Transform to solve the differential equation	Lecture and small groups	Assignment
	5	Solving Linear Differential equations using Laplace Transform	3	To use Laplace transform to solve the differential equation	Lecture with Illustration	Quiz and Test

Course Instructor: Sr. S. Antin Mary & Ms. J.C. Mahizha

HOD(Aided):Dr. V. M. Arul Flower Mary

Semester Name of the Course Subject code

: Mathematics for life – II (NMEC) : MNM172

NMEC II

Teaching Plan

:II

Unit	Modules	5 Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Average)		·		
	1.	Average: Formula & Problems, related to Average of prime, natural and consecutive even and odd integers	3	To find the average of different kinds of numbers	Lecture	Test
	2.	Speed: Formula & Problems, related to distance and speed	3	To solve problems related to distance and speed	Lecture	Test
	3.	Real life problems related to average and speed	3	To apply average in real life problems	Group discussion	Quiz
II	Problem	s on Numbers	1	T		1
	1.	Framing and solving equations involving unknown numbers	2	To frame and solve equations	Lecture	Test
	2.	Framing and solving equations involving sum average and squares	2	To frame and solve equations involving sum average and squares	Group discussion	Quiz
	3.	Problems involving ratios and fractions	2	To solve problems involving ratios and fractions	Lecture	Formative Assessment Test
	4.	Problems involving interchanging the digits of a number, reciprocal of a number	3	To apply the concept in real life problems	Lecture	Test
III	Problem	is on Ages				
	1.	Problems based on the difference between the ages of two persons	2	To employ the problems related to ages and apply the same to real life situations	Lecture	Test
	2.	Problems based on the ages of father and son	2	To employ the problems related to ages and apply the same to real life situations	Lecture	Test
	3.	Comparison on ages of two persons	2	To analyse the problems related to comparison of ages	Group discussion	Quiz
	4.	Problems based on	3	To find the ratio of ages	Lecture	Formative

		the Ratio of ages.				Assessment Test
IV	Surds a	nd Indices				
	1.	Surds and Indices: Formula & direct problems	2	To solve problems related to Surds and Indices	Lecture	Test
	2.	Finding largest surds and application of laws of indices and surds	3	To apply law of indices and surds to find missing numbers in an expression	Lecture	Test
	3.	Comparison of surds	2	To compare surds and ratio	Group discussion	Quiz
	4.	Finding surds in larger expressions	2	To find surds in larger expressions	Lecture	Test
V	Ratio a	nd proportion				
	1.	Formulae for ratio and proportion and Problems based on Fourth, third and mean proportional	3	To learn ratio and proportion and practice duplication and triplication of ratios	Lecture	Quiz
	2.	Problems based on comparison of ratios and compounded ratios	2	To compare ratios and compounded ratios	Lecture	Formative Assessment Test
	3.	Problems based on proportion	2	To solve problems related to proportion	Lecture	Assignment
	4.	Problems based on Variation	2	To solve problems related to variation	Lecture	Assignment

Course Instructor: Dr. J. Befija Minnie & Dr. L. Jesmalar Course Instructor(S.F): Ms. V. Princy Kala HOD: Dr. V. M. Arul Flower Mary

HOD(S.F) :Ms. Anne Mary Leema

Semester Name of the Course Subject code

: IV : Groups and Rings : MC1741 Major Core V

Teaching Plan

Unit	Modul	es Topics	Lecture	Learning outcomes	Pedagogy	Assessment/
Ι	Crea		hours			evaluation
1			22 1	To understond the	Lasture	Evoluction
	1.	Definition and exampl on Groups	es 4	To understand the definition of groups	Lecture with	Evaluation through test
		-			Illustration	
	2.	Definition and exampl	es 3	To understand the	Lecture	Q&A
		on Permutation Groups		definition permutation groups		
	3.	Definition of cycle and	3	To understand the	Lecture	Open
	5.	theorem based on cycle		definition of cycle and	with	Book
		theorem bused on eyere		theorem based on cycles	Illustration	Assignment
	4.	Theorems on even and	2	To understand and apply	Lecture	Quiz
	т.	odd permutations	2	this theorem in various	with	Quiz
		oud permutations		problems	Illustration	
	5.	Definition examples,	3	To understand the	Lecture	Group
	5.	theorems and problems	-	definition and theorems	with	Discussion
		sub groups	01	of sub groups	Illustration	Discussion
	6.		lic 2	To learn the concepts of	Lecture	Q&A
	0.	-	-	cyclic groups	with	QaA
			1115	cyclic groups	Illustration	
тт		based on cyclic groups			musuation	
II		of an element and Norr Definition and		To understand the	Tastas	Test
	1.		2		Lecture with	Test
		Theorems on order of	an	definition and theorems		
	2	Element	an 2	on order of an Element	Illustration	On en la ele
	2.	Problems on order of a	an 2	To apply the concept of order of an element in	Lecture	Open book
		element				assignment
	2		1 2	problems	T /	
	3.	Definition of Cosets a	nd 3	To understand the	Lecture	Q&A
		problems on cosets		definition of cosets and		
				problems on cosets		
	4.	Lagrange's Theorem,	3	To learn Lagrange's	Lecture	Formative
		Euler's Theorem,		Theorem, Euler's		Assessment
		Fermats theorem		Theorem, Fermats		Test
				theorem		
	5.	Normal subgroups -	2	To know the definition	Group	Q&A
		Definition and		of Normal subgroups	Discussion	
		Examples				
	6.	Problems and theorem		To apply the Normal	Lecture	Slip Test
		on Normal Subgroups		subgroups concept in	with	
				problems	Illustration	
III	Isomo			1 .	1	
	1.	Definition, theorems ar		To understand the	Lecture	Quiz
		Examples of Isomorphi	ism	definition and theorems	with	
				based on Isomorphism	Illustration	

	2.	Cayley's Theorem and Theorem on Automorphism and generators	3	To learn the Cayley's theorem and understand the concept of Automorphism and generators	Lecture	SipTest
	3.	Definition of Homomorphism and Examples	2	To learn the definition of Homomorphism and Examples	Lecture	Test
	4.	Homomorphism	3	To study the Fundamental Theorem of Homomorphism	Lecture	Q&A
	5.	Problems on Kernel	3	To apply Kernel concept in problems	Group Discussion	Brain Storming
IV	Rings	•			•	
	1.	Definition, Elementary properties and examples of Rings	3	To learn the definition of rings	Lecture with Illustration	Quiz
	2.	Problems based on Isomorphism of Rings	3	To get the idea of Isomorphism of Rings	Lecture and group discussion	Test
	3.	Types of Rings and Theorems	2	To identify the Types of Rings	Lecture with Illustration	Test
	4.	Examples of Skew fields and Theorems based on Skew fields	2	To apply Skew fields idea in problems	Lecture with Illustration	Formative Assessment Test
	5.	Definition and Theorems on integral Domains	1	To know about integral Domains	Lecture with Illustration	Assignment
	6.	Characteristic of a Ring	1	To interpret the Characteristic of a Ring	Lecture with Illustration	Quiz and Test
V	Sub Ri	ings		I	I	
	1.	Definition and Examples of Sub Rings	2	To get the knowledge of sub rings	with Illustration	Test
	2.	Problems and Theorems on Sub Rings	1	To develop the proof technique and solve problems.	Lecture with Illustration	Q&A
	3.	Definition, Theorems and Examples on ideals	3	To utilize the concept of ideals in examples	Lecture with Illustration	Open Book Assignment
	4.	Ordered integral Domains	3	To understand the Ordered integral Domains	Lecture with Illustration	Assignment
	5.	Maximal and Prime Ideals	2	To know about Maximal and Prime Ideals	Lecture with Illustration	Quiz and Test
	6.	Homomorphism of Rings	2	To learn the definition of	Lecture	Assignment

			Homomorphism of Rings	with	
				Illustration	
7.	Unique factorization	2	To understand and	Lecture	Quiz and
	Domain		analyze about Unique	with	Test
			factorization Domain	Illustration	

Course Instructor(Aided): Dr. K. Jeya Daisy Flower Mary

Course Instructor(S.F): Ms. R.N. Rajalekshmi Semester : IV

HOD(S.F) :Ms. J. Anne Mary Leema

HOD(Aided) :Dr. V. M. Arul

Major Core VI

Semester	
Name of the Course	
Subject code	

: Analytical Geometry - 3 Dimensions

: MC1742 Teaching Plan

Unit	Modu	les	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Direct	tion	cosines of a line	hours			evaluation
	1.	Intr def bet	oduction and inition of distance ween points and ang ween two lines.	le 2	To understand the concept of distance between points and angle between two lines	Lecture	Test
	2.	Def rela	Finition and problem ated to Projection or by Direction cosines of	na	To understand the projection on a line and direction cosines of a line	Lecture with illustrations	Group Discussion
	3.	rati	finition of direction os and projection of line joining two nts.	3	To analyze the equations of two skew lines in a simplified form	Lecture	Test
	4.	rela cos	finition and Theoren ited to direction ines of the line joini points		Acquire the knowledge about direction cosines of the line joining the points	Lecture	Test
	5.	bas per	finition and problem ed on conditions f pendicularity a allelism.		To practice various problems related to conditions for perpendicularity and parallelism.	Lecture with group discussion	Group discussion
II		Th	e Plane				
	1.	bas plan form	finition and problem ed on Equation of a ne in different ms,Intercept form , mal form	s 3	To understand the concepts Equation of a plane in different forms	Lecture	Test
	2.	rela the whi	finition and problem ated to Angle betwee planes, The ratio in ich the plane divides line joining the poin	en	To understand the definition of the ratio in which the plane divides the line joining the points	Lecture	Q&A
	3.	Def	finition and problem a plane through the l	s 3	To practice various problems related to	Lecture	Formative Assessment

		of intersection of two given planes		plane through the line of intersection of two given planes		Test		
	4.	Problems based on length of perpendicular, Planes bisecting the angle between two planes.	n 3	1	Lecture with illustrations	Test		
III		The Straight Line						
	1.	Definition and methods of finding equation of a line in different forms	_	To understand the methods of finding equation of a line in different forms	Lecture	Quiz		
	2.	Problems based on the plane and the straight line		and the straight line	Lecture with illustration	Test		
	3.	Definition and problems Angle between the lines, image of a line		Angle between the lines	Lecture with group discussion	Brain storming		
	4.	Problems based on Co- planarity of two lines	3	Acquire the knowledge about Co-planarity of two lines	Lecture with ppt	Assignment		
IV	Shortest distance between two lines							
	1.	Introduction and definition of Shortest distance between two lines	2	To understand the Shortest distance between two lines	Lecture with illustration	Quiz		
	2.	Problems based on The equations of two skew lines in a simplified form	4	To analyze the equations of two skew lines in a simplified form	Lecture	Q&A		
	3.	Definitions and Problems based on Intersection of three planes	3		Lecture	Slip Test		
	4.	Theorem and problems based on volume of a tetrahedron.	3		Lecture	Formative Assessment Test		
V		The Sphere						
	1.	Introduction and Illustrations based on equation of the sphere in its general form	3	To Understand the sphere in its general form	Lecture with illustration	Quiz		
	2.	Theorem and problems on determination of the centre and radius of a	2	To determine the centre and radius of a sphere	Lecture	Test		
		sphere						

	tangent from the point to the sphere		tangent from the point to the sphere		
4.	Problems related to Section of sphere by a plane	3	To practice various problems related to Section of sphere by a plane	Lecture	Assignment
5.	Definition of Intersection of two spheres and tangent plane.	2	Acquire the knowledge about Intersection of two spheres and tangent plane.	Lecture with illustration	Formative Assessment Test

Course Instructor(Aided)::Dr.L.JesmalarHOD(Aided):Dr. V. M. Arul Flower MaryCourse Course Instructor(S.F): Ms. V.G. Michael FlorenceHOD(S.F) :Ms. J.AnneMary LeemaHOD(S.F) :Ms. J.Anne

]			e Course : IV e Course : Appl e : MA1	741				
Unit					ure	ng Plan Learning outcomes	Pedagogy	Assessment/ev aluation
I	1	Defir corre corre	rrelation hitions and examples of lation, Properties of lation coefficient, Proble d on correlation	ems	5	To Recall the definitions of correlation, Properties of correlation coefficient	f Lecture	Quiz
	2	and p Calcu coeff	nition of Rank correlatio proving Spearman's form alating Rank correlation ficient for the given data	nula,	3	To analyze Rank correlatio and to solve the problems.	n Lecture	Assignment
	3	-	nition and results based of ssion, Problems on ssion	on	2	To solve the problems on regression	Lecture	Test
	4	Equa	tion of regression lines		1	Apply regression lines in real life problems	Lecture with group discussior	Test
	5	Angle lines.	e between the regression	1	1	To Learn the Angle betwee the regression lines.	n Lecture	Assignment
II		Test	of significance					
	1	sign typ dist Sta san	roduction on test of nificance, Sampling and es, Definition on Sampl tribution and examples, ndard error for some npling distributions		3	To solve problems related to test of significance	Lecture with group discussion	
	2	Tes	sting of hypothesis and		3	To testing of hypothesis	Lecture	Quiz

		errors in testing of hypothesis,				
		critical values for different				
		levels of significance,				
		Procedure for testing of a				
		statistical hypothesis				
	3	Explanation and Problems of	3	To solve problems	Lecture	Formative
	5	test of significance for single	5	related to single	Lecture	Assessment
		proportions		proportions		rissessment
	4	Probable limits , Test of	2	To solve problems	Lecture	Test
	-	significance for difference of	2	related to Probable limits	Lecture	1050
		proportions		related to r robable mints		
	5	Problems on test of	1	To solve problems	Lecture wit	h Test
	5		1	To solve problems related to difference		
		significance for difference of			group	
		proportions		proportions	discussion	
III	Test o	of significance for means				
	1	Test of significance for single	4	To Learn some	Lecture	Test
		mean if the standard deviation is		methods to solve the		
		known, Problems based on		Problems based on		
		confidence limits for population		confidence limits for		
		mean, Problems based on test of		population mean and		
		significance of means.		Problems based on test		
		6		of significance of		
				means.		
	2	Problems based on test of	2	To Learn some	Lecture	Test
		significance for difference of		methods to solve the		
		sample means, Test of		problems of test of		
		significance for single standard		significance for		
		deviation		difference of sample		
				means and single		
				standard deviation		
	3	Test of significance for equality	2	To learn normal	Lecture	Test
	5	of standard deviations of a	2	population	Lecture	1050
		normal population.		population		
	4	Problems based on test of	2	To test the significance	Lecture	Test
	•	significance for standard	_	for standard deviation	Leeture	1000
		deviation				
	5	Problems based on test of	3	To test the significance	Lecture	Test
		significance for correlation		for correlation		
		coefficient		coefficient		
IV	Test o	of significance for small samples		·	· · · · · ·	
		8 I				
	1	Distinguish large and small	3	To test the significance	Lecture	Quiz
		samples, Test of significance		based on t-distribution,	with	
		based on t-distribution, Test for		and the difference	group	
		the difference between the mean		between the mean of a	discussi	
		of a sample and that of a		sample and that of a	on	
		population.		population.		
	2	Test for the difference between	2	To solve problems	Lecture	Assignment

		the means of two samples, Confidence limits for population mean		related Confidence limits		
	3	Problems based on confidence limits for population mean, Test of significance based on F-test	2	To learn the test of significance based on F- test	Lecture	Assignment
	4	Problems on test of significance based on F-test.	2	To solve problems on test of significance based on F-test.	Lecture	Formative Assessment
	5	Test of significance of an observed sample correlation, Problems on test of significance of an observed sample correlation.	2	To solve problems related to observed sample correlation.	Lecture	Assignment
V	Test	based on χ^2 -distribution				
	1	Introduction on test based on χ^2 -distribution, χ^2 –test for population variance	3	To Solve the problems related to χ^2 –test for population variance	Lecture	Quiz
	2	χ^2 -test to test the goodness of fit	2	To test the goodness of fit for χ^2 –test.	Lecture	Test
	3	Result on χ^2 –test to test the goodness of fit.	2	To learn the Result on χ^2 -test to test the goodness of fit.	Lecture	Formative Assessment
	4	Fit a Poisson distribution for the given data and to test the goodness of fit.	3	To analyze a Poisson distribution.	Lecture	Test
	5	Theorem based on the test for independence of attributes, Yate's Correction.	2	To solve the Problems based on independence of attributes.	Lecture	Assignment

Course Instructor(Aided): A. Jancy Vini Course Instructor(S.F): Dr. C. Jenila HOD(Aided) :Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. J. Anne Mary Leema