PEOs for the Institution-PG

PEO1: The graduates use scientific and computational technology to solve social issues and pursue research.

PEO2:. Our graduates will continue to learn and advance their careers in industry both in public and private sectors, government and academia.

PEOs for the PG Departments

Mathematics

PEO3:Our graduates will have the ability to apply analytical and theoretical skills to model and solve mathematical problems and to work as efficient professionals

PO No.	Upon completion of M.Sc. Degree Programme, the graduates will be able to :
PO - 1	prepare successful professionals in industry, government, academia, research, entrepreneurial pursuits and consulting firms.
PO - 2	face and succeed in high level competitive examinations like NET, GATE and TOFEL.
PO - 3	carry out internship programmes and research projects to develop scientific skills and innovative ideas.
PO - 4	utilize the obtained scientific knowledge to create eco-friendly environment.

M.Sc. Mathematics (PO)

M.Sc. Mathematics (PSO)

PSO	Upon completion of the M.Sc. DegreeProgramme, the graduates	PO addressed
No.	will be able to:	
PSO - 1	utilize the knowledge gained for entrepreneurial pursuits.	PO 1
PSO - 2	sharpen their analytical thinking, logical deductions and rigour in reasoning.	PO 2
PSO - 3	use the techniques, skills and modern technology necessary to communicate effectively with professional and ethical responsibilities.	PO 3
PSO - 4	understand the applications of mathematics in a global economic environmental and societal context.	PO 4

Semester	: I	Major Core I
Name of the Course	: Algebra I	

Course Code : PM2011

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives: 1.To study abstract Algebraic systems.

2. To know the richness of higher Mathematics in advanced application systems.

Course Outcome

CO No.	Course Outcomes	PSOs	CL
	Upon completion of this course, students will be able to	addressed	
CO -1	understand the fundamental concepts of abstract algebra and give illustrations.	PSO- 1	U
CO -2	analyze and demonstrate examples of various Sylow p- subgroups, automorphisms, conjugate classes, finite abelian groups, characteristic subgroups, rings, ideals, Euclidean domain, Factorization domain.	PSO- 2	An
CO -3	develop proofs for Sylow's theorems, finite abelian groups, direct products, Cauchy's theorem, Cayley's Theorem, automorphisms for groups.	PSO- 2	С
CO -4	develop the way of embedding of rings and design proofs for theorems related to rings, polynomial rings, Division Algorithm, Gauss' lemma and Eisenstein Criterion	PSO- 2	С
CO -5	apply the concepts of Cayley's theorem, Counting principles, Sylow's theorems, Rings and Ideals in the structure of certain groups of small order.	PSO-4	Ар

Unit	Section	Topics	Lecture hours	Learning Outcomes	Pedagogy	Assessment/ evaluation	
Ι	Automorphisms and conjugate elements						
	1. Automorphism: Definition& Examples,		3	To understand the concept of automorphism and find	Lecture	Test	

		Automorhism of a		automorphisms of finite		
		finite cyclic group.		and infinite cyclic		
		an infinite cyclic		groups		
		group		8.0 mps		
		Sroup				
	2.	Theorems based on	4	To understand the	Lecture	Test
		automorphism,		concept of inner		
		Inner		automorphism		
		automorphism				
		1				
	3.	Problems based on	3	To understand the	Group	Quiz
		automorphism,Cayl		Cayley's Theorem	Discussion	
		ey's Theorem				
	1	Conjuggav	2	To understand the	Sominor	Formativa
	4.	Coughy's theorem	5	10 understand dive	Seminar	Aggggment
		Cauchy's theorem,		illustrations		Assessment
		Conjugate Classes		mustrations		Test I
II	Sylow's	theorems and Direct	products			
		-	-		1	1
	1.	Sylow's first	3	To understand the	Lecture	Test
		theorem(Second		concept and give		
		Proof)		illustrations		
	2	<i>n</i> -Sylow subgroups	3	To understand	Lecture	Test
	2.		5	Sylow'ssubgroups	Leeture	1050
				Sylow ssubgroups		
	3.	Second Part of	3	To develop proofs for	Lecture	Formative
		Sylow's theorem,		theorems based on		Assessment
		Third Part of		Sylow P- subgroups		Test I, II
		Sylow's theorem				
	4.	Direct products:	4	To understand the	Seminar	Test
		Definition,		concept and give		
		Examples and		illustrations		
		Theorems				
	5	Theorems based on	4	To understand the	Lecture	Test
	0.	finite abelian	•	concept and give	Lootare	1050
		groups		illustrations		
		groups		mustrations		
III	Rings				·	
	1.	Rings: Definition,	3	To understand the	Lecture	Test
		Examples and		concept and practice	With PPT	
		Theorems, Some		theorems		
		,				

		special classes of Rings				
	2.	Characteristic of a Ring,Homomorphis ms: Definition, Examples, Theorems	3	To understand the concept and develop theorems	Group Discussion	Test
	3.	Ideals and Quotient Rings: Definition, Examples, Theorems	4	To understand the concept and analyze the theorems	Lecture	Test
	4.	More Ideals and Quotient Rings: Definition, Examples, Theorems	5	To understand the concept Quotient Rings and demonstrate examples.	Lecture	Formative Assessment Test II
IV	Embedd	ing of Rings				
	1.	The field of Quotients of an integral domain: Definition , Examples and Theorems	3	To understand the concept the field of Quotients of an integral domain and give illustrations	Lecture with illustration	Test
	2.	Embedding of rings: Ring into a Ring with unity, Ring into a Ring with endomorphisms, Integral domain embedded into a field and related theorems	4	To develop the way of embedding of rings and design proofs for theorems related to rings	Lecture	Test
	3.	Euclidean Rings, Unique Factorization theorem	4	To understand the concept and practice theorems related to the concepts.	Group Discussion	Test

V	4. Polynom	A particular Euclidean Ring, Fermat's Theorem iial Rings	4	To learn and interpret the concept and theorem	Seminar	Formative Assessment Test III
	1.	Polynomial Rings: Definition , Examples and Theorems The Division Algorithm	5	To understand the concept and practice theorems related to the concepts	Lecture	Test
	2.	Polynomials over the Rational Field: Definition , Examples and Theorems	4	To understand the concept and practice theorems related to the concepts	Lecture	Formative Assessment Test III
	3.	Gauss' lemma, The Eisenstein Criterion	3	To learn and understand the theorems	Seminar	Assignment
	4.	PolynomialRings over Commutative Rings, Unique Factorization Domains	3	To practice theorems based on this concept	Lecture	Assignment

Course Instructor(Aided): Dr.J. Befija Minnie

HOD(Aided): Dr. V. M. Arul Flower Mary

HOD(SF): Mrs. J. Anne Mary Leema

Major Core II

Course Instructor(SF): Ms.G.Arockia Amala Sherly

Semester : I

Name of the Course : An

Course Code

: Analysis I

: PM2012

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

1. To understand the basic concepts of analysis.

2. To formulate a strong foundation for future studies.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO -1	explain the fundamental concepts of analysis and their role in modern mathematics.	PSO-3	U, Ap
CO -2	deal with various examples of metric space, compact sets and completeness in Euclidean space.	PSO- 2	An
CO -3	utilize the techniques for testing the convergence of sequence and series	PSO-1	Ap
CO -4	understand the important theorems such as Intermediate valued theorem, Mean value theorem, Roll's theorem, Taylor and L'Hospital theorem	PSO-3	U
CO -5	apply the concepts of differentiation in problems.	PSO- 4	Ар

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
			hours	Outcomes		evaluation
I	Basic To	pology				
	1	Definitions and examples of metric spaces, Theorems based on metric spaces.	5	To explain the fundamental concepts of analysis and also todeal with various examples of metric space.	Lecture	Test
	2	Definitions of compact spaces and related theorems, Theorems based on compact sets	5	To understand the definition of compact spaceswith examples and theorems	Lecture	Test

	3	Weierstrass theorem, Perfect Sets, The Cantor set Connected Sets and related problems	3	To understand the concepts of Perfect Sets and The Cantor set To understand the definitionof Connected Setsandpractice various problems.	Lecture	Test Formative Assessment Test I
II	Converg	ent Sequences				
	1	Definitions andtheorems of convergent sequences, Theorems based on convergent sequences	5	To Learn some techniques for testing the convergence of sequence.	Lecture	Test
	2	Theorems based on Subsequence s	2	To understand the concept of Subsequences with theorems	Lecture	Formative Assessment Test I
	3	Definition and theorems based on Cauchy sequences, Upper and lower limits	5	To Understand the definition and theorems based on Cauchy sequences	Lecture	Test
	4	Some special sequences, Problems related to convergent sequences	3	To Understand the problems related to convergent sequences	Lecture	Test

III	Series					
	1	Series, Theorems based on series	3	To Learn some techniques for testing the convergence series and confidence in applying them	Lecture	Test
	2	Series of non-negative terms, The number e	4	To find the number e	Lecture	Assignment
	3	The ratio and root tests – example and theorems, Power series	3	To Understand the ratio and root tests	Lecture with PPT	Quiz
	4	Summation of parts, Absolute convergence	2	To apply the techniques for testing the absolute convergence of series	Lecture	Test
	5	Addition and multiplicatio n of series, Rearrangeme nts	3	To find theAddition and multiplication of series	Lecture with group disscussio n	Formative Assessment Test II
IV	Continui	ity				
	1	Definitions and Theorems based on Limits of functions, Continuous functions	4	To explain the fundamental concepts of analysis and their role in modern mathematics	Lecture with PPT	Test

	2	Theorem	3	To Understand	Lecture	Quiz
		related to		the theorem		
		Continuous		related to		
		functions,		Continuous		
		Continuity		functions		
		and				
		Compactness				
	3	Corollary	3	To Understand	Sominor	Formativa
	5	Theorems	5	the concents of	Seminar	Assessment II
		hand on		Continuity and		Assessment II
		Cantinuity		Commonte and		
		Continuity		Compactness		
		Compactness				
		, Examples				
		and Remarks				
		related to				
		compactness				
	4	Continuity	2	To Understand	Lecture	Assignment
		and		the definition of		
		connectednes		Continuity and		
		s,		connectedness		
		Discontinuiti				
		es				
	5	Monotonic	3	To Understand	Lecture	Test
	5	functions	5	the definition of	Lecture	1050
		Infinite		Monotonic		
		limits and		functions		
		limits and		Infinito limito		
		infinity		and limits at		
		mmity		and mints at		
				mmmty		
V	Differen	tiation				
	1	The	3	To Apply the	Lecture	Assignment
		derivative of		concepts of		
		a real		differentiation		
		functions -				
		Theorems,				
		Examples				
	2	Mean value	3	To Understand	Lecture	Test
		theorems		the important		
				L L		

			Mean value theorem		
3	The continuity of derivatives, L'Hospital rule, Derivatives of higher order, Taylor's Theorem	4	To Understand the important theorems such as Taylor and L'Hospital theorem	Lecture with group discussion	Quiz
4	Differentiati on of vector valued functions	3	To Understand the concepts of differentiation	Lecture	Formative Assessment
5	Problems related to differentiatio n	2	ToApplytheconceptsofdifferentiation inproblems.	Lecture	Assignment

Course Instructor(Aided): Dr. M.K. Angel Jebitha Course Instructor(SF): Ms. V.G. Michael Florance HOD(Aided): Dr. V. M. Arul Flower Mary

HOD(SF): Ms. J. Anne Mary Leema

Semester: IMajor Core IIIName of the Course: Probability and StatisticsCourse Code: PM2013

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	recall the basic probability axioms, conditional probability, random variables and related concepts	PSO-2	R
CO- 2	compute marginal and conditional distributions and check the stochastic independence	PSO-2	U, Ap

CO- 3	recall Binomial, Poisson and normal distributions and learn	PSO-4	R,U
	new distributions such as multinomial, Chi square and		
	Bivariate normal distribution		
CO- 4	learn the transformation technique for finding the p.d.f of	PSO-1,3	U, Ap
	functions of random variables and use these techniques to		
	solve related problems		
CO -5	employ the relevant concepts of analysis to determine	PSO-5	Ap
	limiting distributions of random variables		

Un	Section	Topics	Lecture	e Learning outcomes	Pedagogy	Assessment/
lt			hours			evaluation
1	Conditio	nal probability and Stochast	ic indepe	endence		
	1	Definition of Conditional probability and multiplication theorem Problems on Conditional probability Bayre's theorem	4	Explain the primary concepts of Conditional probability	Lecture through Google meet.	Evaluation through appreciative inquiry
	2	Definition and calculation of marginal distributions Definition and calculation of conditional distributions Conditional expectations	4	To distinguish between marginal distributions and conditional distributions	Lecture through Google meet	Evaluation through online quiz and discussions.
	3	The correlation coefficient Derivation of linear conditional mean Moment Generating function of joint distribution Stochastic independence of randomVariables and related problems	4	To understandthe theorems based onStochastic independence of random variables	Lecture through Google meet	online Test and Assignment
	4	Necessary conditions for stochastic independence. Necessary and sufficient conditions for stochastic independence, Pairwise and mutual stochastic independence, Bernstein's example.	3	To understandthe necessary and sufficient conditions for stochastic independence	Discussion through Google meet	Online Quiz and Test
II	Some sp	ecial distributions	•			

	1	Derivation of Binomial distribution M.G.F and problems related to Binomial distribution Law of large numbers Negative binomial distribution	4	To understand Law of large numbers Negative binomial distribution	Lecture with Examples	Evaluation through online discussions.
	2	Trinomial and multinomial distributions Derivation of Poisson distribution using Poisson postulates M.G.F and problems related to Poisson distribution Derivation of Gamma distribution using Poisson postulates	4	To know aboutDerivation of Poisson distribution using Poisson postulates	Lecture through Google meet	Evaluation through appreciative inquiry thro google meet
	3	Chi-Square distribution and its M.G.F Problems on Gamma and Chi-Square distributions The Normal distribution	4	To identify Chi-Square distribution and its M.G.F Problems on Gamma and Chi-Square distributions The Normal distribution	Lecture through Google meet	Formative Assessment Online Test
	4	Derivation of standard Normal distribution M.G.F and problems on Normal distribution The Bivariate Normal distribution Necessary and sufficient condition for stochastic independence of variables having Bivariate Normal distribution	4	Relate the Normal distribution and stochastic independence of variables having Bivariate Normal distribution	Discussion Through Google meet	Slip Test through online
III	Distribu	tions of functions of random	variabl	es		
	1	Sampling theory Sample statistics and related problems Transformations of single variables of discrete typeand related problems	4	Explain the primary concepts of Sampling theory Sample statistics	Lecture through Google meet	Evaluation through discussions.
	2	Transformations of single variables of continuous typeand related problems	4	To understand Transformations of single variables and Transformations of two or more variables	Lecture through Google meet	Evaluation through appreciative inquiry

	3	Transformations of two or more variables of discrete typeand related problems Transformations of two or more variables of	3	Explain the derivation of Beta distribution	Lecture through	Formative Assessment
		continuous typeand related problems Derivation of Beta - distribution			Google meet	Test online
	4	Derivation of t- distribution Problems based on t - distribution Derivation of F- distribution Problems based on F - distribution	4	To identify the t - distribution and F - distribution	Discussion Through Google meet	Slip Test through online
IV	Limiting	distributions	Г <u>-</u>			
	1	Behavior of distributions for large values of n Limiting distribution of n th order statistic Limiting distribution of sample mean from a normal distribution	3	Explain the behavior of distributionsfor large values ofn	Lecture through Google meet	Evaluation through discussions.
	2	Stochastic convergence and convergence in probability Necessary and sufficient condition for Stochastic convergence Limiting moment generating function	4	To understand necessary and sufficient condition for Stochastic convergence Limiting moment generating function	Lecture through Google meet	Evaluation through Assignment online
	3	Computation of approximate probability The Central limit theorem	3	To understand The Central limit theorem	Lecture through Google meet	Formative Assessment Test online
	4	Problems based on theCentral limit theorem Theorems on limiting distributions Problems on limiting distributions	4	To calculate Problems based on theCentral limit theorem and Problems on limiting distributions	Lecture through Google meet	Slip Testonline
V	Estimati	on	1			
	1	Estimation, Point Estimation	3	Explain the primary concepts of Estimation, Point Estimation	Lecture through Google meet	Evaluation through discussions.

2	Measures of quality of	4	Finding the 95%	Lecture	Formative
	Estimators, Confidence		confidence interval for μ	through	Assessment
	Intervals for Means			Google	test
				meet	
3	Confidence intervals for	4	Explain about the	Lecture	Slip Test
	difference of Means		maximum likelihood	through	online
			estimators and functions	Google	
				meet	
4	Confidence intervals for	4	To understand the	Lecture	online
	Variances		variance of unbiased	through	Assignment
			estimators	Google	
				meet	

Course Instructor(Aided): Ms. J.C. Mahizha	HOD(Aided):: Dr. V. M. Arul Flower Mary
Course Instructor(SF): Dr. S.Kavitha	HOD(SF): Ms. J. Anne Mary Leema

Semester : I

Major Core IV

Name of the Course

: PM2014

No. of hours per week	Credits	Total no. of hours	Marks
6	4	90	100

: Ordinary differential equations

Objectives:

Course Code

1. To study mathematical methods for solving differential equations

2. Solve dynamical problems of practical interest.

со	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the definitions of degree and order of differential equations and determine whether a system of functions is linearly independent using the Wronskian definition.	PSO - 2	R,U
CO - 2	solve linear ordinary differential equations with constant coefficients by using power series expansion.	PSO - 3	Ap
CO - 3	determine the solutions for a linear system of first order equations.	PSO - 2	U
CO - 4	learnproperties of Legendre polynomials and Properties of Bessel Functions.	PSO - 4	U

CO - 5	analyze the concepts of existence and uniqueness of solutions of the ordinary differential equations.	PSO - 2	An
CO - 6	create differential equations for a large number of real world problems.	PSO - 1	С

Unit	Section	Topics	Lect	Learning outcomes	Pedagogy	Assessment/
			ure			evaluation
			hour			
			S			
Ι	Secon	d Order linear Equat	ions			
	1	Second order	4	Understand the concepts of	Lectures,	Test
		Linear Equations -		existence and uniqueness	Assignmen	
		Introduction		behavior of solutions of the	ts	
				ordinary differential		
				equations		
	2	The general	4	To understand the theorems	Lectures,	Test
		solution of a		and identify whether a	Assignmen	
		homogeneous		system of functions is	ts	
		equation		linearly independent using		
				the Wronskian		
	3	The use of a known	4	To determine the solutions	Lectures,	Test
		solution to find		for the Second order Linear	Assignmen	
		another		Equations	ts	
	4	The method of	4	To determine the solutions	Lectures,	Test
		variation of		using the method of	Seminars	
		parameters		variation of parameters		
II	Power se	eries solutions				
	1	Review of power	4	To learn about Power Series	Lectures,	Test
		series, Series		method	Assignment	
		solutions of first			S	
		order equations				

	2	Power Series	3	To determine series	Lectures,	Test
		solutions for		solutionsforsecond order	Seminars	
		Second order linear		equations		
		equations –				
		Ordinary Points				
	3	Singular points	3	To understand the concepts	Lectures,	Quiz
				of regular singular points	Group	
				and irregular singular points	Discussion	
					Discussion	
	4	Power Series	5	To solve ordinary linear	Group	Test
		solutions for		differential equations with	Discussion	
		Second order linear		constant coefficients by		
		equations -Regular		using Frobenius method		
		singular points				
TTT	System	f Equations				
111	System	or Equations				
	1	Linear systems-	4	To understand the theorems	Lectures,	Test
		theorems		in Systems of Equations	Online	
					Assignmen	
					ts	
		T • .	2			T (
	2	Linear systems-	3	To determine the solutions	Online	lest
		problems		for a linear system of first	Assignmen	
				order equations	ts	
	3	Homogeneous	4	To understand the theorems	Seminars	Test
		linear systems with		Homogeneous linear		
		constant		systems with constant		
		coefficients		coefficients		
	4	Homogeneous	4	To determine the solutions	Group	Test
		linear systems with		for Homogeneous linear	Discussion	
		constant		systems with constant	s, Online	
		coefficients-		coefficients	Assignmen	
		problems			ts	
IV	Some Sp	ecial Functions of Ma	athema	tical Physics		
	1	Lagandra	2	To domino Do duiono ?	Lastres	Test
		Delymericle	5	formula	Lectures,	Test
		Polynomials		Iormula	Online	
					Assignmen	
					ts	

	2 3	Properties of Legendre Polynomials Bessel Functions. The Gamma Function	4	To understand Orthogonal property and other properties of Legendre Polynomials To derive Bessel function of the first kind J _P (x), To understand the gamma function and to determine the general solution of Bessel's equation	Online Assignmen ts Seminars Online Assignmen ts Seminars	Test
	4	Properties of Bessel Functions	4	To understand properties of Bessel functions and to derive orthogonal property of Bessel Functions	Online Assignmen ts Seminars	Test
V	Picard's	method of Successive	appro	ximations		
	1	The method of Successive approximations	4	To solve the problems using the method of Successive approximations	Lectures, Assignmen ts	Test
	2	Picard's theorem	3	To understand Picard's theorem	Lectures	Test
	3	Lipchitz condition	5	To solve problems using Lipchitz condition	Lectures, Group discussion	Quiz
	4	Systems-The second order linear equations	2	To solve the problems in Systems of second order linear equations	Assignmen ts	Assignment

Course InstructorAided): Dr.L.Jesmalar

HOD(Aided): Dr. V. M. Arul Flower Mary

HOD(SF): Ms. J. Anne Mary Leem

Course Instructor(SF): Ms. J. Anne Mary Leema

Semester : I

Name of the Course : Numerical Analysis

Course Code : PM2015

Elective I

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

1. To study the various behaviour pattern of numbers.

2. To study the various techniques of solving applied scientific problems.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the methods of finding the roots of the algebraic and transcendental equations.	PSO - 2	R
CO - 2	understand the significance of the finite, forward, backward and central differences and their properties.	PSO - 3	U
CO - 3	learn the procedures of fitting straight lines and curves.	PSO - 2	U
CO - 4	compute the solutions of a system of equations by using appropriate numerical methods.	PSO - 1	Ар
CO - 5	solve the problems in ODE by using Taylor's series method, Euler's method etc.	PSO - 4	Ар

Unit	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/
			hours			evaluation
Ι	Soluti	on of Algebraic and T	ranscende	ntal Equations		
	1	Bisection Method -	3	Recall about finding the	Lecture	Evaluation
		Examples and		roots of the algebraic	with	through test
		graphical		and transcendental	Illustration	
		representation,		equations using		
		Problems based on		algebraic methods.		
		Bisection Method				
	2	Method of False	3	Draw the graphical	Lecture	Evaluation
		Position –		representation of each	with	through test
		Examples and		numerical method.	Illustration	
		graphical				
		representation,				
		Problems based on				
		Method of False				
		Position.				
	3	Ramanujan's	3	To solve algebraic and	Discussion	Quiz and
		Method &		transcendental equations	with	Test
		Problems based		using	Illustration	
		onRamanujan's		Ramanujan'sMethod.		
		Method,				
	4	Secant Method -	3	To understand the	Lecture	Test
		Problems based on		methods of Secant.	with	
		Secant Method and			Illustration	

		graphical				
	_	representation.	2			
	5	Muller's Method,	3	To understand the	Lecture	Test
		Problems based on		methods of Muller's.		
**	.	Muller's Method				
11	Interpola	ation	2	TT 1 . 1.1	.	m .
	1	Forward	3	Understand the	Lecture	Test
		Differences,		significance of the		
		Backward		finite, forward,		
		Differences and		backward and central		
		Central		differences and their		
		Differences,		properties.		
		Problems related to				
		Forward				
		Differences,				
		Differences and				
		Control				
		Differences				
		Differences, Detection of Errors				
		by use of difference				
		tables				
	2	Differences of a	3	To practice various	Lecture	Test
	-	polynomial.	5	problems	Leeture	1050
		Newton's formulae		F		
		for Interpolation.				
		Problems based on				
		Newton's formulae				
		for Interpolation				
	3	Central Difference	3	To solve problems using	Lecture	Formative
		Interpolation		Gauss's forward central		Assessment
		formulae - Gauss's		and Gauss's backward		Test
		forward central		formula		
		difference				
		formulae, Problems				
		related to Gauss's				
		forward central				
		difference				
		formulae, Problems				
		related to Gauss's				
		backward formula			~	
	4	Stirling's formulae,	4	To solve problems using	Group	Test
		Problems related to		Stirling's formulae	Discussion	
		Stirling's formulae,				
		Bessel's formulae				

	5	Problems related to	4	To solve problems using	Group	Test
		Bessel's formulae,		Bessel's formulae and	Discussion	
		Everett's formulae,		Everett's formulae		
		Problems related to				
		Everett's formulae				
III	Least sq	uares and Fourier Tr	ansforms			
	1	Least squares	2	To understand the Curve	Lecture	Quiz
		Curve Fitting		Fitting Procedure.		
		Procedure				
	2	Fitting a straight	3	To solve Problems	Lecture	Test
		line. Problems		related to fitting of		
		related to fitting of		straight line		
		straight line				
	3	Multiple Linear	2	To solve Problems	Lecture	Test
		Least squares		related to Multiple		
				Linear Least squares.		
	4	Linearization of	4	To solve Problems	Group	Formative
		Nonlinear		related to fitting of	Discussion	Assessment
		Laws. Problems		nonlinear equation.		Test
		related to fitting of				
		nonlinear equation.			T.	
	5	Curve fitting by	2	To solve Problems	Lecture	Test
		Polynomials.		related to fitting of		
		fitting of		Polynomials.		
		Dolymomials 01				
		rorynonnais				
IV	Numerio	al Linear Algebra				
	1	Triangular	2	To evaluate the matrix	Lecture	Test
		Matrices, LU		using LU		
		Decomposition		Decomposition method.		
		of a matrix		-		
	2	Solution of Linear	3	To understand the Gauss	Lecture	Quiz
		systems – Direct		elimination and practice	with	
		methods: Gauss		problems based on it	Illustration	
		elimination,				
		Necessity for				
		Pivoting, Problems				
		related to Gauss				
		elimination				
	3	Gauss-Jordan	3	To understand Gauss-	Lecture	Test
		method, Problems		Jordan method	and group	
		based on Gauss-			discussion	
		Jordan method,				
		Modification of the				
		Gauss method to				
	4	compute the inverse	2	T	T a star	Tract
	4	Examples to	3	10 compute the inverse	Lecture	Test
		compute the inverse		using unterent methods	witti	1

		using Modification			Illustration	
		of the Gauss				
		method, LU				
		Decomposition				
		method and related				
		problems, Solution				
		of Linear systems -				
		Iterative methods				
	5	Gauss-Seidal	3	To understand the	Lecture	Test
		method, Problems		Gauss-Seidal method	with	
		related to Gauss-		and Jacobi's method	Illustration	
		Seidal method.				
		Jacobi's method,				
		Problems related to				
		Jacobi's method				
V	Numerio	cal Solution of Ordina	ry Differe	ntial Equations	I	I
	1	Solution by	4	To solve Differential	Lecture	Test
		Taylor's series,		Equations using	with	
		Examples for		different methods	Illustration	
		solving Differential				
		Equations using				
		Tavlor's series.				
		Picard's method of				
		successive				
		approximations				
	2	Problems related to	4	To understand the	Lecture	Formative
		Picard's method.		methods Picard's and	with	Assessment
		Fuler's method		Fuler's and practice	Illustration	test
		Error Estimates for		problems related to it	mustration	test
		the Euler Method		problems related to it.		
		Problems related to				
		Fuler's method				
	3	Modified Euler's	4	To solve problems using	Lecture	Assignment
	C	method. Problems		Modified Euler's	with	1 100-18
		related toModified		method	Illustration	
		Fuler's method		method	mustration	
		Runge - Kutta				
		methods - II order				
		and III order				
	1	Broblems related to	1	To solve problems using	Locturo	Assignment
	4	Problems related to	4	Fourth order Pungo	Lecture	Assignment
		Nullge - Nulla II		Kutta mathada	Willi	
		Druch and III order,		Kutta methods	mustration	
		Problems related to				
		Fourth-order Runge				
		- Kutta methods				

Course Instructor(Aided): Dr. K. Jeya Daisy

HOD(Aided) :Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Ms. V. Princy Kala

HOD(S.F) :Ms. J. Anne Mary Leema

Semester

: II

Major Core V

Name of the course : Modules and Vector Spaces

Course code : PM2021

Number of hours per week	Credits	Total number of hours	Marks
6	5	90	100

Objective:

To understand the concept of Modules and the advanced forms of Matrices related to Linear Transformations.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSOs addressed	CL
CO - 1	recall the definitions and properties of Vector Spaces and Subspaces	PSO - 2	R
CO - 2	analyze the concepts Linear Independence, Dependence and Basis	PSO - 2	An
CO - 3	apply the definition and properties of Linear transformation and Matrices of Linear transformation	PSO - 3	Ар
CO - 4	gain knowledge about characteristic polynomial, eigen vectors, eigen values and eigen spaces as well as the geometric and the algebraic multiplicities of an eigen value	PSO - 1	U
CO - 5	learn and apply Jordan form and triangular form for computations	PSO - 4	U

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Module					
	1	Basic definitions and examples	4	Recall the definitions and basic concepts of fields and modules	Lecture with illustration	Evaluation through:

	2	Quotient	4	Express the	Lecture	Unit Test
		modules and		fundamental	with	
		module		concepts of field	illustration	
		homomorphism		theory, module		
		_		theory and theory of		
				quotient modules		Quiz
					-	
	3	Generation of	4	Recall the	Lecture	
		Modules		definitions and basic		
				concepts of module		
				theory. Understand		Formative
				the theorems in		assessment I
				modules.		
	4	Direct sums and	3	Demonstrate the use	Lecture	
		Free Modules		of module theory to	with	
				compute Direct	illustration	
				sums and Free		
				Modules.		
II	Vector S	paces				
	1	Elementary	3	Recall the	Lecture	Unit Test
		basic concepts:		definitions and basic	with	
		Vector space,		concepts of Vector	illustration	
		Subspace,		spaces and		
		Vector space		Subspaces.		
		homomorphism				Quiz
	2	L inear span	1	Learn the definition	Lecture	
	2	Einear span,	4	of Linear span and	Lecture	
		dimensional		Finite dimensional		
				voctor space		D 11
		Linoarly		Analyza the		Problem
		dopondont		Analyze ule		Solving
		Lineerly		dependent and		
		Linearry		incontraint and		
		independent		meany multiplendent.		
	3	Basis,	4	Learn the concept of	Lecture	
		dimension		basis and dimension.	with	
				Use the concept of	illustration	
				basis and dimension		
				in finite dimensional		Formative
				vector space		assessment I
		1	1			

	4	Dual Spaces	3	Understand the	Lecture	
				theorems in dual		
				spaces.		
III	Linear T	Transformations				
	1	Algebra of	3	Recall the definition	Lecture	Unit Test
		Linear		of vector space	with	
		Transformation,		homomorphism.	illustration	
		Regular,		Understand the		Ouiz
		Singular,		concept of Regular,		Zuill
		Range, Rank		Singular, Range and		
				Rank of Linear		
				Transformations.		
	2	Characteristic	5	Gain knowladza	Lecture	Problem
	2	Poot	5	shout Characteristic	Lecture	Solving
		Characteristic		root and	illustration	
		vactor Matrices		Characteristic	mustration	
		vector, wattrees		vector Apply the		
				definition and		
				properties of Linear		Online
				transformation and		Assignment
				Matrices of Linear		on range
				transformation		
		<u> </u>			-	
	3	Canonical	4	Learn and apply	Lecture	
		Forms:		triangular form for		
		Triangular		computations		
		Form, Similar,				
		Invariant				Formative
		subspace				assessment
	4	Canonical	4	Recall the	Lecture	I, II
		Forms:		definitions and basic		
		Nilpotent		concepts of Linear		
		Transformation,		Transformations.		
		Index of		Understand the		
		nilpotence		theorems in		
				nilpotent Linear		
				Transformations.		
IV	Canonic	al Forms				

	1	Jordan form	4	Learn and apply Jordan form for computations.	Lecture	Unit Test
	2	Rational Canonical Form, Companion matrix.	4	Gain knowledge about Companion matrix, Elementary divisor and Characteristic	Lecture	Class Test
		Elementary divisor, Characteristic polynomial		polynomial.		Quiz
	3	Trace	4	Understand the properties of trace and Jacobson Lemma.	Lecture	Seminar on Canonical Forms
	4	Transpose, Symmetric matrix, Adjoint	3	Understand the properties of Transpose, Symmetric matrix and Adjoint.	Lecture	Formative assessment II
V	Determi	nants and Quadra	atic forms			
	1	Determinants, Secular equation	3	Find determinant of a triangular matrix. Understand Cramer's Rule.	Lecture with illustration	Unit Test
	2	Hermitian, Unitary	4	Recall the properties of real and complex numbers and apply these concepts in Linear transformation. Develop the knowledge of Hermitian and Unitory Linear	Lecture with illustration	Quiz Problem Solving

3	Normal Transformation	3	Recall the properties of real and complex numbers and apply these concepts in Normal transformation.	Lecture	Seminar on Quadratic forms
4	Real Quadratic forms, Congruent	4	Learn and apply Quadratic form for computations.	Lecture	Formative assessment II

Course Instructor(Aided): Dr.T.Sheeba Helen	

HOD(Aided) :Dr.V.M.Arul Flower Mary

Course Instructor(S.F): Dr.C.Jenila

HOD(S.F) :Mrs.J. Anne Mary Leema

Semester	: 11

Major Core VI

Name of the Course : Analysis II

Subject code : PM2022

No. of hours per week	Credits	Total No. of hours	Marks	
6	5	90	100	

Objectives: 1.To make the students understand the advanced concepts of Analysis.

2. To pursue research in Analysis related subjects.

CO	Upon completion of this course the students will be	PSOs	CL
	able to :	addressed	

CO -1	recall the definition of continuity, boundedness and some results on uniform convergence	PSO-1	R
CO -2	recognise the difference between pointwise and uniform convergence of a sequence of functions and Riemann Stieltjes integrals.	PSO-2	An
CO -3	understand the close relation between equicontinuity and uniform convergence of sequence of continuous function and rectifiable curves	PSO-3	U
CO -4	learnParseval's theorem, Stone Weierstrass theorem and know about its physical significance in terms of the power of the Fourier components.	PSO-4	U
CO -5	utilize the definition of differentiation and partial derivative of function of several variables to solve problems	PSO-3	Ар

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation	
Ι	Riemann Stieltjes Integral						
	1	Definition and existence of Riemann Stieltjes integrals	3	To understand the definition existence of Riemann Stieltjes integrals	Lecture with Illustration	Evaluation through test	
	2	Theorems related to Riemann Stieltjes integrals	3	To understand the theorems related to Riemann Stieltjes integrals	Lecture	Short Test	
	3	Properties of Riemann Stieltjes integrals	3	To understand the properties of Riemann Stieltjes integrals	Lecture with Illustration	Slip Test	

	4	Fundamental	3	To understand and apply	Lecture	Quiz
		theorem of		this theorem in various	with	
		Calculus and		problems	711	
		related problems			Illustration	
	5	Pactifiable curves	3	To understand	Lecture	Formative
	5	and problems	5	rectifiable curves and	with	Assessment
		and problems		able to do the problems	witti	Test
				related to it	Illustration	1050
				Telated to It.		
II	Sequenc	es and series of functi	ons			
	1	Definition and	3	Recall the definition	Lecture	Test
		examples of		understand the examples	with	
		convergence		of convergence	Illustration	
		sequence		sequence	mustration	
	2	Definition and	5	To distinguish between	Lecture	Open book
		theorems based on		convergence and		assignment
		uniform		uniform convergence		C
		convergence and				
		continuity				
	2	Theorem a hourd or	4	To understorid the	Lastaria	08-1
	5	uniform	4	rolation between the	Lecture	Qaa
		convergence and		uniform convergence		
		differentiation		and differentiation		
		unterentiation		and differentiation		
	4	Problems based on	4	To analyze and solve the	Group	Formative
		sequences and		problems	Discussion	Assessment
		series of functions				Test
III	Equicon	tinuous families of fu	nction			
	1	Definition and	5	To understand the	Lecture	Quiz
		theorems based on		definition and theorems	with	
		equicontinuous		based on equicontinuous	Illustration	
		families of		families of functions		
		functions				
	2	Definition of	4	To understand the	Lecture	Slip Test
		uniformly closed		concept of uniformly	with	
		algebra and		closed algebra in various	Illustration	
		uniformly closure		theorems		
		-				

	3	Stone Weierstrass	2	To learn Stone	Lecture	Test
		theorem		Weierstrass theorem		
	4	Problems on	3	To apply the concept of	Group	Brain
		equicontinuous		equicontinuousand solve	Discussion	Stroming
		families of		problems		
		functions				
IV	Some sp	pecial functions				I
	1	Definition,	4	To learn the concept of	Lecture	Quiz
		Theorems and		power series	with	
		examples of			Illustration	
		analytic function				
		and power series				
	2	The algebraic	3	To get the idea of	Lecture	Test
		completeness of the		algebraic completeness	and group	
		complex field		of the complex field	discussion	
		·····				
	3	Definition and	3	To learn the definition	Lecture	Quiz and
		theorems related to		and theorems related to	with	Test
		Fourier Series		Fourier Series	Tilvetustica	
					mustration	
	4	Problems related to	2	To understand the	Lecture	Formative
		Fourier Series and		significance of Fourier	with	Assessment
		Dirichlet Kernel		series and apply it in		Test
				problems	Illustration	
		T 11 /			T .	
	5	Localisation	2	To learn the concept of	Lecture	Short Test
		Theorem and		trigonometric series		
		Parseval's theorem				
V	Differen	tiation				
	1	Introduction of	4	To identify total	Lecture	Quiz
		differentiation,		derivative problems	with	
		Definition of total			Illustration	
		and partial				
		derivative and				
		examples				
	2	Theorems and	4	To apply the concept of	Lecture	Short Test
		examples based on		Partial derivatives	with	
		Partial derivatives				
					Illustration	

3	Definition of continuously differentiable and related theorems	3	To utilize the concept of continuously differentiable	Lecture with Illustration	Open Book Assignment
4	Contraction principle and related theorems	2	To interpret the concept of contraction principle	Lecture with Illustration	Assignment
5	The inverse function theorem and problems	3	To develop the proof technique and solve problems.	Lecture with Illustration	Formative Assessment Test

Course Instructor(Aided): Dr. K. Jeya Daisy HOD(Aided) :Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Ms. C.JoselinJenisha HOD(S.F) :Ms.J. Anne Mary Leema

Semester	: 11	Major Core VII
Name of the Course	: Partial Differential Equations	
Course Code	: PM2023	

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

1. To formulate and solve different forms of partial differential equations.

2. Solve the related application oriented problems.

СО	Upon completion of this course the student will be able to:	PSOs	CL
		addressed	
CO-1	recall the definitions of complete integral, particular integral and singular integrals.	PSO-2	R
CO-2	learn some methods to solve the problems of non- linear first order partial differential equations. homogeneous and non homogeneous linear partial differential equations with constant coefficients and solve related problems.	PSO-1	U

CO-3	analyze the classification of partial differential equations in three independent variables – cauchy's problem for a second order partial differential equations.	PSO-3	An
CO-4	solve the boundary value problem for the heat equations and the wave equation.	PSO-4	Ар
CO-5	apply the concepts and methods in physical processes like heat transfer and electrostatics.	PSO-5	Ар

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation				
Ι	Non -line	Non -linear partial differential equations of first order								
	1	Explanation of terms, compactible system of first order equations, Examples related to compactible system	3	To Recall the definitions of complete integral, particular integral and singular integral	Lecture	Quiz				
	2	Charpit's Method and problems, Problems related to charpit's method	4	ToAnalyzeCharpit's Method and to solve the problems.	Lecture	Assignment				
	3	Problems related to charpit's method	2	To Learn Charpit's Method methods to solve the problems	Lecture	Test				
	4	Solving problems using charpit's method	3	To Learn Charpit's Method methods to solve the problems	Lecture with group discussion	Test				
	5	Problems related to charpit's method	3	To Learn Charpit's Method methods to solve the problems	Lecture	Assignment				
II	Homoge	neous linear partial diff	erential equa	ation with constant coe	fficient					
	1	Homogeneous and non- homogeneous linear equation with constant coefficient,	2	To Analyze homogeneous linear partial differential	Lecture	Test				

		Solution of finding		equations with		
		homogeneous		constant coefficients		
		equation with constant				
		coefficient. Theorem				
		LII				
		-,				
	2	Method of finding	2	To Learn some	Lecture	Test
		complementary		methods to solve the		
		function, Working		problems of		
		rule for finding		homogeneous linear		
		complementary		partial differential		
		function, Alternative		equations with		
		working rule for		constant coefficients		
		finding				
		complementary				
		function				
			2		T /	The second secon
	3	Some examples for	3	To find	Lecture	Test
		finding		Complementary		
		Complementary		function		
		function				
	4	General method and	3	To find particular	Lecture	Test
		working rule for		integral of		
		finding the particular		homogeneous		
		integral of		equation		
		homogeneous				
		equation and some				
		example				
			2		T /	
	5	Examples to find the	3	10 find particular	Lecture	Test
		particular integral		integral		
III	Non – he	omogeneous linear parti	al differentia	al equations with const	ant coefficien	t
	1	Definition, Reducible	2	Analyze non-	Lecture	Quiz
		and irreducible linear		homogeneous linear	with group	
		differential operators,		partial differential	discussion	
		Reducible and		equations with		
		irreducible linear		constant coefficients		
		partial differential		and to solve the		
		equations with		problems		
		constant coefficient,				
		Determination of				

		complementary				
		function				
	2	General solution and particular integral of non-homogeneous equation and some examples of type 1	3	To solve problems related to non- homogeneous equations of type 1	Lecture	Assignment
	3	Some examples of type 2	3	To solve problems related to non- homogeneous equations of type 2	Lecture	Assignment
	4	Some problems related to type 3	3	To solve problems related to non- homogeneous equations of type 3	Lecture	Formative Assessment
	5	Examples related to type 4, Miscellaneous examples for the determination of particular integral	4	To solve problems related to non- homogeneous equations of type 4	Lecture	Assignment
IV	Classific	ation of P.D.E. Reduction	on to Canoni	cal (or normal) forms.		I
	1	Classification of Partial Differential equations of second order - Classification of P.D.E. in three independent variables	2	To classify Partial Differential equations of second order & of P.D.E. in three independent variables	Lecture	Test
	2	Cauchy's problem for a second order P.D.E. Characteristic equation and Characteristic curves of the second order P.D.E.	2	To solveCauchy's problem for a second order P.D.E.	Lecture	Test
	3	Laplace transformation. Reduction to	4	To reduce hyperbolic equation to its Canonical forms.	Lecture	Assignment

		Canonical (or normal)				
		forms.(Hyperbolic				
		type)				
	4	Laplace	4	To reduce Parabolic	Lecture	Test
		transformation. Reduction to		equation to its Canonical forms.		
		Canonical (or normal) forms.(Parabolic type)				
	5	Laplace transformation. Reduction to Canonical (or normal) forms.(Elliptic type)	3	To reduce elliptic equation to its Canonical forms.	Lecture	Test
V	Boundar	ry Value Problem				
	1	A Boundary value problem, Solution by Separation of variables, Solution of one dimensional wave equation, D'Alembert's solution, Solution of two dimensional wave equation	3	To Solve the boundary value problems for the wave equations	Lecture	Quiz
	2	Vibration of a circular membrane, Examples related to vibration of a circular membrane	4	To Solve the boundary value problems related to vibration of a circular membrane	Lecture	Test
	3	Solution of one dimensional heat equation, Problems related to solution of one dimensional heat equation	4	To Solve the boundary value problems for the heat equations	Lecture	Formative Assessment

	4	Solution of two	3	To find the Solution	Lecture	Test		
		dimensional Laplace's		of two dimensional				
		equation		Laplace's equation				
	5	Solution of two	3	To Apply the	Lecture	Assignment		
		dimensional heat		concepts and				
		equation		methods in physical				
				processes like heat				
				transfer and				
				electrostatics				
Co	Course Instructor(Aided): Ms.J.C.Mahizha HOD(Aided) :Dr. V. M. Arul Flower Mary							

Course Instructor(S.F): Ms. V. Princy Kala

HOD(S.F) :Ms. J. Anne Mary Leema

Semester : II

Major Core VIII

Name of the Course : Graph Theory

Course Code : PM2024

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

1. To introduce the important notions of graph theory.

2. Develop the skill of solving application oriented problems.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	identify cut vertices and understand various versions of connectedness of a graph.	PSO-1	An
CO - 2	understand the concept of Digraphs and characterize Eulerian Digraphs.	PSO-4	U,C
CO - 3	recall the definitions of Matchings and design proof for characterization of graphs containing a 1-factor.	PSO-1	R

CO - 4	solve problems involving coloring and learn necessary conditions for planar graphs.	PSO-2,3	Ар
CO - 5	learn the basic definitions of domination and review the concept of distance in a graph.	PSO-4	U

Unit	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/	
			hours			evaluation	
Ι	Connectivity						
	1	Cut vertices - Definitions and Examples, Theorems based on Cut vertices, Theorems based on Cut vertices	4	Recall the basic definitions and fundamental concepts of graph theory	Lecture with illustration	Test	
	2	Blocks - Definition and Example, Theorem based on nonseparable, Properties of blocks in a nontrivial connected graph, Connectivity - Definitions and Examples	3	Identify blocks and understand various versions of connectedness of a graph	Lecture	Test	
	3	Hassler Whitney's Theorem, Theorems based on Connectivity, Connectivity and edge-connectivity number for the cubic graph	4	Solve problems involving connectivity	Lecture with Group Discussion	Test	
	4	Harary graphs, Theorems based on Harary graphs,	4	Understand the concept of Harary graphs and Geodetic Sets.	Lecture	Test	
		Geodetic Sets -					
-----	---	---------------------------	---------	-------------------------	---------	------------	
		Examples Theorem					
		based on Goodetic					
		Sate					
		5018					
II	Ľ	Digraphs					
	1	Strong Digraphs -	3	To understand the	Lecture	Test	
		Definitions and		definition of Strong			
		Examples, The		Digraphs and prove			
		First Theorem of		theorems related to			
		Digraph Theory,		Digraphs			
		Theorems related to					
		Digraphs					
	2	Theorems related to	3	To prove theorems	Lecture	Formative	
		Eulerian, Theorem		related to Eulerian and		Assessment	
		related to Strong		Strong orientation		Test	
		orientation					
	3	Tournaments -	3	To practice various	Lecture	Test	
		Definitions and		Theorems related to			
		Examples, Theorem		Tournaments			
		related to					
		Tournaments					
	4	Theorem based on	3	Understand the concept	Lecture	Test	
		Tournament and		of Hamiltonian path,			
		Hamiltonian path,		and strong tournament			
		Theorem based on					
		strong tournament					
III	N	l Aatchings and Factor	ization				
	1	Matchings -	3	Identify Matchingsand	Lecture	Quiz	
		Definitions and		prove theorems			
		Examples, Theorem		1			
		related to matching,					
		Theorem related to					
		system of distinct					
		representatives					

	2	The Marriage	3	To practice various	Lecture	Test
		Theorem, Theorem		Theorems	with	
		based on perfect			illustration	
		matching Gallai				
		identities				
		lacitudes				
	3	Factorization -	3	To understand the	Lecture	Test
		Definitions and		concept Factorization	with group	
		Examples, Tutte's		with examples and	discussion	
		Theorem,		theorems		
		Petersen's Theorem				
	1	Theorem based on	2	To compare the	Locturo	Assignment
	4	1 factor Theorem	5	appropriate the	Lecture	Assignment
		1- lactor, Theorem		fostorphia Hamiltonian		
		factorichle		and Easterization		
		lactorable,		and Factorization		
		Hamiltonian				
		Factorization,				
		Theorem based on				
		Hamiltonian				
		Factorization				
	5	Theorem based on	3	To understand the		Formative
		Kirkman triple		definitions of		Assessment
		system, Theorem		Hamiltonian cycles,		Test
		based on		Decompositions and		
		Hamiltonian cycles		Graceful Labelings.		
		and 1-factor,				
		Decompositions				
		and Graceful				
		Labelings-				
		Definitions and				
		examples,				
		Theorems related to				
		Graceful labeling				
IV	р	 lanarity and Colorin	σ			
			8		1	1
	1	Planar Graphs	3	Cite examples of planar	Lecture	Quiz
		Planar Graphs -		and nonplanar graphs	with	
		Definitions and			illustration	
		Examples, The				
		Euler Identity,				
		Consequence of				
		Euler Identity,				

		Theorems related to				
		Planar Graphs				
		1				
	2	Necessary	3	Learn necessary	Lecture	Test
		condition for a		conditions for planar		
		graph to be planar,		graphs		
		Kuratowski's				
		Theorem, Vertex				
		Coloring -				
		Definitions and				
		Examples, The				
		Four Color				
		Theorem				
	3	Theorems and	3	To practice various	Lecture	Test
		Examples related to		Theorems		
		chromatic number,				
		An upper bound for				
		the chromatic				
		number of a graph				
		in terms of its				
		maximum degree,				
		Brook's Theorem,				
		Theorem based on				
		triangle - free graph				
	4	Theorem based on	3	Understand the concept	Lecture	Test
	•	triangle - free	5	of Edge Coloring and	Lecture	1050
		graph Edge		edge chromatic number		
		Coloring-		euge emomatic number		
		Definitions and				
		Examples Vizing's				
		Theorem				
		Theorems related to				
		edge chromatic				
		number				
	5	The Five Color	3	To practice various	Lecture	Test
	5	Theorem The		Theorems	with group	1000
		Heawood Man			discussion	
		Coloring Theorem				
		and it's corollary				
V	D	Distance and Domination	ion			

1	Distance - The center of a graph, Definitions and examples	3	To identify the center of a graph	Lecture	Assignment
2	center of a graph, Distant Vertices, Periphery of the graph.	5	Theorems	with illustration	rissignment
3	Theorems based on eccentricity, Theorems based on boundary vertex .Definition of interior vertex and related theorem .	3	To practice various Theorems	Lecture	Test
4	The domination number of a graph- Definitions and Examples. Theorems related to domination number of a graph. Bounds for domination number.	3	To understand the concepts of domination and to practice various theorems	Lecture with illustration	Assignment
5	Stratification. Definition of stratified graph. Definition of F domination number and F coloring. Theorems related to Fdomination number and F coloring	3	To understand the facts of Stratification and to practice various Theorems	Lecture with group discussion	Assignment

Course Instructor(Aided): Dr.V.Sujin Flower

HOD(Aided) :Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Dr.J.C.Eveline

HOD(S.F) :Ms. J. Anne Mary Leema

Semester : II

Elective II

Name of the Course : Classical Dynamics

Course Code : PM2025

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

- **1.** To gain deep insight into concepts of Dynamics.
- **2.** To do significant contemporary research.

Course Outcome

СО	Uponcompletion ofthiscoursethestudents Willbeableto:	PSO addressed	CL
CO-1	recall the concepts of Newton's laws of motion, momentum,		
	acceleration, motion of a particle.	PSO-4	R
CO–2	understanding the generalized co-ordinates of the Mechanical	PSO-1	
	system.		U
CO-3	apply D'Alembert's Principle to solve the problems involving	PSO-2	Ар
	System of particles.		
CO-4	Solve the Newton's equations for simple configuration using	PSO-1	
	Various methods.		С
CO-5	transforming the Lagrangian equations to Hamiltonian	PSO-2	
	equations.		U
CO-6	define the canonical transformations and Lagrange and Poisson	PSO-4	R
	brackets.		

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	The Mee	chanical System				
	1	Introduction on	3	Understanding	Lecture	Short Test
		the Mechanical		the generalized		
		System, equations		co-ordinates,		

	of motion, generalized coordinates , degrees of freedom, configuration space		degrees of freedom, configuration space of the Mechanical system.		
2	Holonomic constraints, Nonholonomic constraints, Unilateral constraints and examples	3	To define Holonomic constraints, Nonholonomic constraints, Unilateral constraints with illustration	Lecture and group discussion	Test
3	Virtual displacement and virtual work, Principle of virtual work, D' Alembert's Principle,	3	To identify virtual displacement and virtual work, Principle of virtual work, D' Alembert's Principle,	Lecture	Test
4	Generalized force and examples, Potential energy, work and kinetic energy, Conservation of energy	3	Define Generalized force with examples, Potential energy, work and kinetic energy, Conservation of energy	Lecture	Test
5	Equilibrium and stability, angular momentum, generalized momentum and examples.	3	To study generalized momentum, angular momentum and examples.	Lecture	Test

II	Derivation of Lagrange's equations					
	1	Problems using Lagrange's equation, Form of the equations of motion, Nonholonomic systems.	3	To solve problems using Lagrange's equation, Form of the equations of motion and Non holonomic systems.	Lecture	Test
	2	Spherical pendulum, Double pendulum, Lagrange Multiplier and constraint forces	3	To define Spherical pendulum, Double pendulum, Lagrange Multiplier and constraint forces	Lecture and discussion	Test
	3	Particle in whirling tube, A particle with moving support,	3	To understand particle in whirling tube, and the particle with moving support,	Lecture	Formative Assessment
	4	Rheonomic constrained system, Ignorable coordinates, Example based on the Kepler Problem	3	To define rheonomic constrained system, Ignorable coordinates and example based on the Kepler Problem	Lecture	Test
	5	Routhian Function, Conservative systems, Natural systems, Liouville'ssystem	3	To understand Routhian Function, Conservative systems, Natural systems	Lecture	Test

				and Liouville's		
				system		
III	Hamilto	n's Principle				
	1	Stationary values of afunction, Constrained Stationary values, Stationary value of a definite integral.	3	To define stationary values of a function, Constrained Stationary values and stationary value of a definite integral.	Lecture and discussion	Test
	2	Solving The Brachistochrone problem and Geodesic path Case of n independent variables	3	To solve the Brachistochrone problem and Geodesic path Case of n independent variables	Lecture	Test
	3	Multiplier Rule, Derivation of Hamilton's Equations The form of the Hamiltonian function	3	To understand Multiplier Rule, and Derivation of Hamilton's Equations and the form of the Hamiltonian function	Lecture and discussion	Test
	4	Legendre transformation The form of the Hamiltonian function Problems based on Hamilton's Equations	3	To evaluate the form of the Hamiltonian function Problems based on Hamilton's Equations	Lecture	Test
	5	Modified Hamilton's Principle Principle	3	To understand Modified Hamilton's	Lecture	Formative Assessment

		of least action, Problems based on other Variational Principles		Principle ,Principle of least action and Problems based on other Variational Principles		
IV	Hamilto	n's Principal functio	n			
	1	Introduction on Hamilton's Principal function The canonical integral Pfaffian differential forms	3	To understand the foundation of Hamilton's Principle and differential forms.	Lecture	Test
	2	The Hamilton - Jacobi equation, Illustration of the Hamilton- Jacobi equation	3	To understand The Hamilton - Jacobi equationwith Illustration	Lecture	Test
	3	Any complete solution of the Hamilton - Jacobi equation leads to a solution of the Hamilton Problem	3	Evaluating any complete solution of the Hamilton - Jacobi equation	Lecture	Test
	4	Kepler's Problem. Jacobi's theorem, Conservative systems	3	To learn Kepler's Problem. Jacobi's theorem and Conservative systems	Lecture	Test
	5	Ignorable coordinates, Modified Hamilton - Jacobi equation Examples on	3	To understand Ignorable coordinates, Modified Hamilton - Jacobi equation with Examples	Lecture and discussion	Test

		Ignorable				
		coordinates				
V	Canonic	al Transformations				
	1	Introduction to Differential forms and generating functions, Canonical Transformations Principle form of generating functions	3	To understand Differential forms generating functions, Canonical Transformations and Principle form of generating functions	Lecture	Test
	2	Further comments on the Hamilton- Jacobi method, Examples on Canonical Transformations, Some simple transformations	3	To identify the Hamilton- Jacobi method with Examples on Canonical Transformations and some simple transformations	Lecture	Test
	3	Homogenous canonical transformations, Point transformations, Momentum transformations	3	To understand Homogenous canonical transformations, Point transformations, Momentum transformations	Lecture	Test
	4	. Examples based on Special transformations,	3	To identify examples based on Special transformations	Lecture	Test
	5	Introduction to Lagrange and Poisson brackets, Problems based on	3	To understand Lagrange and Poisson brackets,	Lecture	Formative Assessment

Lagrange and	Problems based	
Poisson brackets,	on Lagrange	
The bilinear	and Poisson	
Covariant	brackets and	
	the bilinear	
	Covariant	

Course Instructor(Aided): Ms. J. Befija MinnieHOD(Aided) :Dr. V. M. Arul Flower MaryCourse Instructor(S.F): Ms. V.G. Michael FloranceHOD(S.F) :Ms. J. Anne Mary Leema

Semester : III

Name of the course : Field Theory and Lattices

Major Core IX

Course code : PM2031

Number of hours/	Credits	Total number of	Marks
week	~		100
6	5	90	100

Objectives:

- 1. To learn in depth the concepts of Galois Theory, theory of modules and lattices.
- 2. To pursue research in pure Mathematics.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the definitions and basic concepts of field theory and	PSO - 2	U
CO - 2	express the fundamental concepts of field theory, Galois	PSO - 2	U
	theory		
CO - 3	demonstrate the use of Galois theory to construct Galois	PSO - 3	Е
	group over the rationals and modules		
CO - 4	distinguish between field theory and Galois theory	PSO - 3	Ар
CO - 5	interpret distributivity and modularity and apply these	PSO - 4	Ар
	concepts in Boolean Algebra		

Unit	Section	Topics	Lecture	Learning outcome	Pedagogy	Assessment/
т	F ()	C: 11	hours			Evaluation
	Extension	n fields	4	D 11 41	T t	Essels at a m
	1	Extension field	4	Recall the	Lecture	Evaluation
		- Definition,		concents of field	Willi	unrough:
		rinte		theory and lattice	musuation	Short Test
		Theorems on		theory Express the		Short Test
		finite extension		fundamental		
				concepts of field		Formative
				theory. Galois theory		assessment I
	2	Theorems and	4	Express the	Lecture	
		corollary on		fundamental	with PPT	
		algebraic over		concepts of field	illustration	
		Fields and		theory, Galois theory		
		understand				
		about subfields				
		of an extension				
	3	To understand	4	Recall the	Lecture	
		about		definitions and basic	with	
		adjunction of an		concepts of field	illustration	
		element to a		theory and lattice		
		field, subfields,		theory, Express the		
		Theorems.		fundamental		
				concepts of field		
				theory, Galois theory	-	
	4	Algebraic	3	Express the	Lecture	
		extension-		fundamental	with	
		Theorems on		concepts of field	illustration	
		algebraic		theory, Gain		
		extension-		knowledge in		
		algeoraic		in fields		
		transcendental		III Heius.		
		number				
П	Roots of	Polynomials				
	1	Definition- root	3	Recall the	Lecture	Short Test
	-	Remainder		definitions and basic	with	
		theorem,		concepts of field	illustration	
		Definition-		theory and lattice		Formative
		multiplicity		theory, Express the		assessment
		_ •		fundamental		I, II
				concepts of field		
				theory, Galois theory		

	2	Theorems based	4	Recall the	Lecture	
		on roots of		definitions and basic	with PPT	
		polynomials,		concepts of field	illustration	
		Corollary and		theory and lattice		
		lemma based on		theory, Express the		
		roots of		fundamental		
		polynomials.		concepts of field		
				theory, Galois theory		
				and theory of		
				modules		
	3	Definition-	4	Recall the	Lecture	
		splitting field.		definitions and basic	with PPT	
		Theorems based		concepts of field	illustration	
		on isomorphism		theory, Galois		
		of fields.		theory and lattice		
		Theorems based		theory.		
		on splitting field				
		of polynomials				
	4	Definition-	3	Understand the	Lecture	
		derivative.	-	concept of Galois	with	
		Lemmas on		theory.	illustration	
		derivative of		irreducibility.		
		polynomials.		splitting fields.		
		Simple		derivative of		
		extension.		polynomials		
		Theorems on		F J		
		simple				
		extension				
Ш	Galois T	heory				
	1	Fixed Field -	4	Recall the	Lecture	Short Test
		Definition.	-	definitions and basic	with	
		Theorems based		concepts of field	illustration	Formative
		on Fixed Field		theory and lattice	mustrution	assessment
		Group of		theory Express the		П
		Automorphism		fundamental		п
		rutomorphism		concents of field		Assignment
				theory Galois theory		on lemma
	2	Theorems based	5	Express the	Lecture	based on
	2	on group of	5	fundamental	with	Algebraic
		Automorphism		concepts of field	illustration	
		Finite		theory Galois theory	mustration	
		Extension				
		Normal				
		Extension				
	3	Theorems based	4	Recall the	Lecture	
		on Normal		definitions and basic	with	
		Extension		concepts of field	illustration	
		Galois Group		theory and lattice	masuation	
		Theorems based		theory Evoress the		
				fundamental		

		on Galois		concepts of field		
		Group		theory, Galois theory		
	4	Galois Group	4	Express the	Lecture	
		over the		fundamental	with PPT	
		rationals,		concepts of field	illustration	
		Theorems based		theory, Galois		
		on Galois		theory, Demonstrate		
		Group over the		the use of Galois		
		rationals,		theory to compute		
		Problems based		Galois Group over		
		on Galois		the rationals		
		Group over the				
		rationals				
IV	Finite fie	lds		1		
	1	Finite Fields –	4	Recall the	Lecture	Short Test
		Definition,		definitions and basic	with PPT	
		Lemma-Finite		concepts of field	illustration	
		Fields,		theory and lattice		Formative
		Corollary-Finite		theory, Express the		assessment
		Fields		fundamental		III
				concepts of field		
				theory, Galois theory		
	2	Theorems based	4	Recall the	Lecture	
		on Finite Fields,		definitions and basic	with	
		Wedderburn's		concepts of field	illustration	
		Theorem on		theory and lattice		
		finite division		theory, Express the		
		ring		fundamental		
				concepts of field		
	2	Weddenberger	4	Decell the	Lastures	
	3	Wedderburn's	4	Recall the	Lecture	
		Weddenburn's		definitions and basic	WILLI	
		Theorem First		theory and lattice	musuation	
		Proof		theory		
	1	A Theorem of	3	Understand the	Lecture	
	-	Frobenius-	5	theory of Frobenius	with	
		Definitions		Theorem four	illustration	
		Algeraic over a		square theorem and	mustrution	
		field Lemma		Integral Quaternions		
		based on		integral Quaternions		
		Algeraic over a				
		field				
V	Lattice T	heory				
	1	Partially	3	Recall the	Lecture	Short Test
		ordered set-		definitions and basic	with	
		Definitions,		concepts of field	illustration	
		Theorems based		theory and lattice		Formative
		on Partially		theory		assessment
		ordered set		-		III

2	Totally ordered	4	Recall the	Lecture	
	set, Lattice,		definitions and basic	with	Seminar on
	Complete		concepts of field	illustration	Lattice
	Lattice		theory and lattice		
			theory, Interpret		
			distributivity and		
			modularity and		
			apply these concepts		
			in Boolean Algebra,		
			Develop the		
			knowledge of lattice		
			and establish new		
			relationships in		
			Boolean Algebra		
3	Theorems based	3	Interpret	Lecture	
	on Complete		distributivity and	with	
	lattice,		modularity and	illustration	
	Distributive		apply these concepts		
	Lattice		in Boolean Algebra,		
			Develop the		
			knowledge of lattice		
			and establish new		
			relationships in		
			Boolean Algebra		
4	Modular	4	Develop the	Lecture	
	Lattice, Boolean		knowledge of lattice	with PPT	
	Algebra,		and establish new	illustration	
	Boolean Ring		relationships in		
			Boolean Algebra		

Course Instructor(Aided): Dr. S. Sujitha

HOD(Aided):Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Dr. J. C. Eveline

HOD(S.F): Ms. J. Anne Mary Leema

Semester	: III	Major Core X
Name of the Course	: Topology	
Course code	: PM2032	

No. of Hours per Week	Credit	Total No. of Hours	Marks	
6	5	90	100	

Objectives: 1. To distinguish spaces by means of simple topological invariants.

2. To lay the foundation for higher studies in Geometry and Algebraic Topology.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	Understand the definitions of topological space, closed sets, limit points, continuity, connectedness, compactness, separation axioms and countability axioms.	PSO - 3	U
CO - 2	Construct a topology on a set so as to make it into a topological space	PSO - 4	С
CO - 3	Distinguish the various topologies such as product and box topologies and topological spaces such as normal and regular spaces.	PSO - 3	U, An
CO - 4	Compare the concepts of components and path components, connectedness and local connectedness and countability axioms.	PSO - 2	E, An
CO - 5	Apply the various theorems related to regular space, normal space, Hausdorff space, compact space to other branches of mathematics.	PSO - 1	Ар
CO - 6	Construct continuous functions, homeomorphisms and projection mappings.	PSO - 4	С

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation	
Ι	Topological space and Continuous functions						
	1	Definition of topology, discrete and indiscrete topology, finite complement	3	To understand the definitions of topological space and different types of topology	Lecture with PPT	Test	

2	topology, Basis for a topology and examples, Comparison of standard and lower limit topologies Order topology: Definition & Examples, Product topology on XxY: Definition &	3	To compare different types of topology and Construct a topology on a set so as to make it into a topological space	Lecture	Test
3	The Subspace Topology: Definition & Examples, Theorems	3	To understand the definition of subspace topology with examples and theorems	Lecture	Test
4	Closed sets: Definition & Examples, Theorems, Limit points: Definition Examples & Theorems , Hausdorff Spaces: Definition & Theorems	5	To understand the definitions of closed sets and limit points with examples and theorems and identify Hausdorff spaces and practice various theorems	Lecture	Test
5	Continuity of a function: Definition, Examples, Theorems, Homeomorphism: Definition & Examples, Rules for constructing continuous function, Pasting lemma &	3	To understand the definition of continuous functions and construct continuous functions	Lecture	Test

		Examples, Maps				
		into products				
II	The Pro	duct Topology, The M	letric Topo	blogy & Connected Spaces	5	
					-	
	1	The Product	3	To understand the	Lecture	Test
		Topology:		definition of		
		Definitions,Compar		homeomorphism and		
		ison of box and		prove theorems		
		product topologies,		and practice various		
		Theorems related to		Theorems related to		
		product topologies,		Maps into products,		
		Continuous		Cartesian Product,		
		functions and		Projection mapping and		
		examples		distinguish the various		
				topologies such as		
				product and box		
				topologies and		
				topological spaces		
	2	The Metric	5	To understand the	Lecture	Class Test
		Topology:		concept of metric		
		Definitions and		topology and prove the		
		Examples,		theorems		
		Theorems,				
		Continuity of a				
		function, The				
		sequence lemma,				
		Constructing				
		continuous				
		fuctions, Uniform				
		limit theorem,				
		Examples and				
		Theorems				
		Connected Spaces:	5	To understand the	Group	Ouiz
	-	Definitions	5	concepts of connected	discussion	Quiz
		Examples Lemmas		space open and closed	discussion	
		and Theorems		sets and to practice the		
		Connected Sub		various theorems		
		space of the real		various incoreniis		
		lines: Definitions				
		and Examples				
		Theorems				
		Intermediate value				
1		memeurate value	1		1	

	5	theorem, connected space open and closed sets, lemma, examples, Theorems. Components and Local Connectedness: Definitions, Path components, Locally connected, Locally path connected: Definitions and Theorems	3	To compare the concepts components and path components, connectedness and local connectedness	Lecture	Test
III	Compa	ctness				
	1	Compact space: Definition, Examples, Lemma, Theorems and Image of a compact space, Product of finitely many compact spaces, Tube lemma, Finite intersection property: Definition & Theorem	4	To understand the concept compact space with examples and theorems. To practice various theorems related to product of finitely many compact spaces, Tube lemma, Finite intersection property	Lecture and Seminar	Assignment
	2	Compact Subspaces of the Real Line: Theorem, Characterize compact subspaces of R ⁿ , Extreme value theorem, The Lebesgue number lemma, Uniform continuity theorem	3	To characterize the compact subspace and prove various theorems	Lecture	Formative Assessment Test

Compactness: limit point compactness with group	
I Group	
Definitions, and analyze the discussion	
Examples and sequentially	
Theorems, compactness	
Sequentially	
compact	
4 Complete Metric 3 To analyze the concept Lecture Test	
Spaces: Definitions, of completeness of	
Examples and metric space to be	
Theorems, complete, and to	
Isometric understand that every	
embedding metric space can be	
imbedded isometrically	
in a complete metric	
space	
5 Compactness in 3 To understand the Lecture Class tes	t
Metric spaces: concept of compactness	
Totally bounded, in metric spaces.	
Pointwise bounded,	
Equicontinuous,	
Definitions,	
Lemmas, Theorems	
IV Compactness, Countability and Separation axioms	
1 Local compactness: 3 To understand the Lecture Quiz	
Definition & concept local with	
Examples, compactness with illustration	
Theorems examples and theorems	
2 First Countability 3 To compare countability Lecture Test	
axiom, Second axioms and understand	
Countability axiom: the definition of dense	
Definitions, subset and identify	
Theorems, Dense Lindelof space	
subset: Definitions	
& Theorem,	
Examples, Lindelof	
Examples, Lindelof space : Definition ,	

	3	The Separation	4	To distinguish various	Lecture	Test
		Axioms: Regular		topological spaces such		
		space & Normal		as normal and regular		
		space: Definitions,		spaces. To practice		
		Lemma, Relation		examples and theorems		
		between the		based on separation		
		separation axioms,		axioms		
		Examples based on				
		separation axioms,				
		Theorem based on				
		separation axioms				
		and Metrizable				
		space				
	4	Normal Spaces:	2	To understand the	Group	Test
		Theorems and		concept of Normal	discussion	
		Examples		Spaces		
	5	Thurse show to use a	2	The second state of the se	Testerne	Eamonting
	5	Urysonn lemma	3	10 constuct Urysonn	Lecture	Formative
				lemma		Assessment
						TT (
						Test
V	Urysohn	Metrization Theorem	a, Tietze Ex	دtension Theorem,& The '	Fychonoff Th	Test eorem
V	Urysohn 1	Metrization Theorem	a, Tietze Ez	xtension Theorem,& The ' To construct the	Fychonoff Th Lecture	Test eorem Quiz
v	Urysohn 1	Metrization Theorem Urysohn metrization	, Tietze E x 3	Atension Theorem,& The To construct the Urysohn metrization	Fychonoff Th Lecture with	Test eorem Quiz
V	Urysohn 1	Metrization Theorem Urysohn metrization theorem,	a, Tietze Ex 3	xtension Theorem,& The To construct the Urysohn metrization theorm and Imbedding	Fychonoff Th Lecture with illustration	Test eorem Quiz
V	Urysohn 1	Metrization Theorem Urysohn metrization theorem, Imbedding theorem	a, Tietze Ex 3	Atension Theorem,& The To construct the Urysohn metrization theorm and Imbedding theorem	Fychonoff Th Lecture with illustration	Test eorem Quiz
V	Urysohn 1 2	Metrization Theorem Urysohn metrization theorem, Imbedding theorem Tietze extension	a, Tietze Ex	Atension Theorem,& The To construct the Urysohn metrization theorm and Imbedding theorem To constuct Tietze	Fychonoff Th Lecture with illustration Lecture	Test eorem Quiz Assignment
V	Urysohn 1 2	Metrization Theorem Urysohn metrization theorem, Imbedding theorem Tietze extension theorem	a, Tietze Ex	xtension Theorem,& The To construct the Urysohn metrization theorm and Imbedding theorem To constuct Tietze extension theorem	Fychonoff Th Lecture with illustration Lecture	Test eorem Quiz Assignment
v	Urysohn 1 2 3	Metrization Theorem Urysohn metrization theorem, Imbedding theorem Tietze extension theorem	5 , Tietze E	Atension Theorem,& The To construct the Urysohn metrization theorm and Imbedding theorem To constuct Tietze extension theorem	Fychonoff Th Lecture with illustration Lecture	Test Quiz Assignment Test
V	Urysohn 1 2 3	Metrization Theorem Urysohn metrization theorem, Imbedding theorem Tietze extension theorem The Tychonoff Theorem	a, Tietze Ex 3 3 3 3	Atension Theorem,& The To construct the Urysohn metrization theorm and Imbedding theorem To constuct Tietze extension theorem To understand and analyze the The	Fychonoff Th Lecture with illustration Lecture Lecture	Test Quiz Assignment Test
V	Urysohn 1 2 3	Metrization Theorem Urysohn metrization theorem, Imbedding theorem Tietze extension theorem The Tychonoff Theorem	5, Tietze Ex 3 3 3 3	Atension Theorem,& The To construct the Urysohn metrization theorm and Imbedding theorem To constuct Tietze extension theorem To understand and analyze the The Tychonoff Theorem	Fychonoff Th Lecture with illustration Lecture Lecture	Test Quiz Assignment Test
V	Urysohn 1 2 3	Metrization Theorem Urysohn metrization theorem, Imbedding theorem Tietze extension theorem The Tychonoff Theorem	5 , Tietze E	xtension Theorem,& The 'To construct the Urysohn metrization theorm and Imbedding theoremTo constuct Tietze extension theoremTo understand and analyze the The Tychonoff Theorem	Fychonoff Th Lecture with illustration Lecture Lecture	Test Quiz Assignment Test
	Urysohn 1 2 3 4	Metrization Theorem Urysohn metrization theorem, Imbedding theorem Tietze extension theorem The Tychonoff Theorem The Stone-Cech	A, Tietze Ex 3 3 3 3 3	xtension Theorem,& The 'To construct the Urysohn metrization theorm and Imbedding theoremTo constuct Tietze extension theoremTo understand and analyze the The Tychonoff TheoremTo understand the	Fychonoff ThLecturewithillustrationLectureLectureLectureLecture	Test Quiz Assignment Test Test
	Urysohn 1 2 3 4	Metrization Theorem Urysohn metrization theorem, Imbedding theorem Tietze extension theorem The Tychonoff Theorem The Stone-Cech Compactification:	5, Tietze Ex 3 3 3 3 3	xtension Theorem,& The 'To construct the Urysohn metrization theorm and Imbedding theoremTo constuct Tietze extension theoremTo understand and analyze the The Tychonoff TheoremTo understand the concept of Stone-Cech	Fychonoff Th Lecture with illustration Lecture Lecture Lecture Lecture	Test Quiz Assignment Test Test
	Urysohn 1 2 3 4	Metrization TheoremUrysohn metrization theorem, Imbedding theoremTietze extension theoremThe Tychonoff TheoremThe Stone-Cech Compactification: Defintions,	A, Tietze Ex 3 3 3 3 3	xtension Theorem,& The 'To construct the Urysohn metrization theorm and Imbedding theoremTo constuct Tietze extension theoremTo understand and analyze the The Tychonoff TheoremTo understand the concept of Stone-Cech Compactification	Fychonoff Th Lecture with illustration Lecture Lecture Lecture Lecture	Test Quiz Assignment Test Test
	Urysohn 1 2 3 4	Metrization TheoremUrysohn metrization theorem, Imbedding theoremTietze extension theoremThe Tychonoff TheoremThe Stone-Cech Compactification: Defintions, Lemmas, Theorems	A, Tietze E 3 3 3 3 3	xtension Theorem,& The ' To construct the Urysohn metrization theorm and Imbedding theorem To constuct Tietze extension theorem To understand and analyze the The Tychonoff Theorem To understand the concept of Stone-Cech Compactification	Fychonoff Th Lecture with illustration Lecture Lecture Lecture	Test Quiz Assignment Test Test

Course Instructor (Aided): Dr. M.K. Angel Jebitha HoD(Aided): Dr. V.M. Arul Flower Mary

Course Instructor (S.F): Ms. R.N. Rajalekshmi

HoD(S.F): Ms. J. Anne Mary Leema

Semester	: III	
Name of the Course	: Measure Theory and Integration	Major Core XI
Course Code	:PM2033	

Number of hours/ week	Credits	Total number of hours	Marks
6	5	90	100

Objectives: 1. To generalize the concept of integration using measures.

2. To develop the concept of analysis in abstract situations.

Course Outcome

СО	Upon completion of this course thestudents	PSOs	CL
	will be able to :	addressed	
CO - 1	define the concept of measures and Vitali covering and recall some properties of convergence offunctions,	PSO - 1	R
CO - 2	cite examples of measurable sets , measurable functions, Riemann integrals, Lebesgue integrals.	PSO - 3	U
CO - 3	apply measures and Lebesgue integrals to various measurable sets and measurable functions	PSO - 2	Ap
CO - 4	apply outer measure, differentiation and integration to intervals, functions and sets.	PSO - 2	Ap
CO - 5	compare the different types of measures and Signed measures	PSO - 3	An

Uni t	Sectio n	Topics	Lectur e hours	Learning Outcome	Pedagog y	Assessment Evaluation
Ι	Lebesgu	ie Measure				
		Lebesgue Measure - Introduction, outer measure	4	To understand the measure and outer measure of any interval	Lecture, Illustratio n	Evaluation through : Class test on outer measure and
		Measurable sets and Lebesgue measure	5	To be able to prove Lebesgue measure using measurable sets	Lecture, Group discussio n	Lebesgue measure Quiz

		Measurable functions Littlewood's three principles (no proof for first two).	4	To understand the measurable functions and its uses to prove various theorems To differentiate convergence and pointwise convergence	Lecture, Discussio n Lecture, Illustratio n	Formative assessment- I
11	I ne Lei	besgue integral				
	1.	The Lebesgue integral - the Riemann Integral	1	To recall Riemann integral and its importance	Lecture, Discussio n	Formative assessment- I Multiple choice
	2.	The Lebesgue integral of a bounded function over a set of finite measure	5	To understand the use of integration in measures	Lecture, Group discussio n	questions Short test on the integral of a non- negative function
	3.	The integral of a non- negative function	5	To prove various theorems using non- negative functions	Lecture, Illustratio n	Formative assessment-II
	4.	The general Lebesgue integral	4	To understand a few named theorems and proofs	Lecture	
III	Differen	ntiation and integ	gration	•		
		Differentiatio n and integration- differentiation of monotone functions	4	To recall monotone functions and use them with differentiation and integration	Lecture, Group discussio n	Multiple choice questions Unit test on functions of bounded variation
		Functions of bounded variation	4	To evaluate the bounded variation of different functions	Lecture, Illustratio n	
		Differentiatio n of an integral	4	To find differentiation of integrals	Lecture	
		Absolute continuity	3	To differentiate continuity and absolute continuity	Lecture, Illustratio n	Formative assessment- II
IV	Measur	e and integration	1			
	1.	Measure and integration-	3	To understand concepts of measure spaces	Lecture, Group	Seminar on measure

		Measure			discussio	spaces, measurab
		spaces			n	le functions and
	2.	Measurable	3	To recall measurable	Lecture,	integration.
		functions		functions and use	Discussio	
				them in measure	n	Short test on
				spaces		general
	3.	Integration	3	To integrate	Lecture,	convergence
				functions in measure	Illustratio	theorems and
				spaces	n	signed measures
	4.	General	3	To learn various	Lecture,	
		convergence		convergence theore	Discussio	Formative
		theorems		ms in measure	n	assessment- II
				spaces		
	5.	Signed	3	To understand	Lecture	
		measures		signed measures in		
				detail		
V	The L ^P S	spaces and Meas	sure and	outer measure		
	1.	The L ^P spaces	5	То	Lecture,	Seminar on outer
				understand L ^P space	Illustratio	measure,
				S	n	measurability and
	2.	Measure and	3	To understand outer	Lecture,	extension theorem
		outer		measure	Discussio	
		measure- Out		and measurability in	n	Short test on outer
		er measure		L ^p spaces		measure and
		and				measurability
		measurability				
	3.	The extension	7	To prove various	Lecture,	
		theorem		theorems based on	Group	
				σ-algebra	discussio	
					n	

Course Instructor(Aided): Dr. V. M. Arul Flower Mary HOD(Aided) : Dr. V. M. Arul Flower Mary Course Instructor(S.F): Ms. C.Joselin Jenisha

HOD(S.F) :Ms. J. Anne Mary Leema

Semester	: III	Elect
Name of the Cours	e: Algebraic Number Theory and Cryptography	

Course code : PM2034

No. of Hours per Week	Credit	Total No. of Hours	Marks
6	4	90	100

Objectives: 1. To gain deep knowledge about Number theory

2.To study the relation between Number theory and Abstract Algebra.

tive III

3. To know the concepts of Cryptography.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the basic results of field theory	PSO - 1	R
CO - 2	understand quadratic and power series forms and Jacobi symbol	PSO - 2	U
CO - 3	apply binary quadratic forms for the decomposition of a number into sum of sequences	PSO - 3	Ар
CO - 4	determine solutions using Arithmetic Functions	PSO - 3	Ар
CO - 5	calculate the possible partitions of a given number and draw Ferrer's graph	PSO - 2	An
CO - 6	identify the public key using Cryptography	PSO - 4	An

Course Outcome

Unit	Sectio	Topics	Lectur	Learning Outcome	Pedagogy	Assessment
	ns		e hours			/
						Evaluation
Ι	Quadra	tic reciprocity and Qua	dratic for	ms		
	1	Quadratic Residues,	3	To understand definition	Lecture	Question
		definition, Legendre		and examples of quadratic	with	and Answer
		symbol definition and		residues and Legendre	Illustration	
		Theorem based on		symbol and theorems on		
		Legendre symbol		Legendre symbol.		
	2	Lemma of Gauss,	4	To understand quadratic	Lecture	Test
		Theorem based on		and power series forms	with	
		Legendre symbol		and Lemma of Gauss,	Illustration	
				Theorem based on		
				Legendre symbol .		
	3	Quadratic reciprocity	3	To understand quadratic	Lecture	Quiz and
		law, Theorem based		and power series and	with PPT	Test
		on Quadratic		Quadratic reciprocity law,	Illustration	
		reciprocity.		Theorem based on		
				Quadratic reciprocity		
	4	The Jacobi symbol	2	To understand the concept	Lecture	Assignment
		definition and		of Jacobi symbol and	with	
		examples, Theorems			Illustration	

		based on Jacobi		theorems based on Jacobi		
		symbol		symbol.		
	5	Theorem based on	2	To understand theorem	Lecture	Evaluation
		Jacobi symbol and		based on Jacobi symbol	with	through test
		Legender symbol		and Legender symbol.	Illustration	C
II	Binary	Quadratic forms	1			
	1	Definition and	2	To recall the basic results	Lecture	Test
		examples of quadratic		of field theory and to	with PPT	
		form, definite,		understand the concept of	Illustration	
		indefinite and		quadratic form.		
		semidefinite form.				
	2	Theorems based on	4	To understand the	Lecture	Quiz and
		binary Quadratic forms		quadratic and power series	with	Test
				forms and Theorems	Illustration	
				based on binary Quadratic		
				forms		
	3	Definition and	3	To understand the	Lecture	Test
		Theorems based on		Definition and Theorems	with	
		modular group,		based on modular group	Illustration	
		Definition, theorem		and perfect square.		
		based on perfect square				
	4	Theorems based on	2	To calculate the possible	Lecture	Formative
		reduced Quadratic		partitions of a given	with PPT	Assessment
		forms		number and draw Ferrer's	Illustration	Test
				graph		
	5	Sum of two squares,	2	To apply binary quadratic	Lecture	Quiz and
		Theorems based on		forms for the	with	Test
		sum of two squares		decomposition of a	Illustration	
				number into sum of		
				sequences		
111	Some F	unctions of Number The	eory			
	1	Definition and	3	To understand the	Lecture	Formative
		examples based on		definition and examples of	with	Assessment
		Arithmetic functions,		Arithmetic function and to	Illustration	Test
		Multiplicative		determine solutions using		
		function and theorems		Arithmetic Functions.		
		on arithmetic and				
		function				
	2	Tunction.	2	To understand the	Locturo	Tast
	2	theorem of Mobius	3	definition and theorem on	Lecture with DDT	1051
		function The Mobius		Mobius function The	Will FFI	
		Inversion Formula and		Mobius Inversion Formula	musuation	
		theorem on Mobius		and to determine solutions		
		function and		using Arithmetic		
		Multiplicative function.		Functions.		
	3	Definition and	3	To understand the	Group	Ouiz and
	-	examples of	-	definition and examples of	Discussion	Test
		Diophantine		Diophantine equations and		
		Equations, theorem on		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

		finding solutions of Diophantine Equations and solving problems on Diophantine equation.		find the solutions of Diophantine equations.		
	4	Definition and examples of Pythagorean triangle, Lemma on perfect square and theorem and problems for finding primitive solutions.	3	To understand the Pythagorean triangle and problems for finding primitive solutions.	Lecture with Illustration	Test
IV	The par	rtition Function			•	
	1	Partitions definitions, theorems based on Partitions	2	To understand the Partitions definitions, theorems based on Partitions and to Calculate the possible partitions of a given number	Lecture with Illustration	Question and Answers
	2	Ferrers Graphs, Theorems based on Ferrers Graphs	3	To understand the Ferrers Graphs, Theorems based on Ferrers Graphs and how to draw the Ferrer's graph	Lecture with Illustration	Quiz and Test
	3	Formal power series and identity Euler formula.	2	To understand the Formal power series and identity and Euler formula.	Lecture with Illustration	Formative Assessment Test
	4	Theorems on Euler identity and bounds on p(n).	3	To understand theorems on Euler identity and bounds on p(n).	Lecture with Illustration	Test
	5	Theorems based on Euler formula converges of power series and absolute convergent.	3	To understand Theorems based on Euler formula ,converges of power series and absolute convergent.	Lecture with Illustration	Assignment
V	Public 1	Key Cryptography			Π	Γ
	1	DefinitionandexamplesofCryptography,theconcepts of Public KeyCryptographywithexamples	2	To understand the concept of Cryptography	Lecture with Illustration	Question and Answer
	2	The idea of classical vesus public key, Authentication, Hash functions, key exchange and probabilistic Encryption.	3	To understand the idea of public key Cryptography and to Identify the public key using Cryptography	Lecture	Quiz

3	RSA Cryptosystem with examples, Discrete log cryptosystem with examples, The Diffie – Hellman key exchange system and assumption with examples.	4	To understand and apply the concept of RSA cryptosystem and Diffie – Hellman key exchange system	Lecture with illustration	Test
4	The Massy- Omura cryptosystem for message transmission, the ElGamal cryptosystem, the Digital Signature Standard, Algorithm for finding discrete log in finite fields with example and index calculus algorithm for discrete logs	4	To understand and apply the idea of Massy- Omura cryptosystem, ElGamal cryptosystem and solve the problem on discrete log using Silver Pohlig Hellman algorithm.	Lecture with illustration	Formative Assignment Test
5	Basic facts of Elliptic curves, Elliptic curves over the reals, complexes and rationals, Points of finite order with examples.	4	To understand the concept of Elliptic curves and solve the problems on points of finite order	Lecture	Quiz
6	Analog of the Diffie- Helman key exchange, Analog of Massey - Omura, Analog of ElGamal, reducing a global modulo p with examples.	5	To understand the concept of Elliptic curve Cryptosystem and Analog of all cryptosystem.	Lecture with illustration	Assignment

Course Instructor: Dr. V.Sujin Flower

Course Instructor: Dr.S.Kavitha

HOD (SF): Ms. Anne Mary Leema

Semester

: IV

Major Core XII

HOD(Aided): Dr. V. M. Arul Flower Mary

Name of the Course

: Complex Analysis

Course Code : PM2041

No. of Hours per Week	Credits	Total No. of Hours	Marks
6	5	90	100

Objectives: 1. To impart knowledge on complex functions.

2. To facilitate the study of advanced mathematics.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	Understand the fundamental concepts of complex variable theory	PSO - 1	U
CO - 2	Effectively locate and use the information needed to prove theorems and establish mathematical results	PSO - 3	R
CO - 3	Demonstrate the ability to integrate knowledge and ideas of complex differentiation and complex integration	PSO - 4	U
CO - 4	Use appropriate techniques for solving related problems and for establishing theoretical results	PSO - 3	Ар
CO - 5	Evaluate complicated real integrals through residue theorem	PSO – 2, 4	Ε
CO - 6	Know the theory of conformal mappings which has many physical applications and analyse its concepts	PSO – 3, 4	An

Unit	Sec tio	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment /evaluation
	n					
Ι	Powe	er series				
	1	Abel's theorem, Abel's limit theorem	3	To understand the concept and practice theorems	Lecture	Quiz
	2	The periodicity	2	The periodicity and solve problems based on the concept	Lecture with Group disscussion	Test

IV	Serie	es and Product development	8	Integrals.		
	5	Evaluation of Definite Integrals.	2	To solve problems related to Definite	Video	Test
	4	The Residue Theorem, The Argument Principle	2	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Formative Assessment Test III
	3	The General Statement of Cauchy's Theorem (statement only),Calculus of Residues	3	To understand the concept about Calculus of Residues.	Lecture	Test
	2	Chains and Cycles, Simple Connectivity, Homology	4	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Quiz
	1	Complex Integration The local mapping, The maximum principle, The General Form of Cauchy's Theorem	5	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Assignment
	4	Local Properties of Analytic Functions - Removable singularties and Taylor's theorem, Zeros and poles.	4	To understand the concepts and give illustrations& practice theorems	Seminar	
	3	The Integral Formula, Higher Derivatives	3	To solve problems using this concepts.	Lecture	Formative Assessment Test II &III
	2	Cauchy's integral formula, The Index of a Point with Respect to a Closed Curve	3	To understand the concept and practice theorems related to this	Lecture with illustration	Test
	1	Cauchy's Theorems for a Rectangle, Cauchy's Theorem in a Disk	5	To practice theorems based on this concepts	Lecture	Test
II	Com	plex Integration – Fundame	2 ental theor	concepts and give illustrations		Quiz
	4	Conformal Mapping	3	To understand the concept of Conformal Mapping	Lecture	Test
	3	Conformality: Arcs and closed curves, Analytic Functions in Regions	4	To understand the definition of Arcs and closed curves& Analytic Functions in Regions	Lecture with illustration	Test
	3	Conformality: Arcs and		To understand the	Lecture with	Test

	1	Partial Fractions and Entire Functions, Partial Fractions, Infinite products, Canonical products	3	To understand the concept and practice theorems	Lecture with illustration	Test
	2	Gamma functions, Jensen's formula, Hadamard's Theorem	4	To practice theorems based on this concepts	Lecture	Test
	3	Riemann Theta Functions and Normal Families, product development, Extension of $\tau(s)$ to the whole plane	3	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Test
	4	The zeros of zeta functions, Equicontinuity, Normality and compactness	2	To solve problems using this concepts.	Lecture	Formative Assessment Test II &III
	5	Arzela's theorem, Families of analytic functions, The classical Definitions	3	To understand the concepts and give illustrations& practice theorems	Seminar	
V		Conformal Mappings				
	1	Riemann mapping theorem, Statement and proof, Boundary Behaviour, Use of the Reflection principle	5	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Assignment
	2	Conformal mappings of Polygons, Behaviour at an angle	3	To understand the concept and practice theorems related to this concepts.	Lecture with illustration	Quiz
	3	Schwarz-Christoffel formula, Mapping on a rectangle	3	To understand the concept about mapping on a rectangle	Lecture	Test
	4	Harmonic Functions, Functions with mean value Property, Harnack's Principle	4	To understand the concept about Harmonic functions	Lecture with illustration	Formative Assessment Test III

Course InstructorAided): Dr. A. JancyVini

HOD(Aided) :Dr. V.M. Arul Flower Mary

Course Instructor(S.F): V.G. MichealFlorance

HOD(S.F) :Ms. J. Anne Mary Leema

Semester: IVName of the Course: Functional AnalysisCourse code: PM2042

Major Core XIII

No. of Hours per Week	Credit	Total No. of Hours	Marks
6	5	90	100

Objectives: 1. To study the three structure theorems of Functional Analysis and to introduce Hilbert Spaces and Operator theory

2. To enable the students to pursue research.

Course Outcome

CO	Upon completion of this course thestudents	PSOs	CL
	will be able to :	addressed	
CO – 1	learn and understand the definition of linear space,	PSO - 1	R
	normed linear space, Banach Space and their examples		
CO – 2	explain the concept of different properties of Banach	PSO -2	U
	Spaces, Hahn Banach theorem		
CO – 3	compare different types of operators and their properties,	PSO - 2	Ар
	Natural imbedding		
CO – 4	explain the ideas needed for open mapping theorem,	PSO - 1	С
	Open Mapping theorem		
CO – 5	construct the idea of projections, the spectrum of an	PSO - 1	Ар
	operator and develop problem solving skills , Matrices,		
	Determinants		

Unit	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/
			hours			evaluation
Ι	Banach S	Spaces				
	1.	Definition and, examples of a normed linear space and a Banach Space, Small preliminary results and theorem on	3	To understand the concept of normed linear space and Banach space	Lecture	Question and Answer
		Normed linear space.				

	2.	Properties of a Closed unit sphere, Holder's Inequality and Minkowski's Inequality.	3	To understand the Properties of a Closed unit sphere and Holder's Inequality, Minkowski's Inequality	Lecture with illustration s	Group Discussion
	3.	Equivalent conditions theorem on continuous linear transformations, $B(N,N^1)$ is a Banach space, Functionals and it's properties.	4	To understand the concept of Functionals and it's properties and Equivalent conditions theorem on continuous linear transformations	Lecture	Test
	4.	Definition of an Operator and small results on operators, Side result of Hahn Banach theorem and Hahn Banach theorem, Theorem based on functional in N*, Problems based on Normed linear spaces	5	To understand the concept of an Operator and Hahn Banach theorem	Lecture with illustration	Test and Assignment
II	0	onjugate space				Γ
	1.	Definitions of second conjugate space, induced functional, weak topology,	4	To understand the definition of conjugate space, weak* topology, strong topology.	Lecture	Test
		Strong topology,				
	2.	Weak* topology,Strong topology,Theorem onisometricisomorphism ofOpen mappingtheorem and Openmapping theorem	4	To apply the definition and Lemma to prove the Open mapping theorem theorem.	Lecture	Q&A
	2.	Weak* topology,Strong topology,Theorem onisometricisomorphism ofOpen mappingtheorem and Openmapping theoremDefinition ofProjection andTheorem onProjection, ClosedGraph Theorem,	4	To apply the definition and Lemma to prove the Open mapping theorem theorem. To understand the concepts of Projection and to practice theorems related to this concepts.	Lecture Lecture with illustration.	Q&A Formative Assessment Test

		isometric					
		isomorphism					
III	Hilbert Space						
	1.	Definition and examples,	3	To understand the Definition of a Hilbert	Lecture with	Quiz	
		Properties of a		Space and Schwarz	illustration		
		Schwarz Inequality		Parallelogram law			
		Parallelogram law		Theorem on Convex			
		Theorem on		subset of a Hilbert			
		Convex subset of a		Space			
		Hilbert Space					
	2.	Theorem on	3	To apply the laws to	Lecture	Test	
		Orthogonal		prove the theorem	with		
		Complements and			illustration		
		theorem on closed					
	3	Definition and	5	To understand the	Lecture	Brain	
	5.	examples of	5	definition and examples	with group	storming	
		orthonormal set and		of orthonormal set and	discussion	storming	
		Bessel's Inequality,		apply the Bessel's			
		Theorems on		Inequality on Theorems			
		Orthonormal Sets					
	4.	Gram – Schmidt	4	To understand the	Lecture	Assignment,	
		Orthogonalization		concept of Schmidt	with	Test	
		Process Theorem on		Dreage	illustration		
		Conjugate Space		FIOCESS			
		H*					
IV	Adioint	operator					
	1.	Definition and	3	Acquire the knowledge	Lecture	Quiz, Group	
		small results,		about properties of an	with	discussion	
		Theorem on the		adjoint operator	illustration		
		properties of an					
	2	adjoint operator	2	A 1 1 /1	T (
	2.	Theorem-The set of	3	Applying theorems on	Lecture	Q&A	
		operators is a real		sen aujoint operators			
		Banach space					
		Theorems on self					
		adjoint operators					
	3.	Properties on	3	Acquire the knowledge	Lecture	Slip Test	
		Normal and Unitary		about Normal and		_	
		Operators,		Unitary Operators			
		Theorems on					
		Normal and Unitary					
	1	Derators,	2	To understand the	Looturo	Droin	
	4.	Definition and	5	definition and examples	with	Storming	
		preliminaries		of projections and apply	illustration	Storming	
	4.	Normal and Unitary Operators, Projections- Definition and preliminaries,	3	To understand the definition and examples of projections and apply	Lecture with illustration	Brain Storming	

		Theorems on Projections and Theorems on invariant subspace		the concept of invariant subspace on theorems		
	5.	Spectral theory, Definition of Spectrum of an operator and spectral theorem	3	To understand the concept of spectral theory and spectral theorem.	Lecture	Formative Assessment Test
V	G	General Preliminaries	on Banach	Algebras		
	1.	The definition and some examples of Banach algebra	3	To understand the definition and examples of Banach algebra	Lecture with illustration	Quiz
	2.	Theorems on Regular and Singular elements	4	To understand the regular and singular elements on Theorems	Lecture with illustration	Test
	3.	The definition and theorems on spectrum	4	To know the definition and theorems on spectrum	Lecture	Slip Test, Quiz
	4.	The formula and Theorems on Spectral radius	4	To understand the definition and theorems on Spectral radius	Lecture with illustration	Assignment

Course Instructor(Aided): Dr. V. M. Arul Flower Mary

HOD(Aided) :Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Dr. S.Kavitha

HOD(S.F) :Ms. J. Anne Mary Leema

Semester : IV

Major Core XIV

Name of the course : Operations Research Course code : PM2043

Number of hours/	Credits	Total number of hours	Marks
Week			
6	5	90	100

Objectives: 1. To learn optimizing objective functions.

2. To solve life oriented decision making problems.

со	Upon completion of this course thestudents will be able to :	PSO addressed	CL
CO - 1	explain the fundamental concept of DP model, Inventory	PSO - 2	U
$\overline{\mathbf{CO}}$	relate the concents of Arrow (Network)diagram		TT
	representations, in critical path calculations and construction of the Time chart	rs0 - 5	U
CO - 3	distinguish deterministic model and single item	PSO - 3	E
CO - 4	interpret Poisson and Exponential distributions and apply these concepts in Queuing models	PSO - 4	Ар
CO - 5	solve life oriented decision making problems by optimizing the objective function	PSO - 1	С

Course Outcome

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I	Element	s of DP model				
	1	Elements of the DP Model, The Capital Budgeting Example	4	Recall the definitions and basic concepts of linear programming.	Lecture with illustration	Short Test Formative
	2	More on the definition of the state	3	Express the fundamental	Lecture with illustration	assessment I
	3	Examples of DP models and computation	3	concepts of dynamic programming Understand the significance and application of Reliability problem and compute it	Lecture discussion	Test
---	----------	---	---	--	---	--
	4	Solution of linear programming by dynamic programming	2	Formulate and solve LPP by dynamic programming	Lecture with illustration	
	5	Game theory	3	Express the fundamental concepts of Game theory	Lecture discussion	Assignment
п	Arrow (1	Network) Diagran	n			
	1	Introduction	3	Recall the	Lecture	Short Test
		Arrow (Network) ,Diagram Representations		definitions and basic concepts Arrow (Network) ,Diagram Representations	with illustration	Formative
	2	Arrow (Network) ,Diagram Representations Critical Path Calculations, Problem based on critical Path Calculations, Determination of floats	4	definitions and basic concepts Arrow (Network) ,Diagram Representations Understand the significance and application of Critical Path Calculations, Problem based on critical Path Calculations, Determination of floats	with illustration Lecture with PPT illustration	Formative assessment I, Seminar on Arrow (Network) Diagram Quiz

		and Resource		Time Chart and		
		Leveling,		Resource Leveling,		
		Problems based on Time Chart and Resource Leveling		Problems based on Time Chart		
	4	Probability and Cost Considerations in Project Scheduling .	2	Understand the properties of Probability and Cost Considerations in Project Scheduling	Lecture with discussion	
III	Generali	ized Inventory mo	del			
	1	Introduction, Generalised Inventory model, Types of Inventory Models	4	Understand the theory of Inventory model	Lecture with illustration	Short Test Formative assessment II
	2	Deterministic Models, Single Item Static Model, Problems based on Single Item Static Model	4	Understand the significance and application of Single Item Static Model	Lecture with illustration	Seminar on Generalised Inventory model
	3	Single Item Static ,Model with Price Breaks, Problems based on Single Item Static Model	3	Understand the theory of Single Item Static Model with Price Breaks	Lecture with illustration	

		with Price				
		Breaks				
	4	Multiple - Item	2	Understand the	Lecture	
		static Model		theory of Multiple -	with PPT	
		with Storage		Item static Model	illustration	
		Limitations,		with Storage		
		Problems based		Limitations		
		on Multiple -				
		Item static				
		Model with				
		Storage				
		Limitations				
		Limitations				
	5	Single – Item	2	Understand the	Lecture	
		static Model		theory of Single –	with	
		with Storage		Item static Model	discussion	
		Limitations.		with Storage		
				Limitations and		
				apply it in problems		
IV	Queuing	Model	I	L	I	
	1	Basic Elements	3	Understand the	Lecture	Short Test
	1	of the Queuing	5	theory of Queuing	with PPT	Short rest
		Model		Model	illustration	
		widden,		Widder	mustrution	
		Roles of				
		Poisson				Formative
		Distributions.				assessment
						П
		Roles of				II
		Roles of Exponential				П
		Roles of Exponential Distributions				II
	2	Roles of Exponential Distributions Arrival process,	2	Recall the	Lecture	II
	2	Roles of Exponential Distributions Arrival process,	2	Recall the definitions and basic	Lecture with	II
	2	Roles of Exponential Distributions Arrival process, Examples of	2	Recall the definitions and basic concepts of Poisson	Lecture with illustration	II
	2	Roles of Exponential Distributions Arrival process, Examples of arrival process	2	Recall the definitions and basic concepts of Poisson Distributions and	Lecture with illustration	П
	2	Roles of Exponential Distributions Arrival process, Examples of arrival process	2	Recall the definitions and basic concepts of Poisson Distributions and Exponential	Lecture with illustration	II
	2	Roles of Exponential Distributions Arrival process, Examples of arrival process	2	Recall the definitions and basic concepts of Poisson Distributions and Exponential Distributions	Lecture with illustration	Π

	3	Departure	3	Understand the	Lecture	
		process,		theory of Queue	with	
				with Combined	illustration	
		Queue with		Arrivals and		Ouiz
		Combined		Departure		Quil
		Arrivals and				
		Departure				
	4	Problems based	2	Formulate and solve	Lecture	
		on Queue with		Problems based on	with	
		Combined		Queue with	illustration	
		Arrivals and		Combined Arrivals		
		Departure		and Departure		
	5	Queuing	3	Understand the	Lecture	
		Models of Type		theory of Queuing	with	
		: (M/M/1):		Models of Type :	discussion	
		$(GD/\infty/\infty),$		(M/M/1): (GD/∞/		
		Problems based		∞)		
		$\frac{1}{2} \frac{1}{2} \frac{1}$				
		$(\mathbf{CD}/\mathbf{m}/\mathbf{m})$				
		$(GD/\omega/\omega)$				
	6	Queuing	3	Understand the	Lecture	
		Models of Type		theory of Queuing	with	
		(M/M/1):		Models of Type :	discussion	
		$(\text{GD/N}/\infty)$,		(M/M/1): (GD/N/∞)		
		Problems based				
		on (M/M/1):				
		$(\text{GD/N}/\infty)$				
V	Types of	Queuing Models				
	1	Ouquing Model	4	Pacall the	Lactura	Short Tost
	1	(M/G/1)	'	definitions and basic	with	511011 1 681
		$(\mathbf{D}/\mathbf{O}/\mathbf{I})$.		concepts of Oucuine	illustration	
		$(\mathbf{U}\mathbf{D},\mathbf{\omega},\mathbf{\omega}),$		Model	musuation	
		(M/M/C):		IVIOUEI		
		$(GD/\infty/\infty),$				
		The Pollaczek-				
		Khintchine				
		Formula				

2	Problems based on(M/M/C) : (GD/∞/∞), (M/M/∞) : (GD/∞/∞) Self service Model	4	Develop the knowledge of solving problems based on (M/M/C) : (GD/∞/∞), (M/M/∞) : (GD/∞/ ∞) model	Lecture with illustration	Assignment based on the queueing models
3	(M/M/R) : (GD/K/K) R < K - Machine Service, Problems based on(M/M/R) : (GD/K/K) R < K - Machine Service	4	Develop the knowledge of solving problems based on (M/M/R) : (GD/K/K) R < K - Machine Service model	Lecture with illustration	
4	Tandem or series queues	3	Develop the knowledge of Tandem or series queues	Lecture with illustration	

Course Instructor(Aided): Dr. L. Jesmalar

HOD(Aided) :Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Ms. C. JoselinJenisha

HOD(S.F) :Ms. J. Anne Mary Leema

Semester

Major Core XV

Name of the course : Algorithmic Graph Theory

: IV

Course code : PM2044

Number of hours/	Credits	Total number of hours	Marks
Week			
6	4	90	100

Objectives:

- 1. To instill knowledge about algorithms.
- 2. To write innovative algorithms for graph theoretical problems.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	understand basic algorithms and write algorithms for simple computing	PSO - 1	U E
CO - 2	analyze the efficiency of the algorithm	PSO - 2	An
CO - 3	understand and analyze algorithmic techniques to study basic parameters and properties of graphs	PSO - 2	R An
CO - 4	use effectively techniques from graph theory, to solve practical problems in networking and communication	PSO - 3	Ap

Course Outcome

Total contact hours: 90 (Including lectures, seminar and tests)

Unit	Sectio	Topics	Lecture	Learning outcome	Pedagogy	Assessment/
	n		hours			Evaluation
Ι	The Rol	e of Algorithms in	Computin	g and Getting Started		
		8	I	8 8		
	1	Role of	4	Recall the	Lecture	Evaluation
		algorithms in		definitions and	with	through:
		computing-		understand the basic	illustration	
		Algorithms,		concepts of		
		Data structures,		algorithms		Short Test
		Technique, Hard				
		problems,				
		Parallelism				
	2	Algorithms as a	2	Analyze the	Lecture	Formative
		technology-		efficiency of	with	assessment I
		Efficiency,		algorithms. Use	illustration	assessment I
		Algorithms and		algorithm as a		
		other		technology		
		technologies				

	3	Insertion sort	3	Understand the	Lecture	
		and its		algorithm of	with PPT	
		algorithm,		Insertion Sort.	illustration	
		Pseudocode		Express the		
		conventions		fundamental		
				concepts of		
				pseudocode		
				1		
	4	Analyzing	3	Express the	Lecture	
		Algorithms-		fundamental	with	
		Worst-case and		concepts of	illustration	
		average-case		algorithms,		
		analysis,		Demonstrate the use		
				of algorithms in		
				worst case and		
				average case		
				analysis		
	5	Designing	3	Understand the	Lecture	
	5	Algorithms -The	5	divide-and-conquer	with	
		divide-and-		approach and its	illustration	
		conquer		algorithm Analyze	mustration	
		approach and its		the Merge Sort		
		algorithm		Algorithm		
		Analysis of				
		merge Sort				
		merge sort				
Π	Element	tary Graph Algori	thms			
	1	Representation	3	Recall the	Lecture	Short Test
		of graphs –		definitions and basic	with	
		adjacency list		concepts of graph	illustration	
		representation,		theory. Express the		
		adjacency		fundamental		
		matrix		concepts of		Formative
		representation		adjacency matrix		assessment
				representation		I, II
	2	Definitions and	3	Recall the	Lecture	
		Breadth first		definitions and basic	with PPT	
		Search		concepts of graph	illustration	
		algorithms,		theory. Understand		
		Shortest paths		the algorithm of		
		and related		BFS		
		Lemmas,				

		Corollary and				
		correctness of				
		Breadth first				
		Search theorem				
	3	Breadth-first	3	Recall the	Lecture	
	5	trees related	5	definitions and basic	with PPT	
		Lemma		concepts of graph	illustration	
		Definitions and		theory Understand	mustration	
		Depth first		the algorithm of		
		soorah				
		algorithms		DIS		
		argoriumis				
	4	Parenthesis	3	Understand the	Lecture	
		theorem,		properties of DFS,	with	
		Corollary on		Distinguish between	illustration	
		nesting of		BFS and DFS		
		descendant's				
		intervals, White-				
		path theorem				
	5	T 1 1 1	4	The density of the	T. a. a face wa	
	2	Lopological	4	Understand the		
		Sort, Strongly		algorithms of	with	
		Connected		Topological Sort and	illustration	
		Components		Strongly Connected		
		and related		Components		
		Lemmas and				
		Theorems				
III	Growing	g a minimum span	ning tree a	nd The algorithms of	Kruskal and	Prim
	Ś		8	8		
	1	Theorem,	3	Understand the	Lecture	Short Test
		Corollary		theory of spanning	with	
		related to		tree	illustration	
		Growing a				Formative
		minimum				assessment
		spanning tree				II
	2	Kruskal's	3	Recall the	Lecture	
		algorithm	-	definitions and basic	with	
				concepts of graph	illustration	Assignment
				theory. Understand		on minimum
				the theory of		spanning
				Kruskal's algorithm		tree

	3	Prim's	4	Understand the	Lecture	
		algorithm, The		theory of Prim's	with	
		execution of		algorithm	illustration	
		Prim's		_		
		algorithm on the				
		graph				
		0 1				
	4	Problems based	3	Recall the	Lecture	
		on minimum		definitions and basic	with PPT	
		spanning tree		concepts of	illustration	
				algorithms		
IV	The Bel	 lman – Ford algor	ithm and I	 Dijkstra's algorithm		
					.	
	1	Lemma and	3	Understand the	Lecture	Short Test
		Corollary based		theory of Bellman-	with PPT	
		on correctness		Ford algorithm	illustration	
		of the Bellman-				
		Ford algorithm				Earnation
	2	Theorem and	3	Recall the	Lecture	Formative
	_	definition	C	definitions and basic	with	
		related to		concepts of graph	illustration	111
		Single-source		theory	mastration	
		shortest paths in		licory		
		directed acyclic				
		graphs				
		graphs				
	3	Dijkstra's	3	Understand the	Lecture	
		algorithm, The		theory of	with	
		execution of		Dijkstra'salgorithm	illustration	
		Dijkstra's				
		algorithm				
	4		4		T (
	4	Corollary and	4	Understand the	Lecture	
		analysis of		execution of	with	
		Dijkstra's		Dijkstra's algorithm	illustration	
		algorithm				
	5	Difference	3	Understand the	Lecture	
		Constraints and		concept of	with	
		Shortest Paths-		Difference	illustration	
		Systems of		Constraints and		
		Difference		Shortest Paths		
		Constraints.				
		Constraint				

		graphs, Solving				
		Systems of				
		Difference				
		Constraints				
V	Shortest	t paths and Matrix	nultiplica	ation, The Floyd-Wars	hall algorith	m
	1	Computing the	3	Recall the	Lecture	Short Test
		shortest-path	-	definitions and basic	with	
		weights bottom		concepts of graph	illustration	
		up algorithm		theory		
	2		2		T (
	2	Algorithm for	3	Develop the		Formative
		matrix		knowledge of	With	assessment
		multiplication,		snortest paths and	infustration	III
		improving the		establish new		
		and technique of		motrix		
		repeated		multiplication		Seminar on
		squaring		muniplication		shortest
		squaring				paths
	3	The structure of	3	Davalon the	Locturo	
	5	a shortest nath	5	knowledge of	with	
		A recursive		shortest paths and	illustration	
		solution to the		establish new	mastration	
		all-pairs shortest		relationship in		
		paths problem		matrix		
				multiplication		
				-		
	4	Computing the	4	Develop the	Lecture	
		shortest-path		knowledge of	with PPT	
		weights bottom		shortest paths and	illustration	
		up algorithm,		establish new		
		I ransitive		relationship in		
		directed graph		multiplication		
		algorithm		multiplication		
	5	Johnson's	2	Understand the	Lecture	
		Algorithm for		theory of Johnson's	with	
		Sparse Graphs-		Algorithm for	illustration	
		Preserving		Sparse Graphs		
		shortest paths by				

reweighting and		
related Lemma		

Course Instructor(Aided): Dr. J. Befija Minnie HOD(Aided) :Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Mrs.J.Anne Mary LeemaHOD(S.F) :Ms. J. Anne Mary Leema

Semester

: IV

Elective IV (a)

Name of the Course : Combinatorics

Course Code : PM2045

No. of Hours per Week	Credit	Total No. of Hours	Marks
6	4	90	100

Objectives: 1. To do an advanced study of permutations and combinations.

2. Solve related real life problems.

Course Outcome

CO	Upon completion of this course the students	PSO	CI	
	will be able to :	addressed	CL	
CO - 1	discuss the basic concepts in permutation and combination,	PSO - 1	U	
	Recurrence Relations, Generating functions, The Principle of			
	Inclusion and Exclusion			
CO - 2	distinguish between permutation and combination, distribution	PSO - 2	An	
	of distinct and non-distinct objects			
CO - 3	correlate recurrence relation and generating function	PSO - 2	An	
CO -4	solve problems by the technique of generating functions,	PSO - 3	Ар	
	combinations, recurrence relations, the principle of inclusion			
	and exclusion			
CO - 5	interpret the principles of inclusion and exclusion, equivalence	PSO - 4	An	
	classes and functions		Е	

Fotal contact hours: 9	0 (Including	assignments	and	tests)
------------------------	--------------	-------------	-----	--------

Unit	Section	Topics	Lecture hours	Learning Outcome	Pedagogy	Assessment Evaluation
I	1.	Permutations and combinations	1	To understand Permutations and combinations	Lecture, Illustration	Evaluation through :
	2.	TheRules of sum and product	6	To define theRules of sum and product and to apply those definitions to solve problems	Lecture, Illustration, Group discussion, Problem Solving	Quiz
	3.	Permutations	4	To understand Permutations in detail and to apply the concepts to solve problems	Lecture, Illustration, Discussion, Problem Solving	Formative assessment- I
	4.	Combinations	3	To understand Combinations in detail and to apply the concepts to solve problems	Lecture, Illustration, Problem Solving	
	5.	Distribution of Distinct Objects and Distribution of Non distinct Objects	1	To understand the distribution of distinct and nondistinct objects	Lecture, Illustration	
II	1.	Generating Functions	4	To understand generating functions and their types	Lecture, Discussion	Formative assessment- I
	2.	Generating Functions for Combinations	4	To understand the generating functions for combinations and use them to solve problems	Lecture, Group discussion, Problem Solving	questions Class test

	3.	Enumerators for Permutations. Distribution of distinct objects into nondistinct cells	4	To understand the Enumerators for Permutations and use them to solve problems To derive some results on the distribution of distinct objects into nondistinct cells	Lecture, Illustration, Problem Solving Lecture, Illustration, Problem Solving	Formative assessment-I
		Partitions of integers	1	To understand the concept and derive the partition of integers	Lecture, Illustration, Problem Solving	
		The Ferrers graph	1	To derive some results using Ferrers graph	Lecture, Illustration, Problem Solving	
III	1.	Recurrence Relations	5	To understand the recurrence relations	Lecture, Group discussion, Problem Solving	Multiple choice questions
	2.	Linear Recurrence Relations with Constant Coefficients	5	To understand the linear recurrence relations with constant coefficients and use them to solve problems	Lecture, Illustration, Problem Solving	Unit test Group Discussion
	3.	Solution by the Technique of Generating Functions	5	To solve problems by the technique of generating functions	Lecture, Problem Solving	Formative assessment- II
IV	1.	The Principle of Inclusion and Exclusion	1	To understandthe principle of inclusion and exclusion	Lecture, Group discussion	Formative assessment- II

	2.	The General Formula	1	To understandthe general formula	Lecture, Discussion	Seminar on permutations
	3.	Derangements	5	To dearrange objects and to solve related problems	Lecture, Illustration, Problem Solving	restrictions on relative positions
	4.	Permutations with Restrictions on Relative Positions	4	To learn permutations with restrictions on relative positions	Lecture, Discussion, Problem Solving	derangements and the Rook polynomials
	5.	The Rook Polynomials	4	To understand the Rook polynomials and to solve related problems	Lecture, Problem Solving	Formative assessment- II
V	1.	Polya's Theory of Counting	1	To understand Polya's theory of counting	Lecture, Illustration	Seminar on equivalence classes under a
	2.	Equivalence Classes under a Permutation Group	5	To understand equivalence classes under a permutation group	Lecture, Discussion, Problem Solving Problem Solving	group and functions Short test
	3.	Equivalence classes of Function	4	To understand equivalence classes of function	Lecture, Group discussion, Problem Solving	
	4.	Weights and Inventories of Functions	4	To understand weights and inventories of functions	Lecture, Illustration, Problem Solving	Formative assessment- II
	5.	Polya's Fundamental Theorem.	1	To understand and prove Polya's fundamental theorem	Lecture	

Course Instructor(Aided): Dr. S. Sujitha

HoD(Aided) :Dr. V. M. Arul Flower Mary

Course Instructor(S.F) : Ms. R.N.Rajalekshmi

HoD(SF) :Ms. J. Anne Mary Leema