B.Sc. Physics Semester II Thermal Physics and Sound Subject Code: PC1721 Teaching Plan

Unit	Modules	Topics	Lecture	Learning	Pedagogy	Assessment/
			hours	outcome		Evaluation
I	Kinetic th	eory of Gases				
	1	Kinetic model –	2	To understand	Lecture	Evaluation
		Expression for the		the concept of	Discussion	through
		pressure exerted by a		kinetic theory	with PPT	short test
		gas. Vinctic operation		of gases.	illustration	Multiple
		unit volume of a gas				choice
		unit voranie or a gas				questions
	2	Relation between	2	To examine the	Lecture	
		molar specific heat		concept of	discussion	Formative
		and degrees of		specific heats	with	assessment I
		Specific heats of		of mono and	illustration	
		mono and diatomic		diatonne gases.		
		gases				
		-				
	3	Mean free path –	3	To recall the	Lecture	
		Expression for mean		phenomena of	discussion	
		Transport		viscosity.		
		phenomena –				
		Viscosity				
	4	Thermal	2	To analyze the	Lecture	
		conductivity – Self		concept of	discussion	
		diffusion Maxwell's velocity		thermal		
		distribution law		conductivity.		
II	Laws of T	hermodynamics				
	1	Thermodynamic	3	To interpret the	Lecture	Short test
		systems		principle of		
		thermodynamics –		first law of	Illustration	Quiz
		Internal energy		thermodynamic		
		First law of		5.		Assignment
		thermodynamics –				
		law of				Formative
		thermodynamics				assessment
					.	I,II
	2	Specific heat of a gas -	3	To outline the	Lecture	
		isourermai process-		unterent types	uiscussion	

		Isochoric process –		of		
		Isobaric process		thermodynamic		
		Adiabatic process-		processes		
		Work done during an		processes.		
		Isothermal process -				
		Work done during an				
		Adiabatic process				
		Reversible and				
		irrovorsible process				
	2	Correct's evale	2	To anno arian	T a atrana	
	3	Carnot's cycle -	3	To summarize	Lecture	
		Second law of		the second and		
		thermodynamics		third law of	Illustration	
		Concept of entropy -		thermodynamic		
		Change in entropy in a		s and their		
		reversible process -		applications.		
		Change in entropy in		appneations		
		an irreversible process				
		The T-S diagram -				
		Third law of				
		thermodynamics				
III	Thermody	ynamic Potentials and '	Transmiss	ion of heat		
	1	Maxwell's	5	To derive	Lecture	
		Thermodynamic		Maxwell's	with PPT	
		relations- Application		Thermodynamic	Illustration	
		of Maxwell's		relations. Joule	mustration	Formativa
		Thermodynamic		Thomson		Formative
		relations		coefficient and		assessment II
		Specific heat equation		interpret their		
		– Joule Thomson				
		cooling		applications.		
		Ioule Thomson				
		coefficient – Clausius				
		Clapevron's Equation				
		The TdS equations				
	2	Coefficient of thermal	4	Taharra	Overtion	
	2	coefficient of thermal	4	To nave	Question-	F
		Logia diag mothod for		practical	answer	Formative
		Lee's disc method for		knowledge on	session	assessment II
		bad conductors		determining the		
		Convection – Black		coefficient of	Lecture	
		body		thermal		
		Stefan Boltzmann law		conductivity		
		- Derivation of		and specific		
		Stefan's law and		hoat consoity		
		Newton's law of		neat capacity.		
		cooling from Stefan's				
		law				
		Specific heat capacity				
		by Newton's law of				
		cooling.				
IV	Waves an	d Oscillations				
	1	Simple harmonic	3	To illustrate	Lecture	
		motion – Differential		simple		
		equation of motion		harmonic	Discussion	Formative
		-	1			

		executing S.H.M Solution of the differential equation of motion – Composition of two S.H.M. along the same direction and at right angles Lissajous figure		motion.		assessment III
	2	Free, Forced and Resonant Vibrations Vibrating Systems: Modes of vibration – stationary vibrations in strings Sonometer: Laws of transverse vibration of strings A.C frequency by sonometer Melde's string.	6	To acquire skills to do experiments by sonometer and Melde's string.	Lecture Discussion	
V	Acoustics	and Ultrasonics	1		1	
	1	Ultrasonic production -Magnetostriction method Piezoelectric method Detection of ultrasonic waves	3	To compare the methods of ultrasonic production.	Lecture with PPT	Short test Formative assessment III
	2	Thermal method – Piezoelectric crystal method Kundt's tube method Application of ultrasonic waves: Depth of sea, sonar	3	To interpret the applications of ultrasonic waves for determining the depth of sea.	Brain storming session. Lecture Illustration	
	3	Introduction to Acoustics – Classification of sound Reverberation - Absorption coefficient Sabine's formula Factors affecting the architectural acoustics and their remedies	3	To classify sound and to examine the architectural acoustics.	Lecture with PPT Illustration	

Course instructor:

Head of the Department

Dr. M.Priya Dharshini

Dr.S.Mary Delphine

Semester

: II /IV

Name of the Course

: Allied Physics II

Subject code

: AP1721/AP1741

Teaching Plan

Unit	Section	Topics	Lectur	re	Learning	Pedagogy	Assessment /
			hours	S	outcome		Evaluation
Ι	Therma	l Physics	1				
	1	Conduction in solids, Thermal conductivity, Lee's disc method- Experiment to determine the thermal conductivity - Relation between thermal and electrical conductivities- Widemann – Franz law.	2	To bas cor hea To rela ele cor the	understand the sic concepts of nduction mode of at transfer derive the ation between betrical nductivity and ermal nductivity	Illustration and lecture Illustration and theoretical derivation	Evaluation through: quiz, short questions Multiple choice, questions ,
	2	Convection: Newton's law of cooling, Determination of specific heat capacity of liquid	2	To cor hea stu	define nvection mode of at transfer and dy its application	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas
	3	Radiation: Distribution of energy in the spectrum of black body – Results.	3	To rad hea bla	understand liation mode of at transfer and ck body radiation	Lecture and theoretical derivation	Problem solving Formative assessment
II	Current	Electricity	1				
	1	Ohms law- Electrical conductivity - Kirchoff's law - Wheatstone's bridge – condition for balance	3	To basic featu Curre	understand the c concepts and tres related to ent Electricity	Illustration, Theoritical formulation Problem Solving	Evaluation through: quiz, short test
	2	Carey Foster's Bridge – Measurement of specific resistance – Determination of temperature coefficient of resistance	3	To temp coeff resist Care	determine berature ficient of tance using sy-Foster bridge	Lecture , Theoretical formulation Practical demonstration	Assignment on applications. Problem
	3	Potentiometer - calibration of voltmeter and ammeter.	2	To conc voltn amm poter	understand the ept of calibrating neter and neter using ntiometer.	Lecture , Illustration, Theoretical formulation Practical	Solving Formative assessment
III	Electron	nagnetism					
	1	Electromagnetic Induction – Faraday's laws – Lenz's law	3	To basic featu	understand the c concepts and tres related to	Lecture , Illustration, Theoritical	Evaluation through: quiz, short

				Electromagnetism	formulation	questions
	2	Self-inductance – mutual	2	To apply laws of	Lecture,	
		inductance – Experimental		electromagnetic	Illustration,	
		determination of mutual		induction and be able		Multiple
		inductance- Coefficient of		to calculate self- and		choice,
		coupling		mutual inductance.		questions,
	3	Alternating current – Mean, RMS,	3	To understand the	Illustration,	
		peak - A.C. Circuits - LCR in		basic concepts of	Theoretical	
		series.		alternating current	formulation	
					Practical	Deriving
						theoretical
						formulas
						Formative
						assessment
IV						
	1	Semiconductors – pn junction	2	To understand the	Lecture,	Evaluation
		diode		basic concepts and	Demonstration,	through:
				features related to	theoretical	quiz, short
				Semiconductor	formulation	questions
	2	Half wave and full wave rectifier –	2	To analyse the	Lecture,	
		Bridge rectifier		different type of	Demonstration,	
				rectifiers	theoretical	Multiple
					formulation	choice,
	3	Zener diode - Regulated power	2	To understand the	Lecture,	questions,
		supply		concept of using	Demonstration,	
				zener diode as	theoretical	
				voltage regulator	formulation	D · ·
						Deriving
		Transistor – CE Configuration	2	To understand the	Lecture,	formulas
				basic concepts and	Demonstration,	Tormulas
				features related to	theoretical	Formative
				transistor	formulation	assessment
T 7	D'. 4.11					assessment
V	Digital F		4		T11 / /	
	1	Number systems- decimal –binary	4	10 understand	Illustration,	Evaluation
		- Conversion of Decimal Number		ule basic	formulation	unougn.
		addition subtraction		footures related	Tormulation	quiz,
		multiplication and division		to binary and		
		inutiplication and division		decimal number		Deriving
				system		theoretical
	2	I_{OOIC} gates $-$ OR AND NOT	4	To get thorough	Lecture	Formulas
		XOR NAND and NOR gates _	-	knowledge on	Demonstration	Assignment
		truth tables – NAND and NOR as		logic gates	theoretical	on
		Universal gates		10510 50100	formulation	applications
		Chiverbui gueos			1011101utiOII	approactions
						Formative

						assessment	
Course instance Dr. D. Krichas Drive			M. M. Altila Isla Oscara M. D. Alt IIsland				

Course instructor: Dr. R. Krishna Priya, Ms. M. Abila Jeba Queen, Ms. P.Aji Udhaya

Head of the Department: Dr.S.Mary Delphine

Semester: IV Name of the Course : ANALOG SYSTEM AND APPLICATIONS Subject code : PC1741 Teaching Plan

Unit	Modules	Topics	Lecture	Learning	Pedagogy	Assessment /Evaluation
			nours	outcome		
I	Semicondu	ctor diodes and transistors				
	1	Semiconductor materials – Intrinsic semiconductors – Extrinsic semiconductors, N- type semiconductor – P-type semiconductor	2	Identify the different types of semiconductor materials	Illustration, Descriptive lecture	Evaluation through: quiz,
						short questions
						Descriptive answers
						Formative assessment
	2	P-N Junction , P-N Junction without external voltage, P-N junction with forward bias and reverse bias, V-I characteristics of a P-N	3	Understand the structure and functioning of a P-N junction diode under	Descriptive lecture. Practical demonstrati on	Evaluation through: quiz,
		junction diode – Static and dynamic resistance of a diode		various operating conditions		short questions
	3	Half wave rectifier, Bridge Rectifier, Calculation of ripple factor and rectification efficiency, Filters (π filter), Zener diode, Voltage regulator	3	Understand the working of rectifiers, filters and voltage regulators	PPT Illustration, Descriptive lecture. Practical demonstrati on	Descriptive answers Formative assessment
	4	Junction transistor- structure, working, transistor, Amplifying action – Three configurations, Transistor characteristics (CE configuration only).	3	Understand the structure ,working and amplification action of a junction transistor	Descriptive lecture. Practical demonstrati on	
II	Transistor	amplifier				

	1	Transistor biasing, selection of operating point, Bias stabilization ,Fixed bias and Voltage divider bias Single stage transistor amplifier, Development of transistor AC equivalent circuit method, h-parameter equivalent circuit	3	Understand the concept of biasing and the different types of biasing Analyse single stage transistor using AC equivalent circuit and h parameter method	Descriptive lecture. Descriptive lecture. Practical demonstrati on	Evaluation through: quiz, Problem solving short questions
	3	Analysis of a single state CE amplifier using hybrid models , Input and output impedance, current-voltage and power gain	3	Analyse the working of a single stage transistor and arrive at relation for various related parameters	Descriptive lecture. Theoretical formulation	Assignment Formative assessment
III	Feedback i	n Amplifiers				
	1	Concept of feedback in amplifiers, Types of feedback, Voltage gain of amplifier	3	Understand the concept and types of feedback in amplifiers	PPT Illustration, Descriptive lecture.	Evaluation through: quiz,
	2	Effect of negative feedback on gain stability, distortion and noise, input and output impedence and bandwidth	4	Explain the advantages of negative feedback	Descriptive lecture. Theoretical formulation	short questions
	3	Amplifier circuits with negative feedback, RC coupled amplifier without bypass capacitor, Emitter follower	3	Apply the concept of feedback in different practical circuits	Descriptive lecture. Theoretical formulation , Practical demonstrati on	Descriptive answers Formative assessment
IV	Oscillator					
	1	Need for an oscillator, Generating sine wave using tuned oscillator circuit, Frequency of oscillations in LC circuit	3	Understand the principle and working of oscillators	Descriptive lecture, Theoretical formulation	Evaluation through: quiz,
	2	Positive feedback in amplifier (Barkhausen criterion), Starting voltage, LC oscillators, Hartley and Colpitts oscillators	4	Explain about the internal circuitry and working of various types of	Theoretical formulation , Practical demonstrati on	short questions Descriptive

				oscillators		answers
	3	Basic principle of RC oscillators – RC phase shift	4	Identify the different	Descriptive lecture.	Assignment
		oscillator, wien bridge		circuit design of	formulation	Formative
				oscillators	, Practical demonstrati	assessment
V	Onerationa	l amnlifier			on	
	1	Parameters of a general and Ideal operational amplifier	3	Understand the basic parameters,opera tions and features of Opamp	Descriptive lecture. Theoretical formulation	Evaluation through: quiz,
	2	Inverting and Non-inverting amplifier, Difference and Summing amplifier, Log and antilog amplifiers,	4	Identify the use of Opamp in various circuits	Descriptive lecture. Theoretical formulation , Practical demonstrati on	short questions Descriptive answers
	3	Opamp as Voltage follower, Integrator, Differentiator, Comparators and Schmitt trigger	4	Apply the Opamp for different applications	Descriptive lecture. Theoretical formulation , Practical demonstrati on	Formative assessment

Course instructor: Dr. V. Shally

Head of the Department: Dr. S. Mary Delphine

Semester : II Name of the Course: Physics Every day – II Subject code: PNM172

Teaching Plan

Unit	Modules	Description	Lecture hours		Learning outcome	Pedagogy	Assessment /Evaluation
Ι	Electronic	5					
	1	Electronic devices Analog signals ,digital signals	2	To diffe and di	rentiate Analog gital signals .	Lecture, PPT	Quiz test, Formative assessment
	2	Tape recording Radio transmission Radio receiver	2	Understan and worki recording Radio trar Rad	d the principle ng of Tape Ismission lio receiver	Lecture, PPT	(I)

	3.	Television Remote control Telephone	2	Explain the principle and working of Television Remote control Telephone	Lecture, PPT	
	4.	The physics of cell phones What computers do Compact discs.	2	To know about computer	Lecture, PPT, Demonstrat ion	
II	Energy use	today				
	1	Fossil fuels Energy form water	2	Understand fuels and energy from water	Lecture, PPT,	Quiz test, Formative assessment
	2	Geothermal energy Solar energy Wind energy	3	To differentiate different energy sources	Lecture, PPT, Group discussion	(I)
	3	Biomass Energy from organic materials Secondary source of energy	2	Understand different energy sources	Lecture, PPT	
	4	Electricity – How Electricity is generated? The transformer Measuring electricity.	2	Understand the principle of electricity	Lecture, PPT	
III	Nuclear En	ergy and Medical Physics			-	
	1	Nuclear radiation Radioactive decay Nuclear reaction	2	Recall various concepts in nuclear physics	Lecture, PPT	Quiz test, Formative assessment
	2	Types of radiation Detection and measurement of Radioactivity Nuclear energy	3	Differentiate different types of radiation	Lecture, PPT	(II)
	3	Radiation and you Uses of Radioisotopes Nuclear medicine	2	Recall various concepts in nuclear physics	Lecture, PPT, Group discussion	
	4	What is Endoscopy? Electrocardiography (ECG) Electroencephalogram Blood pressure apparatus.	2	Understand the principles and applications of medical instruments	Lecture, PPT, Demonstr ation	
IV	Matter and	the Universe	1		1	1

	1	Theories of matter Quantum theories Theory of everything	2	Understand the theories in physics	Lecture, PPT, Group discussion	Quiz test, Formative assessment (II &III)
	2	The Big Bang Stars The solar system Planets	2	Recall various concepts in physics	Lecture, PPT, Group discussion	
	3	Mercury-venus- Earth-mars-jupiter Saturn-uranus-neptune-pluto- Comets-galaxis-	3	Distinguish different heavenly bodies	Lecture, PPT, Group discussion	
	4	Solar eclipses What causes the seasons The expanding universe.	2	Explain the expansion of universe	Lecture, PPT, Group discussion	
V	How things	s work?	l			
	1.	Pendulum clock Watch Electric bell	3	Explain the physical principles used in instruments.	Lecture, PPT, Demonstration	Quiz test, Formative assessment
	2	Incandescent lamp Fountain pen Ballpoint pen	2	Explain the physical principles.	Lecture, PPT, Demonstration	(II&III) Assignment
	3.	Xerography Microwave oven Pressure cooking Relay	2	Explain the physical principles used in instruments.	Lecture, PPT, Demonstration	
	4.	Iron box Fan How laser works? Application	2	Explain the physical principles used in instruments.	Lecture, PPT, Demonstration	

Course instructor: Dr. C.Nirmala Louis,

Head of the Department: Dr. S. Mary Delphine