Semester I Course Name: Classical Mechanics Course Code: PP2011

No. of hours per week	No. of credits	Total No. of hours	Marks
6	4	90	100

Objectives

- 1. To have in depth knowledge in classical mechanics.
- 2. To enable students to develop skills in formulating and solving physics problems.
- 3. To study the kinematics of the rigid body through Euler equation.
- 4. To get knowledge in central force field and relativity.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	understand the basic mechanical concepts related to single and system of particles.	PSO - 1	U
CO - 2	apply various mechanical principles to find solution for physical problems.	PSO - 4	Ap
CO - 3	solve the equations of motion using Lagrangian, Hamilton and Hamilton-Jacobi equations.	PSO - 6	С
CO - 4	explain the origin of coriolis and centrifugal terms in the equation of motion in a rotating frame.	PSO - 1	R
CO - 5	understand and develop a scientific knowledge in central force problems and relativity	PSO - 7	U

Teaching Plan

Total contact hours: 90 (Including lectures, assignments and Tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Lagrangian	Formulation				
	1	Lagrangian formulation: System of particles - Constraints and degrees of freedom-	4	To understand the basic concepts of system of particles and	Illustration, Theoretical formulation, Lecture discussion	Evaluation through:

		Generalized coordinates, Force and Energy		generalized coordinates		multiple choice questions
	2	Conservation laws - Conservations of linear and angular	4	To be able to understand the concept of conservation laws,	Theoretical formulation, Illustration, Lecture discussion	Quiz, short questions
		momenta - Symmetric properties – Homogeneity and isotropy		homogeneity and isotropy		Problem solving
	3	D'Alemberts principle of virtual work - Lagrange's equation of motion - non holonomic systems	3	To formulate Lagrange's equation of motion using D'Alembert' s principle	Theoretical formulation, Illustration, Lecture discussion, PPT	Formative assessment
	4	velocity dependent potential - Dissipative force – Newtonian and Lagrangian Formalism	4	To understand the Newtonian and Lagrangian formalism	Illustration, Theoretical formulation, Lecture discussion	Deriving theoretical formulas
II	Hamilton's	Equation and Ca	nonical Trar	sformation		
	1	Calculus of variation - Principle of least action - Hamilton's principle - Hamilton's function	4	To formulate Hamilton's function using Hamilton's principle	Illustration, PPT, theoretical formulation	Evaluation through: multiple choice questions
	2	Lagrange's equation from Hamilton's principle - Hamilton's	3	To derive Lagrange's equation from	Illustration, PPT, theoretical formulation	Quiz, short questions

		principle for		Hamilton's		
		non		principle		
		holonomic				Droblam
		system				solving
	3	Variational	4	То	Lecture	sorving
		principle -		understand	discussion.	
		Hamilton's		the concept	Illustration.	
		equations		of variational	PPT.	
		from		principle and	theoretical	
		variational		derive	formulation	Formative
		principle -		Hamilton's	Tormanation	assessment
		Legendre		equation		
		transformatio		from		
		n and		variational		
		Hamilton's		principle		
		equation of		principie		
		motion				
	4	Canonical	1	То	Illustration	Deriving
	•	transformatio	+	understand	Lecture	theoretical
		ualisionnatio		the concept	discussion	formulas
		ns-		of canonical	theoretical	
		Hamilton's		transformatio	formulation	
		canonical		n and poisson	Tormatation	
		equations -		h and poisson bracket		Short test
		Generating		bracket		Short test
		functions-				
		Examples -				
		Poisson				
		hunglate and				
		its				
		properties.				
III	Hamilton-J	acobi Theory a	nd Small Os	scillations		
	1	Hamilton-	4	To derive the	Illustration,	Evaluation
		Jacobi		Hamilton-	theoretical	through:
		equation for		Jacobi	Iormulation	
		Hamilton's		equation for	, Lecture discussion	
		principal		Hamilton's	discussion	multiple
		function -		principal		choice
		Example:		function and		questions
		Harmonic		to solve the		questions
		oscillator		Harmonic		
		oscillator problem		Harmonic oscillator		<u>.</u>
		oscillator problem		Harmonic oscillator problem.		Quiz, short
	2	oscillator problem Hamilton's	3	Harmonic oscillator problem. To formulate	Illustration,	Quiz, short questions
	2	oscillator problem Hamilton's characteristic	3	Harmonic oscillator problem. To formulate the	Illustration, PPT, theoretical	Quiz, short questions

	3	Action - Angle variable Application to Kepler problem in action angle variables. Eigen value equation	4	characteristic function and explain the Action - Angle variable To analyze the application to Kepler problem in action angle variables; To solve Eigen	Illustration, theoretical formulation , Lecture discussion	Problem solving Formative assessment
	4	Normal coordinates - Normal frequencies of vibration – Free Vibrations of linear tri atomic molecule.	4	value equation. To discuss the Normal coordinates and Normal frequencies of vibration and to derive the normal frequencies of free vibrations of linear tri atomic molecule.	Illustration, PPT, theoretical formulation	Deriving theoretical formulas Short te st
IV	Kinematics	of Rigid Body			I	
	1	Independent coordinates of rigid body - Orthogonal transformatio n - Properties of transformatio n matrix	4	To understand the concept of Independent coordinates of rigid body. To derive the Orthogonal transformatio n and Properties of transformatio n matrix	Illustration, theoretical formulation , Lecture discussion	Evaluation through: multiple choice questions Quiz, short questions
	2	Euler angle and Euler's theorem - Infinitesimal	3	To derive Euler angle and Euler's theorem. To	Illustration, PPT, theoretical formulation	Problem solving

		rotation -		understand		
		Coriolis force		the concept		
				of		
				Infinitesimal		
				rotation and		Domenatives
				Coriolis		Formative
				force.		assessment
	3	Angular	4	To derive the	Illustration,	
		momentum		relation	theoretical	
		and kinetic		between the	formulation	
		energy of		angular	, Lecture	
		motion about		momentum	discussion	
		a point -		and kinetic		Deriving
		Moment of		energy of		Deriving
		inertia tensor		motion about		theoretical
		- Fuler's		a point		formulas
		equations of		a point. To domivo		
		motion		the Marrier		
		motion		the Moment		
				of inertia		Short test
				tensor and		Short test
				Euler's		
				equations of		
				motion.		
	4	Force free	4	To analyze	Illustration,	
		motion of a		the torque	PPT,	
		symmetrical		free motion	theoretical	
		top - Heavy		of a	formulation	
		symmetrical		symmetrical		
		top with one		top and to		
		point fixed		discuss the		
				heavy		
				symmetrical		
				top with one		
				point fixed.		
V	Central For	rce Problem and	d Theory of	Relativity		
	1	Reduction to	3	To derive the	Illustration.	Evaluation
	-	the equivalent	C	reduced mass	theoretical	through:
		one body		of the	formulation	
		problem-		equivalent	. Lecture	
		Centre of		one hody	discussion	
		mass-		problem To	415-4551011	multiple
		Equation of		understand		choice
		motion and		the concept		questions
		first integral		of Centre of		
		classification				
		of orbits		mass, Equation of		Quiz, short
		OI OI DI UI UI UI		Equation of		questions
				finat into and		7.000000
				iirst integral.		
				10 discuss		

			the classification		
			of orbits		D 11
			based on the		Problem
			eccentricity.		solving
2	Kepler	4	To derive the	Illustration,	
	problem:		Kepler	theoretical	
	Inverse-		problem:	formulation	
	Square law of		Inverse-	, Lecture	
	force -		Square law	discussion	Formative
	Scattering in		of force. To		assessment
	a central		understand		
	force field -		the concept		
	Transformati		of Scattering		
	on of		in a central		
	scattering to		force field		
	laboratory		To transfer		
	coordinates		the		Deriving
	coordinates.		scattering to		theoretical
			laboratory		formulas
			coordinates		
2	Virial	4	To	Illustration	
3	theorem _	4	10 understand	DDT	
	L orentz		the Virial	theoretical	Chart to at
	transformatio		theorem To	formulation	Short lest
	n -		derive the	Locturo	
	Relativistic		Lorontz	, Lecture	
	Mechanics -		transformatio	uiscussion	
	Relativistic		n To		
	I agrangian		II. IU		
	and		the concepts		
	Hamiltonian		of		
	for a particle		Delativistic		
	ioi a particie		Mechanics		
			and to derive		
			the		
			Relativistic		
			I agrangian		
			and		
			Hamiltonian		
			for a particle		
4	Mass in	4	То	Illustration	
•	Relativity -	•	understand	PPT.	
	Mass and		the concept	theoretical	
	energy –		of mass in	formulation	
	Space-time		relativity. To	, Lecture	
	diagram –		discuss the	discussion	
	Momentum		relation	-	
	vectors		between		

	Mass and energy; To analyze Space-time diagram and to derive the Momentum	
	vectors.	

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Dr.M.Priya Dharshini and Ms.S.Virgin Jeba

Semester I Course Name: Mathematical Physics Course Code: PP2012

No. of hours per week	No. of credits	Total No. of hours	Marks
6	4	90	100

Objectives

- **1.** To emphasize the use of mathematical tools like evaluation of definite integrals
- in the field of classical and quantum mechanics.
- 2. To demonstrate competence with a wide variety of mathematical techniques to enhance problem solving skills.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	apply the various theorems in complex analysis to evaluate definite integrals.	PSO - 4	Е
CO - 2	determine the series solutions and the recurrence relations (Bessel, Legendre and Hermite differential equations) and solve problems associated with them.	PSO - 3	Е
CO - 3	discuss the basic principles and methods used for the analysis of partial differential equations and apply the techniques to related problems.	PSO - 4	С
CO - 4	discuss the concepts of Fourier, Laplace and inverse Laplace transform, tensors, group theory and their properties.	PSO - 5	С
CO - 5	develop expertise in mathematical techniques required in physics and to enhance problem solving skills.	PSO - 6	An

Credit:4	Total Hours:90 (Incl. Seminar & Test)								
Unit	Modul es	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment /Evaluation			
Ι	Complex	x Analysis							
	1	Functions of Complex variable- Analytic functions – Cauchy – Riemann equations in cartesian and polar forms – Harmonic functions - Cauchy's integral theorem	4	To be able to identify the analytic functions by using the Cauchy's Riemann equations	PPT, Theoretical formulation and Problem solving	Evaluation through: Online quiz, through Google Classroom Assignments			
	2	Cauchy's integral formula – Taylor's Series – Laurent series	3	To be able to evaluate the integrals using Cauchy's formula and able to apply the series in computational science and approximation	Analysis and Problem solving	on Problem solving Short questions Descriptive answers			
	3	Cauchy's residue theorem – Singular points of an Analytic function – Evaluation of residues - application to evaluation of definite integrals –	4	To be able to apply the Cauchy's Residue theorem to evaluate the definite integrals of analytic functions	Analysis and Problem solving	Formative assessment			
	4	Integration around a unit circle –Jordan's Lemma.	3	To be able to apply the Jordan's lemma to evaluate contour integrals	Analysis and Problem solving				
II	Polynor	nials		megruis					
	1	Legendre differential equation and Legendre functions – Generating functions	4	To acquire basic understanding of the partial differential equations and learn some	Analysis and Problem solving	Evaluation through: Online quiz, through Google Classroom			

Modules Total Hours:90 (Incl. Seminar & Test)

				methods for		Assignments
				solving them.		on Problem
	2	Rodrigue's formula – Orthogonal Properties - recurrence formula	3	To accomplish operations with differential equations along with the recurrence formulae	Analysis and Problem solving	solving Short questions Descriptive
	3	Bessel differential equation – Bessel functions of I kind - recurrence formula and generating functions	4	To execute operations with Bessel differential equations	Analysis, Problem solving and comparative study	answers Formative assessment
	4	Hermite differential equations and Hermite polynomials - Generating functions & recurrence formula.	3	To carry out operations with Hermite differential equations along with the recurrence formulae	Analysis, Problem solving and comparative study	
III	Differen	tial and Partial Differential equa	tions			
	1	Homogeneous linear equations of second order with constant coefficients and their solutions	3	To be able to solve second order Homogenous differential equations	Analysis and Problem solving	Evaluation through: Online quiz, through Google Classroom
	2	Ordinary second order differential with variable coefficients and their solution by power series and Frobenius methods	4	To be able to apply the power series and Frobenius methods to evaluate the solution of second order differential equations	Analysis and Problem solving	Assignments on Problem solving Short questions Descriptive
	3	Solution of Laplace equation in Cartesian coordinates- Solution of heat flow equations	3	To be able to solve boundary value problems occur in steady state temperatures and of hydrodynamics	Analysis and Problem solving	answers Formative assessment
	4	Method of separation of variables – variable linear flow – One and two dimensional heat flow.	4	To be able to solve problems for heat flow	Analysis and Problem solving	1

IV	Tensors,	Fourier and Laplace transforms		equations in different dimensions under certain boundary conditions		
	1	Contravarient and Covarient	3	To be able to	Analysis and	Evaluation
		Tensors - Addition and Subtraction – Outer product - inner product of tensors		solve mathematical problems involving tensors	Problem solving	through: Online quiz, through Google Classroom
	2	Contraction of a tensor - Symmetric and anti-symmetric tensors – The Kronecker delta	3	To be equipped to use tensor algebra as a tool in the field of applied sciences	Analysis and Problem solving	Assignments on Problem solving
	3	Fourier transform- properties of Fourier transform - Fourier transform of a derivative	4	To be able to understand and apply the concept of Fourier transform to waveforms and spectra.	Analysis and Problem solving	Short questions Descriptive answers
	4	Laplace transform- properties of Laplace transform- Inverse Laplace Transform.	4	To be able to use the Laplace transform equations for solving boundary value problems by directly changing the ordinary differential equations into algebraic equations.	Analysis and Problem solving	Formative assessment
V	Group t	heory				
	1	Group postulates – Abelian group – Cyclic group – Group multiplication table – Rearrangement theorem – Subgroups	3	To understand the mathematics of group theory	Descriptive lecture, Analysis and Problem solving	Evaluation through: Online quiz, through Google
	2	Isomorphism and Homomorphism – Symmetry elements and symmetry operations	4	To understand the symmetry and point group of molecules	Descriptive lecture, Analysis and Problem solving	Classroom Assignments on Problem solving

3	Reducible and irreducible	3	To generate a	Descriptive	
	representations		representation	lecture	
			and to reduce it	Analysis and	Short
			to its irreducible	Problem	questions
			representation	solving	
4	The great orthogonality theorem	4	To determine	Descriptive	Descriptive
	- Character table for C_{2V} $\&$ C_{3V}		the	lecture	answers
	point groups.		irreducibility of	Analysis and	
			a reducible	Problem	
			representation	solving	
					Formative
					assessment

PO- Program outcome; LO – Learning outcome;

Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Semester: I

Course Name: QUANTUM MECHANICS -I Course code: PP2013

No. of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Objective

To help the students to acquire understanding of the fundamental concepts and mathematical tools necessary to solve the wave equations.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	summarize the concept of wave function and the postulates of quantum mechanics.	PSO-1	U
CO - 2	formulate time dependent and time independent equation and solve them for simple potentials.	PSO-4	С
CO - 3	evaluate the eigen values and eigen function spin and total angular momenta and determine the matrices.	PSO-4	Е
CO - 4	analyze the principles of quantum theory, equation of motion, scattering theory and angular momentum.	PSO-4	An

Modules

Credit:5

Total Hours:90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I Foundations of Wave Mechanics						

		Wave packet – Time dependent Schrödinger equation – Interpretation of the wave function	4	To understand basic concepts of quantum mechanics by deriving group velocity, phase velocity and time dependent	PPT, Illustration and theoretical derivation	Evaluation through: Online quiz, Problem solving short questions
				equation		Formativ e assessme nt
		Admissibility conditions on the wave function – Hermitian operator – Postulates of quantum mechanics	4	To be able tounderstand the wave function and postulates of quantum mechanics	Illustration, Theoretical formulation Problem Solving	
		Simultaneous measurability of observables – General uncertainty relation – Ehrenfest's theorem	4	To analyze observables and their properties	PPT, Theoretical formulation and Problem solving	
II	Eigen St	ates and Many Electron Atoms				
	1	Square-well Potential with Rigid Walls- Square Potential Barrier –Alpha Emision- Time independent Schrodinger equation	3	To understand the basic concepts and features related to Square-well Potential	PPT Illustration, lecture, and Problem solving	Evaluation through: Online quiz, short
	2	Time dependent Schrödinger equation – Stationary states - Eigen functions and eigen values	3	To relate time independent and time dependent Schrodinger equation	Descriptive lecturecompara tive study	questions Descriptive answers Problem solving
	3	Kronig Penny square well periodic potential- Indistinguishable Particles- Particle Exchange Operator	3	Toformulate Kronig Penny square well periodic potential and operators	PPT, Theoretical formulation and Problem solving	Formative assessment

Wave Functions - Pauli Principle – Inclusion of spinSymmetric and Antisymmetric Wave FunctionsTheoretical formulation and Problem solvingIIIExactly Soluble Eigen value ProblemsTo solve the one-Illustration, Theoretical formulationEvaluation through: Online quiz, and ProblemIIIExactly Soluble Eigen value Problems3To solve the one-Illustration, Theoretical dimensional linear harmonic oscillatorEvaluation through: Online quiz, and ProblemIIIOne dimensional linear harmonic oscillator – operator method - Particle moving in a spherically symmetric potential3To solve the one-Illustration, through: Online quiz, and ProblemEvaluation through: Online quiz, and ProblemIIIOne dimensional linear harmonic oscillator – operator method - Particle moving in a spherically symmetric potential3To solve the one-Illustration, solvingEvaluation through: Online quiz, and ProblemIIIQuestion Spherically symmetric potential3To solve the oscillator problemIllustration, solvingEvaluation through: oscillatorIII2Spherical harmonics- Radial equation- Rigid rotator- Hudrogen atom solution of the equation- Rigid rotator-2To formulate radial equationsPPT, eratical oraticalDescriptive
IIIPrinciple – Inclusion of spinAntisymmetric Wave Functionsformulation and Problem solvingIIIExactly Soluble Eigen value ProblemsTo solve the one-Illustration, Theoretical formulation formulation through:IIIExactly Soluble Eigen value ProblemsSolve the one-Illustration, Theoretical formulation and ProblemIIIExactly Soluble Eigen value ProblemsSolve the one-Illustration, Theoretical formulation and ProblemIIIOne dimensional linear harmonic oscillator – operator method - Particle moving in a spherically symmetric potentialTo solve the one-Illustration, formulation and ProblemIIISpherically symmetric potential3 one-To solve the one-Illustration, and Problem solvingEvaluation through: Online quiz, solvingIII2Spherical harmonics- Radial equation- Rigid rotator- Hudrogen stem solution of the equation- Rigid rotator-2To formulate radial equationsPPT, radial equationsDescriptive
IIIExactly Soluble Eigen value ProblemsWave Functionsand Problem solvingIIIExactly Soluble Eigen value ProblemsIllustration, one-Evaluation, Theoretical formulation and Problem1One dimensional linear harmonic oscillator – operator method - Particle moving in a spherically symmetric potential3To solve the one-Illustration, Theoretical formulation and Problem solvingEvaluation through: Online quiz, and Problem solving2Spherical harmonics- Radial equation- Rigid rotator- Hydrogen atom colution of the2To formulate radial equationsPPT, Illustration,The
IIIExactly Soluble Eigen value ProblemsFunctionssolving1One dimensional linear harmonic oscillator – operator method - Particle moving in a spherically symmetric potential3To solve the one-Illustration, Theoretical formulation and ProblemEvaluation through: Online quiz, and Problem2Spherical harmonics- Radial equation- Rigid rotator- Hudrogen atom solution of the2To formulate radial equations radial equationsPPT, questions
IIIExactly Soluble Eigen value ProblemsIllustration, one-Evaluation through: One-1One dimensional linear harmonic oscillator – operator method - Particle moving in a spherically symmetric potential3To solve the one-Illustration, Theoretical dimensional linear harmonic oscillatorEvaluation through: Online quiz, solving2Spherical harmonics- Radial equation- Rigid rotator- Hudrogen atom solution of the2To formulate radial equationsPPT, Illustration,The1One dimensional linear oscillator problem3To formulate radial equationsPPT, Illustration,The2Spherical harmonics- Radial equation- Rigid rotator- Hudrogen atom solution of the2To formulate radial equationsPPT, Illustration,The
1One dimensional linear harmonic oscillator – operator method - Particle moving in a spherically symmetric potential3To solve the one- dimensional linear harmonic oscillator problemIllustration, through: Online quiz, and Problem solvingEvaluation through: Online quiz, short2Spherical harmonics- Radial equation- Rigid rotator- Hydrogen atom, solution of the2To formulate radial equationsPPT, Illustration, The oraticalQuestions
harmonic oscillator – operator method - Particle moving in a spherically symmetric potentialone- dimensional linear harmonic oscillator problemTheoretical formulation and Problem solvingthrough: Online quiz, and Problem solving2Spherical harmonics- Radial equation- Rigid rotator- Hydrogen atom, solution of the2To formulate radial equations of hydrogenPPT, used problemquestions
method - Particle moving in a spherically symmetric potentialdimensional linear harmonic oscillator problemformulation and Problem solvingOnline quiz, and Problem solving2Spherical harmonics- Radial equation- Rigid rotator- Hydrogen atom, solution of the2To formulate radial equationsPPT, Illustration,The oraticalQuestions
spherically symmetric potentiallinear harmonic oscillator problemand Problem solving2Spherical harmonics- Radial equation- Rigid rotator- Hydrogen atom solution of the2To formulate radial equationsPPT, Illustration,Thequestions
Image: second
Image: constraint of the sector of the sec
2Spherical harmonics- Radial equation- Rigid rotator- Hydrogen atom solution of the2To formulate radial equationsPPT, Illustration,The oraticalquestions1Hydrogen atom solution of the solution of the2To formulate radial equationsPPT, Illustration,The oraticalQuestions
equation-Rigid rotator- Hudrogen atom solution of the solution
Hudrogen atom solution of the of hydrogen oratical Descriptive
Bydrogen atom- solution of the of hydrogen of elecation Descriptive
radial equation atom formulation answers
and Assignment
Problem on
solving applications
3 Energy eigen values- Radial 3 To understand Illustration,
wave functions- Wavethe eigen valuesTheoreticalFormative
functions of hydrogen-like atom and wave formulation assessment
functions and Problem
solving
4 Radial Probability density- 4 To formulate Illustration,
Three-Dimensional square-wellthree-Theoretical
potential. Dimensional formulation
square-well comparative
potential. study
and Problem
solving
IV Matrix Formulation of Quantum Theory, Equation of Motion & Angular Momentum
1 Linear vector space- Dirac's 2 To derive Theoretical Evaluation
notation-Equation of motions equation of formulation through:
motion using Online quiz,
Quantum
mechanical
Concepts Short
2 Schrödinger, Heisenberg and 2 To compare Theoretical questions
Interaction representation. representation of formulation
motion Descriptive
Angular momentum operators 2 To understand DDT
Angular momentum Angular momentum
- Augular noncluum
commutation relations Figen concents and lacture and solving
commutation relations – Eigen concepts and lecture, and solving values and eigen functions of lectures related Problem
commutation relations – Eigen values and eigen functions of L^2 and L_z concepts and features relatedlecture, and ProblemsolvingL2and L_z Formative

	4	General angular momentum – Eigen values of J^2 and J_z	2	To relate angular momentum and general angular momentum	Descriptive lecture comparative study	
	5	Angular momentum matrices – Spin angular momentum – Spin vectors for spin-(1/2) System	2	To formulate angular momentum matrices	Theoretical formulation and Problem solving	
	6	Addition of angular momentum: Clebsch-Gordon coeffiecients	2	To obtain C-G coefficient from angular momentum	Illustration,The oretical formulation and Problem solving	
	7	Stern Gerlach Experiment.	1	To prove concept of spin experimentally	Demonstration	
V	Scatterin	ng theory		1		
	1	Scattering cross-section –	1	To understand	PPT	
		Scattering amplitude		the basic	Illustration,	
				features related to scattering	And Descriptive lecture	Evaluation through: Online quiz,
	2	Partial waves – Scattering by a central potential: Asymptotic solution.	3	To understand the concept of partial waves	Descriptive lecture and Theoretical formulation	short questions
	3	Optical theorem- Ramsauer- Townsend effect- Partial wave analysis	2	To apply the concept of partial waves	Descriptive lecture and Theoretical formulation	Descriptive answers
	4	Scattering by an attractive square-well potential – Breit- Wigner Formula - Scattering length - Expression for phase shifts - Integral equation	3	To apply scattering theory to physical problems	Descriptive lecture and Theoretical formulation	Problem Solving
	5	The Born approximation – Scattering by screened coulomb potential – validity of Born approximation	2	To understand Born approximation	Descriptive lecture and Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Staff -- in -- charge : Ms. Sonia & Ms. Aji Udhaya

Semester I

Course code: Numerical Methods

Course code: PP2016

No. of hours per week	No. of credits	Total No. of hours	Mar ks
6	4	90	100

Objective

To understand various numerical methods used to solve the

physical problems.						
CO	Upon completion of this course the students will	PSO	CL			
	be able to :	addressed				
CO-1	understand the various interpolation methods and	PSO - 1	U			
	finite difference concepts					
CO- 2	analyze the numerical solutions of linear and non linear equations	PSO - 4	An			
CO- 3	utilize various numerical methods for differentiation and integration	PSO - 4	Ар			
CO -4	discuss the concepts of ordinary differential equations	PSO - 5	C			

Modules

Credit:4

Total Hours:90 (Incl. Seminar& Test)

Unit	Sect ion	Topics	Lect ure hour s	Learning outcome	Pedagogy	Assessme nt/Evalua t ion
Ι	Inter	polation				
	1.	Introduction, Polynomial Forms, Linear interpolation.	4	To understand the basic concepts of interpolation	PPT, Illustration and theoretical derivation	Evaluation through: Online quiz,
	2.	Lagrange Interpolation Polynomial, Newton Interpolation Polynomial	4	To be able to solve the problems of Lagrange and Newton Interpolation	Illustration, Theoretical formulation Problem Solving	short

	3.	Divided difference table, Interpolation with equidistance points, Spline interpolation	4	To solve the problems of Divided difference table, Interpolation with equidistance points	PPT, Theoretical formulation and Problem solving	questions Descripti v e answers Formative assessmen t
				Spline		
II	Root	s Of Nonlinear Equations		interpolation		
	1	15 Hours Introduction, Methods of Solution, Iterative Methods, Starting and Stopping an Iterative Process, evaluation of Polynomials	3	To understand the basic concepts of Iterative Methods	PPT Illustration, lecture, and Problem solving	Evaluation through: Online quiz, short questions
	2	Bisection method, False Position Method, Newton- Raphson Method	3	To solve various methods like Bisection, False Position and Newton-Raphson Method	Descriptive lecture solving problems	v e answers Problem solving
	3	Secant Method, Fixed Point Method	3	To find the roots using Secant and Fixed Point Method	PPT, Theoretical formulation and Problem solving	Formative assessmen t
	4	Determining All Possible Roots.	3	To determine all Possible roots for the Polynomial equation	Illustration, Theoretical formulation and Problem solving	
III	Solut	tions of Linear Equations				

	1	15 Hours Need and Scope, Existence of Solutions, Solution by Elimination,	3	To understand the basics of elimination method	Illustration, Theoretical formulation and Problem solving	Evaluation through: Online quiz, short questions
	2	Basic Gauss Elimination Method, Gauss Elimination with Pivoting, Gauss- Jordan Method	2	To solve the problems of Gauss Elimination, Gauss Elimination with Pivoting and Gauss- Jordan Method	PPT, Illustration, Theoretical formulation and Problem solving	Descripti v e answers Assignme
	3	Triangular Factorization Methods, Round-off Errors and Refinement, Ill- Conditioned Systems,	3	To understand the Triangular Factorization Methods and Round-off Errors	Illustration, Theoretical formulation and Problem solving	n t on applicatio ns Formative
	4	Matrix Inversion Method, Jacobi Iteration Method, Gauss Seidel Method.	4	To solve the problems of Matrix Inversion Method, Jacobi Iteration Method and Gauss Seidel Method.	Illustration, Theoretical formulation comparative study and Problem solving	assessmen t
IV	Num	erical Differentiation and Int	egratio	n		
	1	Numerical Differentiaton: Need and Scope, differentiatig continuous functions,	4	To understand the basic concepts of Numerical Differentiation	Theoretical formulation and Problem solving	Evaluation through: Online quiz, short questions Descripti
	2	Differentiating tabulated functions, Difference tables, Numerical Integration.	4	To solve problems for Difference tables and study the basics of Numerical Integration.	Theoretical formulation and Problem solving	v e answers Problem solving

	3	Trapezoidal Rule, Simpson's 1/3 Rule, Simpson's 3/8 Rule, Higher Order Rules.	4	To solve problems using Trapezoidal Rule, Simpson's 1/3 Rule and Simpson's 3/8 Rule	PPT Illustration, lecture, and Problem solving	Formative assessmen t
V	Num	erical Solutions of Ordinary	Differe	ntial Equations		
	1	15 Hours Need and Scope, Tailor Series Method – Improving	3	To understand the basic concepts and features of Tailor Series	PPT Illustration, And problem solving	Evaluation through: Online quiz,
	2	Picard's method, Euler's Method – accuracy of Euler's method, .	3	To solve differential Equations using Picard's, Euler's Method , Euler's method,	problem solving	short questions Descripti
	3	Heun's Method – Error analysis, Polygon Method,	3	To apply the concept of Heun's Method, Error analysis, Polygon Method to solve the equations	PPT Illustration, And problem solving	answers Problem
	4	Runge-Kutta Methods- Determination of weights, Fourth order Runge-Kutta methods.	3	To apply Runge- Kutta Methods to solve the problems	PPT Illustration, And problem solving	Formative assessmen t

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C-Create

Staff-in charge: Ms.Shally & Ms.Lesly

Semester II

Course Name: Electromagnetic Theory

Course code: PP2021

No.of hours per week	No. of credits	Total No .of hours	Marks
6	4	90	100

Objectives

1. To provide knowledge on the propagation of electromagnetic

radiation

2. To develop theoreticalknowledge, skillson solving analytical problem sinelectrom agnetism.

СО	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	Summarize the fundamental laws of electrodynamics based On Maxwell's equations.	PSO-1	U
CO -2	Enumerate the concept of energy in electrostatic and Magnetostatic fields.	PSO-2	K
CO -3	Illustrate the electrical properties of materials; solve the Wave equation as plane waves in source.	PSO-5	Ap
CO -4	Analyze the wav epolarization and reflection/transmission of Plane waves in homogenous media.	PSO-4	An

Teaching Plan

Credits: 4 &Test)

Total Hours: 90 (Incl. Seminar

Unit	Modu le	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Electros	tatics				
	1	Coulomb's law; the electric field – line, flux and Gauss's Law in differential form - theelectrostatic potential; conductors and insulators	4	Understand the concepts Electrostatic field and basicequations	PPT, Descripti ve lecture	Evaluation through: quiz, Problem

	2	Gauss's law - application of Gauss's law -curl of E - Poisson's equation;	3	To understand the divergence and curl	Illustrati on,	solving
		Laplace's equation		of E and its applications	Descripti ve lecture	Descriptive
	3	work and energy in electrostatics – energy of a point charge distribution – energy of continuous charge distribution – inducedcharges – capacitors.	4	Understand the basic concept of energy of a point charge and continuous charge distribution	Videos, group discussion	short questions
	4	Potentials: Laplace equation in one dimension and two dimensions –Dielectrics – induceddipoles– Gauss'sLawinthepresence ofdielectrics.	4	Solve solution of Laplace's equation in one and two dimension and understand the electric fields conductors and dielectrics	Semin ar, Lectur e	Formative assessment (I CIA)
II	Magneto	ostatics				
	1	Lorentz force – magnetic fields – magnetic forces – currents – Biot-Savart Law – divergenceand curl of B	4	Understand the concept of magnetic fields, Biotsavart's law for a	PPT Illustrati on, Descripti ve	Evaluation through: quiz,
				line current	lecture	
	2	Ampere's Law – Electromagnetic induction - comparison of magnetostaticsand electrostatics –	4	To acquire knowledge on ampere's law and magnetic vector potential	Lecture ,Videos	short questions Descriptive answers
	3	Magnetic vector potential- Magnetization: effect of magnetic field onatomicorbit–	4	To understand the effect of magnetic field on atomic orbit	Descripti ve lecture	Problem solving Formative
	4	Ampere'sLawin magnetizedmaterials– ferromagnetism.	3	Understand the ampere's law in magnetized materials	Descripti ve lecture, seminar	assessment (I&II CIA)

III	Electrom	notiveForce				
	1	Ohm's Law – electromotive force – motional emf – Faraday's Law –	4	Understand t	Illustrati on, Descripti ve lecture	Evaluation through: quiz,
	2	induced electric field –inductance– energyinmagneticfield Maxwell'sequationinfreespacean	3	Solve the Maxwell's	Descripti	short questions Descriptive
		dlinearisotrophicmedia– continuityequation – Poyntingtheorem.		equations and pointing theorem	ve lecture	answers Formative assessment
	4	Waves in one dimension – wave equation – sinusoidalwaves – reflectionandtransmission– Polarization.	4	Solve the wave equation. Reflection, transmission and polarization	Group Discussi on, Lecture, seminar	(I CIA)
IV	Electrom	agneticWaves	1			
	1	The wave equation for E and B – Monochromatic Plan waves – energy and momentum inelectromagnetic waves–	5	UnderstandtheWaveequation,energy for E and B.Explaintheelectromagneticwaves in matter	PPT Illustrati on, Descripti ve lecture.	Evaluation through quiz, Descriptive
	2	electromagnetic waves in matters -TE waves in rectangular waveguides – the co-axial transmission line	5	Explain in brief the reflection and transmission at normal incidence and oblique incidence	Lectur e, Group discussi on	answers short questions Assignment
	3	Potentials: potentials and fields – scalar and vectorpotentials – Gauge transformation – Coulomb Gauge and Lorentz Gauge – Lorentz force lawinpotentialform.	5	Understand the concept of Coulomb gauge and Lorentz gauge	Lectu re, semin ar	Formative assessment (II CIA)

V	Applicat	ion of Electromagnetic Waves				
	1	Boundary conditions at the surface of discontinuity – Reflection and refraction of E.M wavesat the interface of non – Conducting media	4	Understand the concept of four vectors, Minkowski force	PPT Illustrati on, Descripti ve lecture	Evaluation through: quiz, short questions
	2	Kinematic and dynamic properties – Fresnel'sequation – Electric field vector 'E' parallel to the plane of incidence and perpendicular to theplane of incidence Reflection and transmission co-	4	To acquire knowledge on the Maxwell's equations in four vector form. To acquire	Descripti ve lecture Descripti	Descriptive answers Problem solving
		efficients at the interface between twonon–Conductingmedia		knowledge on theLagrangianand Hamiltonian force equations	ve lecture, Seminar, Assignmen t	Formative assessment (II CIA)
	4	Brewster'slawanddegreeofpolariz ation–Totalinternalreflection.	3	Understand the brewster's law and degree of polarization	Illustrati on, Descripti ve lecture	

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze; K-Knowledge

Course Instructor :Ms. S. Virgin Jeba

Semester	: II
Name of the Course	: QUANTUM MECHANICS -II (Core - V)
Subject code	: PP2022

No. of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Objective

To develop several approximation methods, for bounds states and scattering states and apply them to illustrative problems.

CO	Upon completion of this course, students will be	PSO	CL
	able to:	addres	CL
		sed	

CO - 1	enumerate time independent perturbation theory and use approximation methods. (variation principle and WKB method) to solve simple problems (ground state helium, barrier penetration, etc)	PSO-1	К
CO - 2	analyze time dependent perturbation theory to discuss absorption and emission of radiation for harmonic perturbation.	PSO-6	An
CO - 3	interpret quantum theory of atomic and molecular structure.	PSO-4	U
CO -4	formulate Klein-Gordan and Dirac equations and discuss the applications. (particle in a Coulomb field, Spin of electron)	PSO-1	С

Credit: 5		Total Hours: 90 (Incl. Seminar & Test)						
Unit Modul e		Topics	Lecture	Learning	Pedagogy	Assessment/		
		Topics	hours	outcome		Evaluation		
Ι	Approxi	mation Methods for Time Indepe	endent Pro	blems				
	1	Time independent perturbation	4	To understand	PPT,	Evaluation		
		theory: Basic concepts - Non-		the basic	Illustration and	through:		
		degenerate energy levels - first		concepts of	theoretical	Online quiz,		
		and second order		time	derivation			
				independent		Problem		
				perturbation		solving		
				theory.				
	2	Anharmonic oscillator – First-	3	To understand	Illustration,			
		order correction – Ground state		the ground	Theoretical	short		
		of Helium		state of	formulation	questions		
				Helium.	Problem			
					Solving	Descriptive		
	3	Effect of electric field on the	4	To analyze	Illustration,	answers		
		ground state and n=2 of		the effect of	Theoretical			
		hydrogen		electric field	formulation			
				on hydrogen.	Problem			
					Solving	Formative		
	4	Degenerate Energy Levels-	4	To analyze	PPT,	assessment		
		Stark effect in hydrogen		the splitting of	Theoretical			
		molecule-Spin-Orbit		energy levels	formulation			
		interaction.		in hydrogen	and Problem			
				molecule and	solving			
				spin-orbit				
				interaction.				
II	Approxi	mation Methods for Time Depen	dent Pertu	rbation Theory				

Modules Total Hours: 90 (Incl. Seminar & Test)

	1	Time dependent perturbation theory: First order perturbation – Harmonic perturbation – Transition to continuum states- Fermi Golden Rule	4	To understand the basic concepts and features related to time dependent perturbation. To understand	PPT Illustration, lecture, and Problem solving Descriptive	Evaluation through: Online quiz, short questions
		radiation – The Electromagnetic field		the absorption and emission of electromagneti c radiation.	lecture, comparative study	Descriptive answers Problem solving
	3	Hamiltonian operator- Electric dipole approximation- transition probability	4	To formulate the electric dipole approximation.	PPT, Theoretical formulation and Problem solving	Formative assessment
	4	Einstein's A and B coefficients – Selection rules- forbidden transitions.	3	To understand selection rules and forbidden transitions.	Illustration, Theoretical formulation and Problem solving	
III	Variatio	n and WKB Method				
	1	Variation method :Variational principle – Ground state of Helium and Deuteron	4	To solve the ground state of Helium and Deuteron.	Illustration, Theoretical formulation and Problem solving	Evaluation through: Online quiz,
	2	WKB Approximation : WKB method – Connection formula – Solution near a turning point – Validity of the WKB method	4	To analyze the WKB approximation.	PPT, Illustration,The oretical formulationand Problem solving	short questions Descriptive answers
	3	Barrier penetration – Alpha emission	4	To understand applications of WKB method.	Illustration, Theoretical formulation and Problem solving	Assignment Formative assessment
	4	Bound states in a potential well	3	To analyze the bound states in a potential well.	Illustration, Theoretical formulation comparative	

					study and Problem solving			
IV	Quantum	Theory of Atomic and Molecular S	tructure	1	0			
	1	Spin functions – Helium atom- Ground state- First excited state	3	To understand the concept of spin functions of two and three electrons.	Theoretical formulation and Problem solving	Evaluation through: Online quiz, short		
	2	Central field approximation: - Determination of central field: Thomas Fermi method- Hartree-Fock approximations	5	To compare the central field approximations.	Theoretical formulation and Problem solving	questions Descriptive answers Problem		
	3	Molecular Orbital method- Born-Oppenheimer approximation – MO treatment of hydrogen molecule Ion (H ₂ +)	5	To understand the basic concepts and features of molecular orbital method.	PPT Illustration, lecture, and Problem solving	solving Formative assessment		
	4	Molecular orbital theory of Hydrogen molecule.	2	To analyze the molecular orbital theory of hydrogen molecule.	Descriptive lecture comparative study			
V	V Relativistic Quantum Mechanics & Quantization of the Field							
	1	Klein – Gordon Equation – Interpretation of the Klein- Gordon equation – Particle in a Coulomb field	4	To understand the basic concepts and features of a particle in a Coulomb field.	PPT Illustration, And Descriptive lecture	Evaluation through: Online quiz, short		
	2	Dirac's equation for a free particle – Dirac matrices – Plane wave solution –Negative energy states – Spin of the Dirac particle	4	To understand the concept of Dirac particle.	Descriptive lecture and Theoretical formulation	questions Descriptive answers		
	3	Magnetic moment of the electron – Spin-orbit interaction.	2	To apply the concept of magnetic	Descriptive lecture and Theoretical	Problem		

			moment of electron	formulation	Solving
4	Quantization of the Field - Lagrangian equation- Hamiltonian equation- Schrodinger equation- Quantization of Electromagnetic fields	5	To understand the quantization of the field.	Descriptive lecture and Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level : K- Knowledge; Analyze- An; U – Understand; Create – C.

Course Instructor: Dr. M.Priya Dharshini & Dr.S.Sonia

Semester II Major Core –VI Name of the Course : Condensed Matter Physics-I Subject code : PP2023

No of hours per week	No of credits	Total no of hours	Marks
6	4	90	100

Objective

To give strong foundation in the conceptual understanding of the development of solid state physics with appropriate theoreticalbackground.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	differentiate between different lattice types and explain the concepts of reciprocal lattice and crystal diffraction	PSO-4	Ap
CO- 2	analyze various crystal imperfections and ordered phases of crystal	PSO-2	An
CO- 3	explain the theory of lattice vibrations and analyze the thermal properties of solids	PSO-2	An
<u>CO</u> -4	formulate the problem of electrons in a periodic potential	PSO-1	U

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
	Crystal Phy	ysics:CrystalStructure				
		Lattice representation, Simple symmetry operations, Bravais Lattices, Unit cell, Wigner - Seitz cell		To acquire knowledge on space lattice and symmetry operations	Lecture Discussion with PPT illustration	Evaluation through Online quiz Class test Formative
		Miller planes and spacing, Characteristics of cubic cells, Structural features of NaCl, CsCl, Diamond, ZnS, Closepacking.		To be able to identify the crystal structure of materials	Lecture discussion with illustration, SLO	
		Crystal Binding: Interactions in inert gas crystals and cohesive energy, Lennard - Jones potential, Interactions in ionic crystals and Madelung energy		To understand the different kinds of bonding	Lecture discussion	
		valent bonding , Heitler - London Theory Hydrog en bonding , metallic bonding		To acquire knowledge on hydrogen, metallic and mixed bonding	Lecture discussion, PPT	
	Diffraction	of Waves and Particles	by Crystals			
		X-rays and their generation,		To know the principles	Lecture Discussion	Short test

ModulesCredits: 4Total contact hours: 90 (Including assignments and tests)

Moseley's law,	involved in X-	with PPT	Quiz
Absorption of X-	ray diffraction	Illustration	
rays (Classical			
theory), Absorption			Assignment
Edge, X-ray			_
diffraction			Formative
The Laue	To understand	Lecture	assessment I
equations,	the	discussion	
Equivalence of	equivalence of		
Bragg and Laue	Bragg and		
equations,	Laue		
Interpretation of	equations		
Bragg equation,	_		
Ewald construction			
Reciprocal lattice,	To be able to	Lecture	
Reciprocal lattice	draw the		
to SC, BCC and	reciprocal	Illustration	
FCC crystals,	lattice to SC,		
Importance	BCC and FCC		
properties of the	crystals		
Reciprocal lattice –			
Diffraction	To acquire		
Intensity, The	knowledge on		
Powder method,	Neutron		
Powder	Diffraction		
Diffractometer,	and		
The Laue method,	Electrondiffra		
The Rotating	ction		
Crystal method,			
Neutron			
Diffraction,			
Electrondiffraction			
Crystal Imperfections and Ordered I	PhasesofMatter	-	
Point	To evaluate	Lecture	
imperfections,	the different	with PPT	Evaluation
Concentrations of	imperfections	Illustration	through
Vacancy, Frenkel	involved in crystal		Online quiz
and Schottky	crystar		Assignment
imperfections			rissignment
Line Imperfections	To understand	Question-	Formative
Burgers Vector,	the concept	answer	assessment II
Presence of	dislocation	session	
dislocation, surface			
imperfections,		Lecture	
Polorans,Excitons.			-
Ordered phases of	To acquire	Lecture	

	matter:	knowledge on	discussion	
	Translational and	Ordered	with	
	orientation order -	phases of	illustration.	
	Kinds of liquid	matter	SLO	
	crystalline order -		~=	
	Quasi crystals -			
	Quasi ci ystais -			
LatticeDunan	supermuturty.			
LatuceDynan		TT 1 (1	T (
	Theory of elastic	1 o understand	Lecture	Evaluation
	vibrations in mono	the concept		through
	and diatomic	lattice	Discussion	Online quiz
	lattices, Phonons,	vibration and		
	Dispersion relations	derive the		
	Phonon momentum	dispersion		Formative
	I nonon momentum	relation		assessment II
	Heat Capacity:	To acquire		
	Specific heat	knowledge on	Lecture	
	capacity of solids.	phonon heat		
	Dulong and Petit's	canacity	Discussion	
	law Vibrational	capacity	Discussion	
	modes			
	Finstein model	To be able to	Brain	
	Density of modes in	determine the	storming	
	one and three	determine the	storning	
	dimensions Debye	density of	session.	
	Model of heat	states		
	capacity Anharmonic		Lecture	
	Effects: Explanation			
	for Thermal		Illustration	
	expansion			
	Conductivity and			
	resistivity Umklann			
	process			
TheorvofElec	trons			
	Energy levels and	To have clear	Lecture	Short test
	Fermi-Darac	idea about	with PPT	Short test
	distribution for a free	Formi Doroc	with I I	Formativa
	electron gas Periodic	remin-Darac		
	boundary condition	distribution for		assessment III
	and free electron gas	a free electron		
	in three dimensions	gas		
	Heat capacity of the	To acquire	Brain	
	electron gas. Ohm's	knowledge on	storming	
	law, Matthiessen's	Heat capacity	session	
	rule, Hall effect and	of the electron	50551011.	
	magnetoresistance.W	or the electron	Lastura	
	iedemann - Franz	gas and Bloch	Lecture	
	law, Nearly free	runction	711	
	electron model and		Illustration	

the origin and			
magnitude of energy			
gap, Bloch functions,			
Bloch theorem			
Motion of an	To acquire	Lecture	
electron in a periodic	knowledge on	with PPT	
potential, Kronig -	Motion of an		
Pennev model	electron in a	Illustration	
Approximate	periodic		
Approximate	notential		
solution near a zone	potentiai		
boundary, Metals,			
semiconductors and			
insulators			

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze; Course instructors: Dr.A.Lesly Fathima and Sr.S.Sebastiammal

Semester II Introductory Astronomy, Astrophysics & Cosmology (Elective – II (b)) Subject code: PP2025

No. of hours per week	No. of credits	Total no. of hours	Marks
6	5	90	100

Objectives:

The course enables the students to understand and realize the historical

evolution of Universe and principles involved in Astrophysics.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	perceive the historical evolution of solar system and universe.	PSO - 3	E
CO - 2	describe the principles of physics in the formation of astronomical objects like planets-satellites – asteroids and comets.	PSO - 1	U
CO - 3	gain experience with measurement techniques and equipment and develop the ability to assess uncertainties and assumptions.	PSO - 2	An
CO - 4	develop analytical skills and the ability to understand the astronomical situation.	PSO - 7	U
CO - 5	analyse the formation of binary stars, multiple stars, neutron stars and black holes.	PSO - 4	An
CO - 6	interpret the observations of galaxies, dark matter, quasars and pulsars.	PSO - 5	Е
CO - 7	achieve a good understanding of physical laws and principles.	PSO - 6	С

Cre	dit:5	Total Hours:90 (Incl. Seminar & Test)				
Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assesment/E valuation
Ι	History o	f Astronomy				
	1	Introductory History of Astronomy- Ptolemy"s Geocentric Universe- Copernicus" Heliocentric Universe	4	To understand basic concepts of Astronomy	Illustration and PPT	Evaluation through: quiz
	2	Tycho Brahe and Galileo"s Observations-Kepler"s Laws ofPlanetary Motion-Newtonian Concept Of Gravity	3	To know the physical significance of Tycho Brahe and Galileo''s Observations and Laws Physics	Illustration, PPT	Formative assessment Evaluati on through t test Multiple
	3	Highlights of Einstein"s Special and General Theory Of Relativity	4	To know the Highlights of Einstein ^s Special and General Theory of Relativity	Lecture Discussion	choice questions
	4	Curved Space Time-Evidence of Curved Space Time- Bending Of Light- Time Dilation	4	To have a knowledge on Bending of Light- Time Dilation	Lecture Discussion and Group Discussion	
II	Stars & C	Galaxies				
	1	Stars and Galaxies-Distances- Trigonometric Parallax-Inverse Square Law	3	To understand the basic concepts of Stars and Galaxies	Illustration and PPT, Videos	Evaluation through: quiz Formative
	2	Magnitude of Stars-Apparent Magnitude-Absolute Magnitude and Luminosity	4	Knowledge on Magnitude of Stars	Illustration and PPT, Videos	assessme nt
	3	Color and Temperature- Composition of Stars-Velocity, Mass and Sizes of Stars-Types of Stars	4	To acquire knowledge on Color and Temperature-	Illustration , PPT, Lecture and Discussion	Evaluation through short answers

Modules Total Hours:90 (Incl. Seminar & Te

				Types of Stars		
	4	TemperatureDependence-SpectralTypes-Hertzsprung-Russell(HR)Diagram-SpectroscopicParallax	4	To acquire a knowledge on Spectral Types and HR Diagram	Illustration , PPT, Lecture and Discussion	
III	Lives An	d Death of Stars				
	1	Stellar Evolution-Mass Dependence-Giant Molecular Cloud-Protostar-Main Sequence Star-Subgiant, Red Giant, Supergiant-Core Fusion	4	To understand the basic concepts of Stellar Evolution, Mass Dependence and Giant Molecular Cloud	Illustration , PPT, Lecture and Discussion	Evaluation through: quiz Formative assessme
	2	Red Giant (Or) Supergiant- Planetary Nebula(Or) Supernova-White Dwarfs- Novae And Supernovae- Neutron Stars-Pulsars	4	To acquire knowledge on Supernova- White Dwarfs- Novae And Supernovae- Neutron Stars- Pulsars	Illustration , PPT, Lecture and Discussion	nt. Evaluati on through: quiz,
	3	Black Holes-Detecting Black Holes The Sun- Its Size and Composition- Sun"s Interior Zones-Sun"sSurface	4	To understand the basic concept of Black Holes and The Sun	Illustration , PPT and Videos	
	4	Photosphere-Chromosphere- Corona-Sun's Power Source- Fusion Reaction Mechanism.	3	To be able to distinguish between Photosphere- Chromosphere and Corona	Illustration , PPT and Videos	
IV	Cosmolog	gy I				
	1	Introduction to Cosmology- Basic Observations and implications-Olbers' Paradox - Expanding Universe	4	To understand the basic concepts of Cosmology	Illustration, Theoretical formulation	Evaluation through: quiz,
	2	Gravitational Redshift-Doppler Effect-Hubble's Law and the	4	To understand and analyze the spectral shift	Illustration, Theoretical formulation	Problem solving

		Age of the Universe			and Problem solving	Theoretical
	3	CosmologicalPrinciple-ThePerfectCosmologicalPrinciple-ObservationinterpretationofCosmicMicrowavebackgroundRadiation (CMBR)	5	To understand and analyze the various Cosmological Principles	Descriptive lecture and Theoretical formulation	derivatio n Formative assessme nt
	4	Evidence Supporting the General Big Bang Theory- Salient features of Steady State Theory	2	To understand and analyse the Big Bang theory and the Steady State theory	Descriptive lecture and Theoretical formulation	
V	Cosmolo ₂ 1	gy II Fate of the Universe- Dependence on Mass (Curvature of Space)-Critical density-Open Universe-Closed Universe.	5	To understand basic concepts of the universe	Illustration, Theoretical formulation	Evaluation through: quiz, Problem solving Theoretical
	2	Homogenous and Isotropic Freidman-Robertson-Walker Universes- Deriving the Geometry of the Universe from the Background Radiation	6	Understand and analyze the geometry of the universe	Illustration, and Problem solving	n Formative assessme nt
	3	Flatness Problem-Horizon Problem-Inflation and its effect on the universe-The Cosmological Constant.	4	To understand and analyze the various cosmological	Illustration, Theoretical formulation	

PO- Program outcome; LO - Learning outcome; Cognitive Level R - Remember; U - Understand; Ap- Apply, An-

Analyze; E-Evaluate; C- Create Course Instructor: Dr. V. Shally&Ms.S.J. Jenepha Mary

Semester: III **Course Name: Electronics Course code: PP2031**

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To impart in depth knowledge about Semiconductors, diodes, Transistors, Operational Amplifiers, Memories and converters etc
- 2. To provide knowledge in the basic structure and working concepts of electronic devices.
- 3. To acquire application skills involving digital integrated circuit.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	Understand the basic operation, and features related to diodes, transistor, op-amps, converter and interpret their applications	PSO-1	U
CO 2	Explain about the internal circuitry and logic behind semiconductor memory devices.	PSO-2	U
CO 3	Assess the working of diodes, transistor, op-amps and converters.	PSO-3	Ε
CO 4	Design various filter circuits.	PSO-6	С
CO 5	Interpret the Internal Architecture of memory devices	PSO-4	An

	Total contact hours: 90 (Including lectures, assignment and tests)									
			Lecture	Learning	Pedagogy	Assessment/Evaluation				
Unit	Section	Topics	Hours	outcomes						
I SemiconductorDiodes										
	1	Introduction to	4	Define the	PPT,					
		Semiconductor		basis of	Illustration	Evaluation through:				
		- Intrinsic		Semicondu	and	Online quiz,				
		Semiconductor		ctor	theoretical	Problem solving				
		- Extrinsic			derivation,	short questions				
		Semiconductor			Circuit	Descriptive answers				
					designing					
	2	P-type- N-Type	4	Apply	Derivation	Formative				
		- PN Junction		various	and group	assessment I				
		diode – Crystal		junction	discussion,					
		Diode		diodes and	Circuit					
				Crystal	designing					
				Diode						

Modules

	3	Zener diode-	4	Derivation	PPT,	
		LED –		of current	Illustration,	
		Varactor Diode		voltage	Theoretical	
		-Tunnel diode		relations	formulation	
					Circuit	
					designing	
	4	Photo diode -	3	ApplyChara	Derivation	
		schottky diode		cteristics	and group	
		- Impatt diode-		and	discussion	
		Characteristics		Application	Circuit	
		and		s.	designing	
		Applications.				
II	Transi	stor Biasing an	d opto	Electronic E	Devices	
	1	Thevenin's and	4	Solve	PPT,	
		Norton's		Thevenin's	Derivation	Evaluation
		theorems		and	discussion	through: Online
				Norton's	Circuit	quiz,
				theorems	designing	Problem solving
						short questions
	2	Transistor	4	Define and	Derivation	Descriptive
		action- PNP-		derive	and group	answers
		NPN transistors		equations	discussion	Formative
		– Transistor			problem	assessment I
		biasing and			solving	
		stabilization			Circuit	
					designing	
	3	Need for	3	Statement	Illustration,	
		biasing- DC		and proof	Theoretical	
		load line-		of operating	formulation	
		operating point-		point	Circuit	
		Bias stability-			designing	-
	4	Two port	4	Two port	Derivation	
		Network -		Network	and group	
		Hybrid model –		and its	discussion	
		h parameters —		applications	problem	
		JFET – UJT-			solving	
		SCR			Circuit	
					designing	
TTT	0					
111	Opera	tional Amplifie	r Appli	cations		
	1	Operational	4	Analyse	Derivation	Evaluation
		Amplifier-		Operational	discussion	Evaluation
		CMRR-Slew		Amplifier	Circuit	through: Online
		rate -			designing	quiz,
		Instrumentation				Problem solving
		amplifier – V to				short questions

		Land L to V				Descriptive
		annuartar On				onswors
		converter – Op-				
	-		2		T11 (/	Formative
	2	Equivalent	3	Define and	illustration,	assessment 1/11
		circuits - Sample		derive	Theoretical	
		and Hold		Inverting ad	formulation	
		circuits.		Non-	Circuit	
		Applications of		inverting	designing	
		Op-Amp:		Amplifiers		
		Inverting, Non-				
		inverting				
		Amplifiers-				
		circuits				
	3	Adder-	4	Define and	Derivation	
		Subtractor-		Derive Adder-	and group	
		Differentiator-		Subtractor-	discussion,	
		Integrator-		Differentiator	PPT	
		Electronic		- Integrator	Circuit	
		analog		U	designing	
		Computation			0 0	
		solving				
		simultaneous				
		and differential				
		equation –				
		Schmitt Trigger				
		– Triangular				
		wave generator				
		- Sine wave				
		generator				
	1	Active filters:	1	Define	DDT	
	-	Low High and	-	deriveand	III, Illustration	
		Low, High and Bond page first		apply Activo	Theoretical	
		and second		apply Active	formulation	
		and second		mers	Circuit	
		Duttomuonth			docionina	
		filtere wide			designing	
		inters – wheel				
		and narrow band				
TX 7	n •	reject miters.	•			
1 V	Semico	onductor Memo	ries	~ .		
	1	Classification of	4	Discuss	Derivation	Evaluation
		memories and		different types	discussion	through: Online
		sequential		otmemories	Circuit	quiz,
		memory – Static		and sequential	designing	Problem solving
		Shift Register		memory		short questions
		and Dynamic				Descriptive
		Shift Register				answers

	2	ROM, PROM	3	Define and	Derivation	Formative
		and EPROM		derive	and group	assessment II
		principle and		principle and	discussion,	
		operation Read		operation	PPT	
		& Write		-	Circuit	
		memory - Static			designing	
		RAM, dynamic				
		RAM, Content				
		Addressable				
		Memory				
	3	Content	4	Define and	Derivation	
		Addressable		Derive	and group	
		Memory -		different types	discussion	
		principle, block		of Content	Circuit	
		diagram and		Addressable	designing	
		operation.		Memory	8	
		Programmable				
		Logic Array				
		(PLA) -				
		Operation.				
		Internal				
		Architecture				
	4	Charge Couple	4	Define,	Derivation	
		Device (CCD) -		deriveand	and group	
		Principle,		apply Charge	discussion	
		Construction,		Couple	Circuit	
		Working and		Device	designing	
		Data transfer			00	
		mechanism.				
V	A/D ar	nd D/A Convert	er			
	1	Sampling	3	Analyse	Discussion	Evaluation
		theorem-Time		Fundamental	PPT	through: Online
		division		Sampling	Circuit	quiz,
		multiplexing -		theorem	designing	Problem solving
		Quantization –				short questions
	2	DAC- Weighted	4	Analyse	Derivation	Descriptive
		resistor method		classification	and group	answers
		– Binary Ladder		DAC	discussion,	Formative
		network – ADC			PPT	assessment II
		- successive			Circuit	
		approximation,			designing	
	3		4	Explain ADC	Derivation	
				Dual slope	and group	
		ADC Dual		and Counter	discussion	
		slope and		method	Circuit	
		Counter method			designing	

4	Voltage to	4	Define,	Derivation	
	Frequency		deriveand	and group	
	conversion and		apply Voltage	discussion,	
	Voltage to Time		to Frequency	PPT	
	conversion.		conversion	Circuit	
				designing	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Staff-in charge: Ms.C.Nirmala Louis & Ms.Jenepha Mary Semester III Course Name : Condensed Matter Physics - II Course code: PP2023

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

1. To develop analytical thinking to understand the phenomenon that decide various properties of solids thereby equip students to pursue higher learningconfidently.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	Understand the theory of dielectrics and analyze the dielectric properties of materials.	PSO - 1	An
CO - 2	Explain various types of magnetic phenomenon and their properties and applications.	PSO - 4	Е
CO - 3	Elaborate the properties and applications of superconductors.	PSO - 4	С
CO - 4	Apply the obtained concepts to challenges in condensed matter physics	PSO - 6	Ap

I.m.:+	Secti	Tomica	Lectur	Learning	Dedegegy	Assessment/Evaluat
Umt	on	Topics	e Hours	outcomes	redagogy	ion
Ι	Theo	ry of Dielectrics:				
	2	Dipole moment - Polarization - The electric field of a dipole - Local electric field at an atom - Clausius - Mosottiequation - Dielectric constants and its measurements Polarizability - The Classical theory of electronic polarizability - Ionic polarizabilities - Orientational polarizabilities - The polarizability catastrophe	4	To acquire knowledge on polarization and Dielectric constants To be able to understand the ofelectronic polarizability - Ionic polarizabilities	cture Discussion with PPT illustration cture disc ussi on wit h illu stra tion ,De riva tion and gro up	valuation through: Online quiz, lass test, Formative assessment I
					disc ussi on	
	3	Dipole orientation in solids - Dipole relaxation and dielectric losses - Debye Relaxation time - Relaxation in solids	4	To be able to find out the Debye Relaxation time	PPTIllustration	

Modules Total contact hours: 90 (Including lectures, assignment and tests)

	4	Complex	3	To understand	Derivation	
	-	dielectric	5	the different	and group	
		constants and the		Dielectric	discussion	
		loss angle		breakdown and	discussion	
		Frequency and		dialactria loss		
		tomporaturo		ulelecule loss.		
		affacts on				
		Polorization				
		Polalization -				
		breakdown and				
		dielectric loss				
тт	Thee			Diana Electrica		
	Ineo	ry of Ferroelectr	cs and	Plezo Electrics		
	1	Ferroelectric	4	To be able to	Lecture	
		Crystals -		classify	discussion	Evaluation
		Classifications of		Ferroelectric	with	through: Online
		Ferroelectric		crystals	illustration	quiz,
		crystals - Dipole				Short questions,
		theory				Descriptive
		offerroelectricity -				answers,
		Landau Theory of				Formative
		the phase transition				assessment I
	2	Second order	4	To understand	Derivation and	
		Transition - First		the difference	group	
		Order Transition -		between first	discussion	
		Ferroelectric		order transition	problem	
		Transition - One-		and second	solving	
		Dimensional		order transition	Circuit	
		Model of the Soft			designing	
		Mode of				
		Ferroelectric				
		Transitions				
	3	Antiferroelectricity	3	To acquire	LectureIllustrat	
		- Ferroelectric		knowledge on	ion,	
		domains -		Piezoelectricitya		
		Ferroelectric		nd Ferroelectric		
		domain wall		domain wall		
		motion -		motion		
		Piezoelectricity				
	4	Phenomenological	4	To understand	Lecture	
		Approach to		the concept of	Discussion	
		Piezoelectric		Piezoelectric		
		Effects -		Parameters and		
		Piezoelectric		Their		
		Parameters and		Measurements		
		Their				
		Measurements -				

		Piezoelectric				
		Materials				
III	Magr	netic properties of	Mate	rials:		
	1	Terms and definitions used in	4	To have clear	Illustration,	
		magnetism -		Classification of	discussion	Evaluation
		Classification of		magnetic		through: Online
		magnetic materials		materials		quiz
		- Atomic theory of		materials		Short questions.
		magnetism - The				Descriptive
		quantum numbers				answers.
	2	The origin of	3	To acquire	Derivation and	Formative
		permanent	-	knowledge	group	assessment I/II
		magnetic moments		ondiamagnetism	discussion	
		- Langevin's		and		
		classical theory of		paramagnetism		
		diamagnetism -				
		Sources of				
		paramagnetism -				
		Langevin's				
		classical theory of				
		paramagnetism -				
		Quantum theory of				
		paramagnetism				
	3	Paramagnetism of	4	To understand	Derivation and	
		freeelectrons -		the concept of	group	
		Ferromagnetism -		Paramagnetism	discussion,PPT	
		The Weiss		of freeelectrons	Illustration	
		molecular field -		and		
		Temperature		Spontaneous		
		dependence of		magnetization		
		Spontaneous				
	4	The abusical arigin	4	Ta ha shla ta	Derivation	
	4	of Woiss Molecular	4	dotormino the	And Locture	
		field -		Antiferromagnet	Illustration	
		Ferromagnetic		ismand	musuation	
		domains - Domain		Ferrimagnetism		
		theory -		i cirimagnetisiii		
		Antiferromagnetis				
		m - Ferrimagnetism				
		- Structure				
		ofFerrite				
IV	Supe	rconductivity:		L	1	1

	1	Occurrence of	4	To know the	Derivation and	
		super conductivity		principlesof	discussion	
		- Destruction of		super		Evaluation
		super conductivity		conductivity and		through: Online
		by magnetic fields		Meissner Effect		quiz,
		- Meissner Effect -				short questions,
		Type I and Type II				Descriptive
		Super conductors				answers.
	2	Heat Canacity -	3	To understand	Derivation and	Formative
	-	Energy gan -	U	the	PPT	assessment II
		Microwave and		differentMicrow	111	ussessment n
		infrared properties		ave and infrared		
		- Isotone effect -		properties and		
		Thermodynamics		Isotope effect		
		of the		isotope cheet		
		or ute				
		transition				
	2	London aquation	1	Define and	Dorivation and	
	3	Cohoronoo Longth	4	Derive London	Derivation and	
		PCS theory of		Derive London	disquession	
		BCS theory of		equation, Conere	uiscussion	
		Superconductivity,		DCC theory of		
		BCS groundstate-		BCS theory of		
		Fluxquantizationin		superconductivit		
		asuperconductionri		У		
		ng				
	4	Durationofpersisten	4	To Explain	Derivation	
		cecurrents- Single		theSingle	andgroup	
		particle tunnelling -		particle	discussion	
		DC Josephson		tunnelling, DC		
		effect - AC		and AC		
		Josephson effect -		Josephson effect		
		Macroscopic				
		quantum				
		interference - High				
		temperature super				
		conductors -				
		Applications				
V	Physi	ics of Nanosolids:				
	1	Definition of	3	To acquire	Discussion	
		nanoscience and		knowledge	And	
		nanotechnology -		onnanoscience	Illustration	Evaluation
		Preparation of		and	with PPT	through: Open
		nanomaterials -		nanotechnology		book test,
		Surface to volume		and Preparation		short questions,
		ratio		of nanomaterials		Descriptive
	2	Ouantum	4	To have clear	Derivation and	answers,

	confinement -		idea	group	Formative
	Qualitative and		aboutDensity of	discussion	assessment II
	Quantitative		states of		
	description -		nanostructures		
	Density of states of				
	nanostructures				
3	Excitons in Nano	4	To be able to	Lecture	
	semiconductors -		determine	Illustration	
	Carbon in		theBuckminsterf		
	nanotechnology -		ullerene and		
	Buckminsterfullere		Carbon		
	ne - Carbon		nanotubes		
	nanotubes				
4	Nano diamond -	4	To acquire	Lecture	
	BN nano tubes -		knowledge on	discussion	
	Nanoelectronics -		Single electron	with	
	Single electron		transistor and	illustration	
	transistor -		Nanobiometrics		
	Molecular machine				
	- Nanobiometrics				

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap-Apply, An- Analyze; E-Evaluate; C- Create

Course instructors: Dr. A. Lesly Fathima and Dr. (Sr). S. Sebastianmal

SEMESTER III

Course Name: MICROPROCESSORS AND MICROCONTROLLER

Course Code: PP2034

Hours/Week	Credits	Total Hours	Marks
6	4	90	100

Learning Objectives

- 1. To provide an extensive knowledge about the architecture and assembly language programming of microprocessors 8085 & 8086 and microcontroller 8051.
- 2. To gain hands on experience in interfacing of 8085 microprocessor.

COs	Upon completion of this course, students will be able to	PSOs addressed	CL
-----	--	-------------------	----

CO-1	Identify/ Explain the operation of various components of the	PSO-1	Α
	microprocessor 8085 and microprocessor 8086		
CO-2	Relate and explain the various addressing modes and the	PSO-1	R
	instruction set of 8085 microprocessor		
CO-3	Develop skill in writing simple programs for 8085	PSO-2	С
	microprocessor		
CO-4	Explain the architecture of 8051 microcontroller	PSO-1	U
CO-5	Understand the various interrupts of 8085 microprocessor	PSO-2	U

Modules Total contact hours: 90 (Including assignments and tests)

Unit	Section	Topics	Lectur	Learning	Pedagogy	Assessment/
			e	outcome		Evaluation
			hours			
Ι	Microp	processors 8085 Arc	hitecture		Γ	
	1	Intel 8085	4	To understand	Lecture	Evaluation
		microprocessor		the principle of	Discussion	through:
		: Introduction –		microprocessor,	with PPT	shorttest
		Pin .		architecture and	illustration	
		configuration-		its operation		Class Test
		Architecture				N 7 1/ 1
		and its				Multiple
	2	Machine cycles of		To understand	Lactura	choice
	2	8085- Interfacing of		the concept of	discussion	questions
		memory and I/O	4	machine cycles	discussion	Quiz
		devices		and interfacing		Quiz
				C C		Formative
						assessment I
	3	Instruction	4	To know the	Lecture	
		classification:		classification	discussion	
		number of bytes,		of instructions		
		nature of operations-		according to		
				their byte size		
				and its nature		
				of operation		
	4	Instruction format-	3	To distinguish	Lecture	
		Vectored and non-		between	discussion	
		vectored interrupts		vectored and		
				non-vectored		
				interrupts		

Credits:4

II	8085 As	ssembly Language 1	Program	ning		
	1	Instruction set: Data	4	To understand	Lecture	Evaluation
		transfer operations -		the use of data		
		Arithmetic operations		transfer and	Illustration	through:
				arithmetic		
				instructions	PPT	Short test
	2	Logical operations-	4	To categorize	Lecture	Quiz
		Branching and machine		the logical,	discussion	
		control operations -		branching and		
				machine	PPT	Assignment
				control		
				operations and		Formative
				know its use		assessment
				while writing		
				assembly		Class test
				language		
				program		Open book
	3	Addressing modes	4	To be able to	Lecture	test
		Writing assembly		know the		
		language programs:		different	Illustration	
		Looping, counting and		addressing		
		indexing		modes to	PPT	
				access data		
	4		2	TT 1 4 1	DDT	_
	4	Stack – subroutine-	3	10 understand	PPI	
		Translation from		about stack and	Decorintivo	
		assembly language		subroutille	Descriptive	
		to machine language			Lecture	
					Lecture	
III	Microp	rocessor 8086			4	-
	1	Intel 8086	4	То	Lecture	
		microprocessor:		understand	with PPT	Evaluation
		Introduction –		the	Illustration	through:
		Architecture - Pin		architecture		
		configuration		and pin		Class test
				configuratio		
				n of 8086		Quiz
	2	Operating modes:	3	To understand	Question-	
		Minimum mode,		the different	answer	Multiple choice
		Maximum mode.		operating	session	questions
				modes of		F
				8086	Lecture	Formative
						assessment II

	3	Memory addressing: 8- bit data from even and odd address bank, 16- bit data from even and odd address bank- Addressing modes	4	To acquire knowledge on memory addressing and addressing modes	Lecture with PPT Illustration	
	4	Interrupts: Hardware interrupts – Software interrupts –Interrupt priorities- Simple programs.	4	To understand the concept of interrupts and difference between hardware and software interrupts	Lecture PPT	
			• 4 4		•	
IV	Microc	ontroller 8051 Arch	nitecture a	and Programn	ung	
IV	1	Introduction to microcontroller and embedded system- Difference between microprocessor and microcontroller	3	To acquire knowledge on microcontroll er and the difference between microprocess or or microcontroll er	Lecture Discussion PPT	Evaluation through: Class test Quiz Short test Formative assessment II

3	Instruction set: Data transfer instructions - Arithmetic instructions	4	To be able to understand the data transfer,	
	– Logical instructions-		arithmetic and logical instructions to	
			write assembly language program	
4	Branching instructions- Single bit instructions. Addressing modes- Simple programs using 8051 instruction set.	4	To know the addressing modes of 8051 and simple programmes using instruction set	

Inte	erfacing of Micropr	ocessor 8	085		
1	Basic concepts of programmable device - 8255 Programmable Peripheral Interface (PPI)	5	To have practical knowledge on angle of friction and cone of friction	Lecture with PPT	Evaluation through: Short test Class test Open book test
2	interface of ADC and DAC-8257 Direct Memory Access (DMA) controller	5	To understand the concept rectangular and triangular lamina.	Lecture Illustration	Quiz Assignment Formative assessment III
3	Basic concepts of serial I/O and data communication – interface of 8251 Universal Synchronous Asynchronous Receiver Transmitter (USART)	5	To be able to understand the basic concepts of serial input and output and data communicatio n	Lecture with PPT Illustrat ion	

Semester IV Course Name: Nuclear and Elementary Particle Physics Course Code: PP2041

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To know about the fundamental principles and concepts governing nuclear and particle physics and their social, economic and environmental implications.2. To understand the concept of elementary particles.

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	Understand the properties of Nuclear forces and outline their behavioral formulation.	PSO - 1	U
CO-2	Analyze the different nuclear models of the nucleus and examine the application of the shell model of nucleus.	PSO - 4	Е
CO-3	Explain the characteristics and effect of radioactive decay phenomena. (alpha,beta,gamma)	PSO - 1	U
CO-4	Discuss the outcome of various types of nuclear reactions.	PSO - 4	С
CO-5	Examine the Particle Physics phenomena and their basic theoretical description.	PSO - 3	An

		Module						
		Total contact hours: 90 (Including lectures, assignment and tests)						
			Lectur	Learning	Pedagogy	Assessment/Evaluat		
Uni	Sectio		e	outcomes		ion		
t	n	Topics	Hours					
Ι	Nuclear	r Forces						
	1	Characteristics	4	Define the	PPT,			
		of Nuclear		basis of	Illustration	Evaluation through:		
		Forces –		Nuclear	and	Online quiz,		
		Exchange		Forces	theoretical	Problem solving		
		forces and			derivation	short questions		
		tensor forces –				Descriptive answers		
		charge				Open book		
		independence				assignment		
	2	Spin	4	Apply	Derivation			
		dependence of		Meson	and group	Formative		
		Nuclear Forces		theory of	discussion	assessment I		
		- Meson theory		nuclear				

		- f		£		
		of nuclear		Torces		
		forces- Ground				
		state of				
		deuteron				
	3	Nucleon-	4	Derivation	PPT,	
		nucleon		of Nucleon-	Illustration,	
		scattering		Nucleon	Theoretical	
		singlet and		scattering	formulation	
		triplet				
		parameters –				
		Nucleon-				
		Nucleon				
		scattering:				
		Cross-section,				
		Differential				
		Cross-section,				
		Scattering				
		Cross-sections				
	4	Magnetic	3	Apply	Derivation	
		moment-		Ouadrupole	and group	
		Ouadrupole		moment –S	discussion	
		moment –S and		and D state		
		D state		admixtures		
		admixtures -				
		Effective range				
		theory of n-p				
		scattering at				
		low energies.				
П	Nu	iclear Models		I	II	
	1	Binding energy	4	Solve	РРТ	
	-	& mass defect –	•	Weizacker'	Derivation	Evaluation
		Weizacker's		smass	discussion	through: Online
		formula – mass		formula	albeassion	auiz
		narahola		Torritata		Problem solving
	2	Liquid drop	4	Analyse the	Derivation	short questions
	4	model - Bohr -	-	liquid drop	group	Descriptive
		Wheeler theory		model of	discussion	answers
		of fission-		nucleus	nrohlem	Formative
		Activation		Define and	solving	assessment I
		energy for		derive	sorving	discussion 1
		fission		equations		
		11551011		equations		
	2	Shell model	3	Statement	Illustration	-
	5	Spin Orbit	5	and proof	Theoretical	
		coupling Spins		of Shell	formulation	
		of nuclei		model of	TOTINUIALIOII	
		Magnetia		nuclous and		
		momento		Flootrio		
		Sohmidt lines				
1		Schindt lines-		quaarupoie	1	

		Flectric		moments		
		quadrupole		moments		
		quadrupole				
-		moments			D : .:	
	4	Collective	4	Examine	Derivation	
		model of Bohr		the	and group	
		and Mottelson:		Collective	discussion	
		Nuclear		model of	problem	
		vibration –		Bohr and	solving	
		Nuclear rotation		Mottelsona	-	
		-Nelson model		nd its		
				applications		
				upphounons		
III	Nuclear	r Reactions	1	Γ	I	ſ
	1	Nuclear reaction	4	Explore	Derivation,	Evaluation
		- Q- value –		Nuclear	group	through: Online
		Nuclear reaction		reaction cross	discussion	quiz,
		cross section –		section		Problem solving
		Direct Nuclear				Short Questions
		Reactions				Descriptive
	2	Knock out	3	Obtain the	Illustration.	answers
	_	reaction Pick-	c	Compound	Theoretical	Formative
		up reaction		nucleus	formulation	assessment I/II
		Stripping		theory	Tormulation	
		surpping		uleory		
		Common d				
		Compound				
		nucleus theory –				
		Formation –				
		Disintegration				
		energy levels –				
		Partial wave				
		analysis of				
		Nuclear reaction				
		cross-section				
	3	Resonance	4	Derive Breit	Derivation	
		Scattering and		Wigner	and group	
		Reaction cross-		dispersion	discussion.	
		section (Breit-		formula	РРТ	
		Wigner		10111010		
		dispersion				
		formula) _				
		Souttoring				
		Scattering				
	4			Define		
	4	Reciprocity	4	Define,	PPT,	
		theorem – Breit		deriveand	Illustration,	
		-Wigner one		apply Breit-	Theoretical	
		level formula –		Wigner one	formulation	
		Resonance		level formula		
		scattering –				

	1					
		Absorption cross				
		section at high				
		energy.				
IV	Radioa	ctive Decays				
	1	Alpha decay -	4	Discuss	Derivation	Evaluation
		Beta decay –		different	discussion	through: Online
		Energy release		typesof		quiz,
		in beta decay –		radioactive		Problem solving
		Fermi theory of		decays		short questions
		beta decay				Descriptive
	2	Shape of the	3	Define and	Derivation	answers
		beta spectrum –		derive	and group	Formative
		decay rate		principle and	discussion,	assessment II
		Fermi-Curie plot		logic of Curie	PPT	
		– Fermi & G.T		plot		
		Selection rules		1		
	3	Comparatives	4	Discuss about	Derivation	
		half - lives and		different types	and group	
		forbidden		of Gama	discussion	
		decays- Gamma		decay		
		decay -		2		
		Multipole				
		radiation				
	4	Angular	4	Analyze	Derivation	
	-	momentum and	-	charge parity	and group	
		parity selection		selection and	discussion	
		rules – Internal		scrutinize the		
		conversion –		Charge		
		Nuclear		Nuclear		
		isomerism.		isomerism		
V	Elemen	tary Particle Phys	ics		I	
	1	Classification of	3	AnalyzeFund	Discussion	Evaluation
	-	elementary	•	amental	PPT	through: Online
		particles - Types		Classification		quiz.
		of interaction		of elementary		Problem solving
		between		particles		short questions
		elementary		1		Descriptive
		particles –				answers
		Hadrons and				Assignments.
		leptons				Seminars
	2	Symmetry and	4	Analyse the	Derivation	
		conservation		conservation	and group	Formative
		laws –		laws and	discussion	assessment II
		Strangeness and		prove CPT	PPT	
		associate		theorem		
		production -				
		CPT theorem –				
		classification of				
		hadrons				

3	Quark model -	4	Explain and	Derivation
	Isospin		derive mass	and group
	multiples -		formula for	discussion
	SU(2)- SU(3)		octet and	
	multiplets- Gell-		decouplet	
	Mann - Okubo		-	
	mass formula			
	for octet and			
	decouplet			
	hadrons			
4	Phenomenology	4	Define,	Derivation
	of weak		deriveand	and group
	interaction		apply	discussion,
	hadrons and		Universal	PPT
	leptons-		Fermi	
	Universal Fermi		interaction –	
	interaction –		Elementary	
	Elementary		concepts of	
	concepts of		weak	
	weak		interactions	
	interactions.			

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An-Analyze; E-Evaluate; C- Create

Staff-in charges: Ms.C.Nirmala Louis &Ms. R. Krishna Priya

Semester IV Course Name: Spectroscopy Course Code: PP2042

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To gain knowledge about the basic principles of spectroscopy.
- 2. To gain insight about the spectroscopic instruments and its applications.

Cos	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	apply basic spectroscopic techniques. (Microwave, IR, Raman and NMR)	PSO - 4	U
CO - 2	infer basic spectroscopic techniques. (Microwave, IR, Raman, ESR, NQR and NMR)	PSO - 6	Ap

CO - 3	understand the molecular interactions in different spectroscopic methods.	PSO - 1	An
CO - 4	analyze the characteristics of rotational spectra and vibrational energy of molecules.	PSO - 3	An
CO - 5	utilize various spectroscopic methods suitable for characterizing molecules.	PSO - 6	С

Modules Total contact hours: 90 (Including lectures, assignment and tests)

				Lectur	re	Learning	Pedagog	y Assessment/Evaluation	
Unit	Sec	tion	Topics	Hours		outcomes			
Ι	Μ	icrow	ave Spectroscoj	py				•	
	1.	Rota	tion of Molecule	es –	4	Define the ba	asis of	PPT,	
		Rigi	d Rotor (Diatom	ic		Semiconduct	or	Illustration	Evaluation
		Mole	ecules)					and	through:
								theoretical	Online quiz,
								derivation	Problem
	2	Exp	ession for the		4	Derive the ex	pression	Derivation	solving short
		Rota	tional Constant	-		for the Rotat	ional	and group	questions
		Inter	sity of Spectral	Lines		Constant		discussion,	Descriptive
	3	Effe	ct of Isotopic		4	Explain the e	effect of	PPT,	answers
		Subs	stitution - Molec	ular		Isotopic sub	stitution	Illustration,	
		Para	meters (Bond Le	ength,		of molecules	and	derivation	Formative
		Bone	d Angle, Dipole			derive the		and group	assessment I
		Mon	nent from Rotati	on		Molecular Pa	arameters	discussion	
		Spec	etra)			(Bond Lengt	h, Bond		
		1	,			Angle from I	Rotation		
						Spectra)			
	4	Tech	iniques and		3	Explain the		Derivation	
		Instr	umentation			instrumentati	ion	and group	
						techniques of	f	discussion	
						microwave			
						spectrometer			
II	Inf	rared	Spectroscopy			▲			
	1	Vibr	ational energy o	f a	4	Derive the vi	brational	PPT,	
		diate	mic molecule-			energy of a d	iatomic	Derivation	Evaluation
		Infra	red selection rul	es-		molecule		discussion	through:
		Vibr	ating diatomic						Online quiz,
		mole	ecule- IR						Problem
		spec	trophotometer						solving short
	2	Diat	omic vibrating r	otator-	4	Derive equa	ation for	Derivation	questions
		Vibr	ations of polyate	omic		diatomic v	ibrating	and group	Descriptive
		mole	cules-Fermi			rotator and v	vibrations	discussion	answers
		resor	nance			of polya	tomic	problem	Formative
						molecu	ules	solving	assessment I
	3	Rota	tion vibration sp	oectra	3	Explain the r	ormal	Illustration,	
		of po	olyatomic molec	ules-		modes of vib	ration in	Derivation	

		Normal modes of vibration		crystal		and group	
		in crystal Interpretation of		Interpret the		discussion	
		vibrational spectra-Group		vibration spectra and		problem	
		frequencies -		Group frequencies		solving	
				1 1			
	4	Instrumentation-Sample	4	Explain the		Derivation	
	· ·	handling techniques-	•	Instrumentation of II	R	and group	
		Fourier Transform Infrared		spectrophotometer		discussion	
		spectroscopy-Applications		Discuss its		nrohlem	
		spectroscopy-Applications		applications		solving	
				applications		sorving	
III	Ra	man Spectroscopy					
	1	Introduction-Theory Of	4	Devive the theories of	of	Derivation	Evaluation
		Raman Scattering-		Raman spectrometer	r	discussion	Evaluation
		Rotational Raman Spectra-		-			through:
		Vibrational Raman					Online quiz,
		Spectra-Mutual Exclusion					Problem
		Principle					solving short
	2	Raman Spectrometer-	3	Explain the Raman	1	Illustration.	questions
		Sample Handling		Spectrometer and		Theoretical	Descriptive
		Techniques-Polarization		discuss its sample		formulation	answers
		Of Raman Scattered Light-		Handling Technique	S	1011101000	Formative
		Structure Determination		Handling Teeninques		Derivation	assessment I/II
		Using IR And Raman		Discuss the Structure	Discuss the Structure		
		Spectroscopy Paman		determination Using		discussion DD	
		Investigation Of Phase		IP And Paman	ID And Domon		
		Transitions		Spectroscopy		1	
	2	Pasananaa Paman	4	Define Nonlineer		Dorivation	
	3	Souttoring Nonlineer	4	Denne Nommea		and group	
		Scattering-Noninear		Raman Phenomena,	,	and group	
		Raman Phenomena-		Preniminaries and		discussion,	
		Preliminaries-Hyper		Hyper Raman Effec	τ	PPI	
		Raman Effect				DDT	
	4	Stimulated Raman	4	Discuss the anti-		PPT,	
		Scattering-Inverse Raman		Stokes lines of Rama	in	Illustration,	
		Effect-Coherent Anti-		Scattering		Theoretical	
		Stokes Raman Scattering.				formulation	
IV	Nu	clear Magnetic and Electron	n Si	nin Resonance Snectr	rose	conv	
1 1	1	Basic principles –	13	Explain the basic	050	Derivation	Evaluation
		Ouantum theory of NMP -		principles of NMP	di	iscussion DDT	through
	1	magnetic resonance		relayation	u	1504551011,111	Online quiz
	1	relevation processes		relaxation			Droblom
	2	abamical shifts anin anin	2	Define and derive	D	Animation and	Problem aching short
	4	chemical sinits – spin-spin	Э	bernie and derive			solving short
		coupling - Spectra and		Eucloir the	-1	group	Questions
		Examina T () D (D)		Explain the	a	iscussion, PPI	Descriptive
	1	Fourier Transform NMR		Instrumentation			answers
	1	Instrumentation –		and Applications of			Formative
	1	Applications		NMR			assessment II

	3	Basic principles –	4	Explain the	Derivation and	
		Quantum theory – g-factor		Nuclear Interaction	group discussion	
		– Nuclear Interaction and		and Hyperfine		
		Hyperfine structure –		structure		
		Relaxation effects				
	4	Hyperfine interaction –	4	Discuss the ESR	Derivation and	
		line widths – ESR		spectrometer,	group discussion	
		spectrometer –		Instrumentation		
		Instrumentation –		and its applications		
		applications				
V		Nuclear Quadrupole Reson	nan	ce and Mossbauer S	pectroscopy	
	1	Basic theory - Nuclear	3	Discuss the nuclear	Discussion	Evaluation
		Electric quadrupole		electric quadrupole	PPT	through:
		interaction – Energy levels		interaction		Online quiz,
		– Transition frequency –				Problem
		Excitation and Detection				solving short
	2	Effect of magnetic	4	Discuss the effect	Derivation and	questions
		field - Instrumentation		of magnetic	group	Descriptive
		Amplications		Eiald and ita	discussion,	Eormativa
		– Applications.		Field and its	PPI	Formative
		Mossbauer effect -		Instrumentation		assessment II
		recoilless emission and				
		absorption				
	3	hyperfine interaction -	4	Explain the	Derivation and	
		chemical isomer shift -		magnetic hyperfine	group discussion	
		magnetic hyperfine and		and electric	PPT	
		electric quadruple		quadruple		
		interactions		interactions		
	4	Instrumentation	4	Explain the	Derivation and	
		applications		instrumentation	group	
		applications.		and its application	discussion, PPT	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An-Analyze; E-Evaluate; C- Create

Staff-in charge: Ms.V.Shally & Ms.Jenepha Mary

Semester IV

Course Name: Thermodynamics and Statistical Mechanics

Course code: PP2043

No.of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Learning Objectives

- 1. To provide a phenomenological introduction to thermodynamics through thermodynamics postulates, quantities and relations.
- 2. To understand the micro and macroscopic properties of the matter through the statistical probability laws and distribution of particles and study the transport properties, different phases of maters, equilibrium and nonequilibrium process.

Course Outcomes

Cos	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	understand the basic concepts related to thermodynamics, microstates and macrostates	PSO - 4	U
CO - 2	apply principles to find relation between grand canonical and canonical partition functions	PSO - 1	Ар
CO - 3	solve the Bose-Einstein, Fermi-Dirac and Maxwell- Boltzmann distributions	PSO - 4	С
CO - 4	analyze the origin of transport and non-equilibrium processes	PSO - 3	An
CO - 5	understand the concept of heat capacities and phase transitions	PSO -4	U

Teaching Plan

Credits: 5

Total Hours: 90 (Incl. Seminar & Test)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Thermo	dynamics, Microstates and M	acrostates			

	1	Basic postulates of	4	Understand the	PPT,	Evaluation
		thermodynamics – Phase space and		concepts of	Descriptive	through:
		ensembles – Fundamental relations		thermodynamics	lecture	quiz,
		and definition of intensive variables				
		- Intensive variables in the entropic				
		formulation				Problem
	2	Equations of state Euler relation	4	To study the different	Illustration	solving
	2	densities Gibbs Dubom relation	-	relations and equations	Descriptive	C
		for ontrony Thermodynamia		of thermodynamics	lecture	
		for entropy - Thermodynamic		or alernica jnamies	icetuie	
		potentials-Maxwell relations -				
		Thermodynamic relations	4	XX 1 . 1.1 1	¥11	Descriptive
	3	Microstates and macrostates – Ideal	4	Understand the basic	Illustration,	answers
		gas –Microstate and macrostate in		thermodynamical states	lecture	
		classical systems – Microstate and		thermodynamical states		
		macrostate in quantum systems-				
		inderostate in quantant systems				short
	4		2		T11 ()	questions
	4	Density of states and volume	3	To study DOS of	Illustration,	questions
		occupied by a quantum state		systems	Descriptive	
					lecture	
						Formative
						assessment
п	Miorooo	nonical Canonical and Crand	Conon	icalEncombloc		(I CIA)
	where	nomcai, Canonicai anu Granu	Calloll	ICALLISEIIIDIES		
	1	Microcanonical distribution function	4	Understand the concept	PPT Illeret ret	Evaluation
		 Two level system in microcanonical 		of ensembles	Illustration, Descriptive	through:
		ensemble – Gibbsparadox and correct			= escriptive	7
		formula for entropy				

					lecture	
	2	The canonical distribution function – Contact with thermodynamics Partition function and free	3	To acquire knowledge on distribution function of thermodynamics To understand the	Lecture, Seminar Descriptive	short questions Descriptive
		energy of an ideal gas - the grand partition function		concepts of partition function	lecture	answers Problem solving
	4	Relation between grand canonical and canonical partition functions – One- orbitalpartition function	4	Understand the relation between partition functions	Descriptive lecture, seminar	Formative assessment (I&II CIA)
III	Bose-H Boltzn	Einstein, Fermi-Dirac and Maxw	ell-			
	1	Bose-Einstein and Fermi-Dirac distributions –Chemical potential of bosons –Number density of photons and Bose condensation	4	To learn about Bose- Einstein distribution and bosons	Illustration, Descriptive lecture	Evaluation through: quiz,
	2	Thermodynamicquantities–Non-interactingBosegasandthermodynamicrelations-Theprinciple of detailedbalance	3	To understand the basic thermodynamic quantities	Lecture, Seminar	short questions
	3	Thermodynamic relationsfor non-interacting Fermi gas – Fermi gas at zero and low temperature – Fermi energy and Fermimomentum	4	To know the relations concerned with fermi gas	Descriptive lecture	Descriptive answers
	4	Maxwell-Boltzmann distribution law for microstates in a classical gas – Physical interpretation of the classical limit – Fluctuations in different ensembles	4	To gain knowledge on Maxwell-Boltzmann distribution and classical interpretation	Group Discussion, Lecture, seminar	Formative assessment (I CIA)
IV	Trans]	port and Non-Equilibrium Proce	esses			
	1	Derivation of Boltzmann transport equation for change of states without and with collisions –Boltzmann equation for quantum statistics – Equilibrium distribution in Boltzmann equation	5	To have a clear idea on Boltzmann equations	PPT Illustration, Descriptive lecture.	Evaluation through quiz,Descript ive answers

	2	Transport processes; One speed and one dimension - All speeds and all directions – Conservedproperties - Distribution of molecular velocities – Equipartition and Virial theorems	5	To understand transport, speed, velocity and properties	Lecture, Group discussion	short questions
	3	Randomwalk - Brownian motion - Non-equilibrium process; Joule-Thompson process - Free expansionand mixing - Thermal conduction - The heat equation.	5	To study the concept of expansion and conduction	Lecture, seminar	Assignment, Formative assessment (II CIA)
V	Heat (Capacities, Ising Model and Phas	se Tran	sitions		
	1	Heat capacities of heteronuclear diatomic gas – Heat capacities of homonuclear diatomic gas –Heat capacity of Bose gas	4	To acquire knowledge on heat capacity of gases	PPT Illustration, Descriptive lecture	Evaluation through: quiz, short questions
	2	One-dimensional Ising model and its solution by variational method– Exact solution for one-dimensional Ising model	4	To get a brief idea on Ising model	Descriptive lecture	Descriptive answers
	3	Phase transitions and criterion for phasetransitions – Classification of phase transitions by order and by symmetry	4	To learn about phase transitions and its classifications	Descriptive lecture, Seminar, Assignment	Problem solving
	4	Phase diagrams forpure systems – Clausius-Clapeyron equation – Gibbs phase rule	3	To study the phase diagrams and phase rules	Illustration, Descriptive lecture	Formative assessment (II CIA)

PO- Program outcome; LO - Learning outcome; Cognitive Level U - Understand; Ap- Apply, An- Analyze; K- Knowledge

Course Instructor :Dr. M. Priyadharshini and Ms. P. AjiUdhaya

Semester IV Course name: Advanced Nano Physics Course code: PP2045

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To understand the theoretical aspects of low dimensional semiconductor systems.
- To learn the structures, properties, characterization and applications of nanomaterials.

COs	Upon completion of this course the students will be able to:	PSO addressed	CL
CO-1	Identify how basic physics can be used to describe the behaviour of electrons in nano-scale materials.	PSO-1	R
CO- 2	Explain the variation in the electron distribution in nanostructures for different dimensions (Quantum well, Quantum wires & quantum dots)	PSO-3	U
CO- 3	Analyze magneto electronics and applications of Nanotechnology in various fields.	PSO-6	An
CO -4	Explain Laser effect in Quantum well, Quantum wires and quantum dots .	PSO-2	U
CO- 5	Compare the structure and properties of Carbon nanostructures and their applications in the emerging nanotechnology	PSO-6	E
CO -6	Discuss the fabrication and characterization techniques of nanomaterials	PSO-2	U
CO -7	Develop key concepts in Single electron transistor, Spintronics and Giant magnetoresistance	PSO-4	C

Modules
Total contact hours: 90 (Including lectures, assignment and tests)

Uni t	Sectio n	Topics	Lectur Hours	re Learning s outcomes	Pedage	ogy	Assessment/Eval uation
Ι	Introdu	ction to Nano and Ty	ypes of N	anomaterials:			
	1	Need and origin of nano, Nano and energetic-Top- down and bottom- up approaches	4	To understa nd the importa nce of nano	Lecture Discussio n with PPT Illustratio n		
	2	Introductory ideas of 1D, 2D and 3D nanostructured materials	4	be able to distinguish between 1D, 2D and	Lecture discussi on	F	Evaluation through: Online quiz,

			1			
				3D		- ·
				nanomateri		Formative
	2	0 11	4	als	DDT	assessment I
	3	Quantum well:	4	understand	PPI	
		Quantum well		the concept	Illustrati	
		infrared detector-		quantum	on	
		quantum well		well and its		
		laser- quantum		applications		
		cascade laser-				
		Quantum wire:				
		Production-VLS				
		growth				
		mechanism-				
	4	structure and uses-	2	— 1	.	
	4	Quantum dots:	3	To learn	Lecture	
		Description-		about the	discussi	
		Exciton		synthesis and	on	
		confinement in		applications		
		quantum dots –		of quantum		
		Epitaxially self-		dots		
		assembled				
		quantum-dot-				
		Application:				
TT	Carbon	Nanastrusturas				
11	Carbon	Nanostructures				
	1	Carbon molecular	1	То	DDT and	
	1	Carbon molecules	4	To	PPT and	Evolution
	1	Carbon molecules and carbon bond - C60: Discovery	4	To understand the	PPT and group Discussi	Evaluation
	1	Carbon molecules and carbon bond - C60: Discovery and structure of	4	To understand the significance	PPT and group Discussi	Evaluation through: Online
	1	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal	4	To understand the significance of C60 in	PPT and group Discussi on	Evaluation through: Online quiz, Short questions
	1	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity	4	To understand the significance of C60 in nanotechnolo	PPT and group Discussi on	Evaluation through: Online quiz, Short questions Descriptive
	1	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene	4	To understand the significance of C60 in nanotechnolo	PPT and group Discussi on	Evaluation through: Online quiz, Short questions Descriptive answers
	1	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano	4	To understand the significance of C60 in nanotechnolo gy To be able to	PPT and group Discussi on	Evaluation through: Online quiz, Short questions Descriptive answers Formative
	2	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT):	4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize	PPT and group Discussi on Lecture Discussio	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	2	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication:	4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon	PPT and group Discussi on Lecture Discussio n with	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	2	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc-	4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes	PPT and group Discussi on Lecture Discussio n with PPT	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	2	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method-	4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes	PPT and group Discussi on Lecture Discussio n with PPT Illustratio	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	2	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method	4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	2	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method	4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	2	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method	4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n PPT	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	2 3	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes -	4 4 3	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes To understand	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n PPT Illustrati	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	1 2 3	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour	4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	1 2 3	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition–	4 4 3	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	1 2 3	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure	4 4 3	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	1 2 3	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure – Electrical	4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in CNT	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	2	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure – Electrical properties	4 4 3	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in CNT production	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	1 2 3 4	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure – Electrical properties Vibrational	4 4 4 4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in CNT production To learn the	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I
	1 2 3 4	Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal -Superconductivity in C60 -Fullerene Carbon Nano Tubes (CNT): Types- Fabrication: Electric Arc- discharge method- Laser method Solar production of carbon nanotubes - Chemical vapour deposition– Electronic structure – Electrical properties Vibrational properties –	4 4 4	To understand the significance of C60 in nanotechnolo gy To be able to synthesize carbon nanotubes To understand the different synthesis methods in CNT production To learn the different	PPT and group Discussi on Lecture Discussio n with PPT Illustratio n PPT Illustrati on	Evaluation through: Online quiz, Short questions Descriptive answers Formative assessment I

		properties –		of carbon	РРТ	
		Applications (fuel		nanotubes	Illustratio	
		cells chemical		nanotaoes	n	
		cens, chemical			11	
		Filling of corbor				
		- Filling of Carbon				
		nanotubes - CN I				
		emitters				
III	Fabrica	ation of Nanomateria	ls			
	1	Synthesis of oxide	4	To be able	Lecture	Evaluation
		nanoparticles by		to	discussi	Evaluation
		sol-gel method -		differenti	on	through: Online
		Synthesis of		ate the		quiz,
		metallic		synthesis		Short questions
		nanoparticles		methods		Descriptive
		Electrochemical		in		answers
		deposition method		nanomate		Formative
				rial		assessment I/II
				preparatio		
				n		
	2	Sonochemical	3	To be able	Lecture	
		reduction method –		to	Discussio	
		Lithography		synthesiz	n with	
		Atomic laver		e	PPT	
		deposition -		semocond	Illustratio	
		Synthesis of		uctor	n	
		semiconductor		nanoparti		
		nanonarticles		cles		
	3	Arrested	4	To	Lecture	
	5	precipitation		understan	discussi	
		method. Core shell		d the	on	
		structures Bio		technique	OII	
		suructures – Dio		s in bio		
		synthesis of		s III DIO		
		nanoparticles using		synthesis		
		plants		01 nononorti		
				alos		
	4	Droporation of	4		DDT and	_
	4	magnetic	4	10 understen		
		nanomaterials		d the	Discussi	
		Super		u lite	Discussi	
		Super		preparatio	on	
		paramagnetism -		n and		
		Coulomb blockade		applicatio		
		– Single electron		ns of		
		transistor		magnetic		
				nanomate		
				rials		
IV	Charac	terization of Nanoma	aterials			

	1	Principles,	4	То	Lecture	Evaluation through:
		experimental set-		understan	Discuss	Online quiz,
		up, procedure		d the	ion	Problem solving
		and utility of X-		principles	with	short questions
		ray diffraction			PPT	Descriptive
		(XRD).		experime	Illustrat	answers
		Scanning		ntal set-	ion	Formative
		electron		up.		assessment II
		microscopy		procedure		
		(SEM)		and utility		
		(~)		XRD and		
				SEM		
	2	Atomic force	3	To be able	Lecture	
		microscopy		to	discus	
		(AFM),		interpret	sion	
		Scanning		the		
		tunneling		structural		
		microscope		properties		
		(STM) and		using		
		scanning probe		AFM.		
		microscopy		STM,		
		(SPM), Fourier		SPM and		
		transform		FTIR		
		infrared				
		spectroscopy				
	3	Quantum	4	То	PPT	
		cellular		understan	Illustr	
		Automata-		d the	ation	
		Spintronics -		concept		
		Giant		giant		
		magnetoresistanc		magnetor		
		e		esistance		
	4	Quantum Hall	4	То	Lecture	
		effect - Quantum		understan	Discuss	
		spin Hall effect -		d the	ion	
		Fractional		concept	with	
		quantum Hall		Quantum	PPT	
		effect		Hall	Illustrat	
				effect	ion	
V	Applica	ations		-	DDT	
	1	Molecular	5			Evaluation through:
		electronics and		understan	Illustr	Online quiz,
		nanoelectronics -		a ine	ation	Problem solving
		Inanorobots -		importanc		snort questions
		biological		e or		Descriptive
		applications of		nanoelect		answers
	2	nanoparticles	4	ronics	Test	Formative
	2	Catalysis by gold	4	10 be able	Lecture	assessment II

	nanoparticles –		to	Discuss
	Band-gap		mention	ion
	engineered		the	with
	quantum devices		importanc	PPT
	-Nanomechanics		e of	Illustrat
			nanomech	ion
			anics	
3	Photo electro	4	To learn	Lecture
	chemical cells –		the	discus
	Photonic crystals		applicatio	sion
	– Plasmon		ns of	
	waveguides.		nanoparti	
	Sensors –		cles in	
	MEMS/NEMS -		NEMS	
	Solar cells –			
	Displays			
4	Optical switches	4	To learn the	PPT
	– Graphene		applications	Illustratio
	electronics –		of	n
	Biosensors –		nanoparticles	
	Biomarkers and		in medical	
	Bio imaging –		field	
	Targeted drug			
	delivery			

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An-Analyze; E-Evaluate; C- Create

Staff-in charge: Ms. A. Lesly Fathima & Sr. S. Sebastianmal Head of the Department: Dr. C. Nirmala Louis