Teaching Plan (2019-2020)

Semester-V

Name of the Course : Organic Chemistry III

Course code : CC1751

CO -	Course Outcome	PSO	CL
No.	Upon completion of course students will be able to		
CO - 1	identify the methods of preparation, properties and reaction mechanism of phenols.	PSO - 4	U
CO - 2	prepare and analyze the reactions of poly nuclear hydrocarbons	PSO - 4	С
CO - 3	recognize the classification, preparation and properties of heterocyclic compounds	PSO - 1	R
CO - 4	evaluate the importance and structure of carbohydrates	PSO - 6	Е
CO - 5	understand the inter conversions of carbohydrates	PSO - 1	U
CO - 6	pharmacological activities of drugs	PSO - 8	С
CO - 7.	synthesise various drugs	PSO - 4	C
CO - 8.	evaluate the synthetic uses of drugs	PSO - 5	Е

Unit	Module	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Phenols					•
	1.	Preparation and properties of phenol	2	To understand the importance of phenol and its methods of preparation	Lecture, Discussion	Evaluation through short test
	2.	Rearrangement reactions with mechanisms	3	To differentiate various reaction mechanisms	Lecture, Discussion	Formative assessment
	3.	Preparation and properties of Nitro phenol, picric acid and amino phenols.	2	To gain knowledge about monohydric phenols	Lecture	Formative assessment
	4.	Preparation, properties and uses of catechol, resorcinol and quinol	3	To get idea about dihydric alcohols	Lecture	Formative assessment, Short test
	5.	Preparation, properties and uses of phloroglucinol.	2	To differentiate trihydric alcohols	Question answer session, Lecture	Formative assessment, Assignment
II		ear Hydrocarbons	T	T	T	
	1.	Preparation and properties of diphenyl and diphenyl methane.	2	To know about poly nuclear hydrocarbons	Lecture with PPT Illustration	Formative assessment
	2.	Preparation and properties of triphenyl methane and stilbene.	2	To know the properties of aromatic compounds	Lecture, Illustration	Formative assessment
	3.	Haworth synthesis, reactions and structural elucidation of naphthalene and derivatives of naphthalene.	2	To understand clearly about naphthalene.	Lecture, Discussion	Formative assessment, Short test
	4.	Structural elucidation, reactions and uses	4	To study about poly nuclear hydrocarbons	Lecture, Discussion	Formative assessment, Online Quiz

		of anthracene and						
		phenanthrene						
III	Heterocy	clic Compounds						
	1.	Preparation and chemical properties of furan	2	To know about different properties of furan	Lecture, Illustration	Formative assessment, Assignment		
	2.	Preparation and chemical properties of pyrrole	3	To learn about pyrrole	Lecture, Illustration	Formative assessment		
	3.	Preparation and chemical properties of pyridine	4	To analyse the properties of pyridine	Lecture	Formative assessment Short test		
	4.	Preparation and chemical properties of quinoline, isoquinoline and indole	3	To recognise the various types of heterocyclic Compounds	Lecture with PPT Illustration	Seminar, Formative assessment		
IV	Carbohydrates							
	1.	Preparation and chemical reactions of glucose and fructose	2	To know about different electrolytes	Lecture	Formative assessment		
	2.	Epimerization and, mutarotation	1	To understand and differentiate between epimerization and, mutarotation.	Lecture, Discussion	Formative assessment, Short test		
	3.	Intercoversion between aldoses and ketoses.	2	To acquire knowledge about interconversions.	Lecture	Short test		
	4.	Structural elucidation of maltose and sucrose.	3	To evaluate the structure of disaccharides	Lecture, Discussion	Formative assessment		
	5	Structure of starch and cellulose	2	To know about polysaccharides	Lecture	Formative assessment		

V	Drugs an	Drugs and Pharmaceuticals									
	1.	Procedures followed in drug design. Lead	4	To know about drug design and modification	Lecture, Discussion	Formative assessment					
		components and modification.									
	2.	Pharmacological activities of drugs , receptors , metabolites and antimetabolites	3	To gather knowledge regarding the Pharmacological activities of drugs	Lecture	Formative assessment					
	3.	Synthesis of chloramphenicol, benadryl and paracetamol, anti- inflammatory drugs	1	To understand the synthesis and application of drugs	Lecture, Illustration	Formative assessment, Short test					
	4	Synthesisof cardiovasculardru gs,antileprosy drug, HIV related drugs.	4	To learn the synthesis and application of various drugs.	Lecture, Discussion	Formative assessment, Seminar					

Course Instructor: R.Gladis Latha HOD: G. Leema Rose

Name of the Course : Inorganic Chemistry II : CC1752

Course code

CO-	Course Outcome	PSO	CL
No.	Upon completion of course		
	students will be able to		
CO - 1	identify the p-block elements in the periodic table.	` PSO - 1	R
CO - 2	analyze the properties of p- block	PSO - 2	An
	elements		
CO - 3	compare inorganic and organic	PSO - 2	U
	polymers		
CO - 4	explain the different metallurgical	PSO - 8	Ap
	processes		
CO - 5	compare the stability of different	PSO - 7	Е
	atomic nuclei.		
CO - 6	illustrate principle of atom bomb	PSO - 1	Ap
	and nuclear reactor.		

Unit	Module	Topics	Lecture hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
	Chemistry of	p-block elements - I				
I	1	General characteristics of Boron family with special reference to inert pair effect - extraction of boron - properties and uses.	3	Explain the characteristics of Boron family elements	Lecture	
	2	Boron trifluoride and boron trichloride – aluminiumtrichloride- preparation, properties and structure.	2	Gain idea about the compounds.	Lecture	Evaluation through short test
	3	Hydrides of boron – preparation, properties and structure of diborane and carboranes. Preparation, properties and structure of boron nitride and borazine.	2	Know the characteristics of Boron and its compounds.	Lecture with ppt	Assignment
	4	General characteristics—comparison of carbon and silicon – structure of diamond and graphite – Fullerenes (definition and examples).	3	Clear idea about allotropes of carbon	Lecture, showing examples of allotropes	
	5	Metal carbides – classification with examples – their applications in industry. Preparation and uses of silica, silicic acid and silica gel. Silicones – preparation and uses. Silicon carbide – preparation, properties and uses.	2	Know the importance of silica and metal carbides	Lecture with ppt	Evaluation through short test

	Chemistry of	p-block elements - II				
II	1	General characteristics – allotropes of phosphorous and arsenic. Structure of oxides of nitrogen, structure of oxy acids of phosphorous.	4	Draw the structure of oxides of nitrogen and oxy acids of phosphorus.	Question answer session	Multiple choice questions
	2	Preparation, properties and uses of hydrazine, hydrazoic acid and hydroxyl amine.	3	Understand the characteristics of hydrazine, hydrazoic acid and hydroxylamine.	Lecture.	1
	3	Anomalous behaviour of oxygen, allotropes of sulphur, oxyacids of sulphur- Caro's acid and Marshall's acid – preparation, properties and structure.	4	Explain the anamolousbeha viour of Oxygen and sulphur.	Lecture with ppt, Group discussion	Short test Formative assessment - I
		General characteristics of halogens, peculiarities of fluorine, inter halogen compounds – definition, preparation, types and structure of XY, XY ₃ , XY ₅ and XY ₇ . Pseudohalogenspreparation and properties of cyanogens, thiocyanogen, selenium cyanogen and azido carbondisulphide, interpseudohalogen compounds.	2	Understand the characteristics of halogens and pseudohalogens	Group discussion	Multiple choice questions
	Noble gases:	O a a summer a second	2	Cat:1	Carrie	<u> </u>
III	1	Occurrence, electronic configuration and rationalization of	2	Get idea about noble gases.	Seminar	

	1			<u> </u>	<u> </u>	
		inertness of noble gases. Isolation of noble gases from the atmosphere-Rayleigh's and Dewar's method. Hydrates of noble gases.				Short test
	2	Clathrates compounds – preparation, properties and uses. Preparation, properties and structure of XeF ₂ , XeF ₄ , XeF ₆ ,XeOF ₂ ,XeOF ₄ and XeO ₃ .	4	Explain clathrate compounds.	Lecture using ppt	Assignment
	3	Definition – properties, types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of siloxanes. Preparation and properties of silicates, phosphazenes and polysulphates.	5	Compare inorganic and organic polymers.	Lecture	
	Metallurgy a			T	·	
IV	1	. Minerals and ores – difference between minerals and ores, metallurgical processes – gravity separation, magnetic separation, froth floatation, roasting, calcination and smelting. Purification by electrolysis, oxidative refining, zone refining, Mond's	3	Differentiate ores and minerals and understand the methods of purification of ores.	Illustration, Seminar	Multiple choice questions
		process, Van - Arkel de-Boer process and Kroll's process.				Formative assessment - II

	2	Extraction	2	Vnov. 4h a	Lastres	
	2	Extraction, properties and uses of V, W, Mo and Ti. Poly valency of	3	Know the extraction of metals.	Lecture, Group discussion	
		vanadium.			with ppt	
	3	Definition, purpose of making alloys. Types of alloys – ferrous alloys and non ferrous alloys	3	List the applications of alloys.	Lecture	Quiz
	4	with examples. Preparation of alloysheat treatment of alloys—composition and uses—bronze, german silver, nichrome, monel metal, stainless steel, gun metal and bell metal.	3	Know the composition of different alloys.	Lecture, Illustration	
	Nuclear Chen	nistry				
V	1	Nuclear forces- nuclear size- atomic mass unit and N/P ratio. Packing fraction - mass defect-binding energy. Nuclear models- shell and liquid drop. Radioactivity - α, β, γ radiations-their	2	Explain the phenomenon of radioactivity.	Lecture, Quiz	Short test
		properties. Soddy's group displacement law. Natural radioactivity-detection and measurement of radioactivity by Geiger-Muller method				Assignment
	2	Rate of radioactive disintegration- decay constant-half life periodaverage life period. Radioactive equilibrium, artificial radioactivity-artificial transmutation of elements.	3	Calculate decay constant and half life period.	Lecture with ppt	Formative
	3	Nuclear reactions- nuclear fission – principle of atom bomb. Nuclear reactor – thermal and fast breeder	3	Gain knowledge about the types of nuclear	Lecture, Group discussion	assessment - III

	reactor. Radioactive hazards- disposal of radioactive waste from nuclear reactors Nuclear fusion – principle of hydrogen bomb and stellar energy. Principle and working of cyclotron.		reactions.	
4	Applications of radio activity - radioactive tracers in agriculture, medicine and industry. Radiocarbon dating.	4	Apply radioactivity in different branches of science.	Lecture with ppt

Course Instructor: L. Deva Vijila HOD: G. Leema Rose

Name of the Course : Physical Chemistry II

Course code : CC1753

CO - No.	Course Outcome Upon completion of course students will be able to	PSO	CL
CO - 1	list out various types of dilute solutions	PSO - 1	R
CO - 2	determine the various colligative properties	PSO - 2	R
CO - 3	calculate the molar mass using colligative properties	PSO - 4	An
CO - 4	illustrate the different types of systems using thermodynamics	PSO - 2	Ap
CO - 5	interpret and correlate the laws of thermodynamics	PSO - 2	AP
CO - 6	calculate the various kinds of energy	PSO - 5	An
CO - 7	compare the entropy change of difficult processes	PSO - 2	E
CO - 8	assess the absolute entropy of solids, liquids and gases	PSO - 5	E
CO - 9	create the group multiplication table	PSO - 3	С
CO - 10	assign point groups to simple molecules	PSO - 4	C

Unit	Module	Topic	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Solutions	and Colligative Proper	ties	ı	1	1
	1.	Solutions of non- electrolytes, solutions of liquids in liquids	1	Know the various types of solutions	Lecture, Discussion	
	2.	vapour pressure of non-ideal solutions, type I, type II and type III	1	Know the vapour pressure of solutions	Lecture	
	3.	Vapourpressure,com position and boiling point Composition curves	1	Understand vapour pressure – composition and boiling point - composition curves	Lecture, Discussion	Evaluation through short test, Formative assessment, assignment and MCQs
	4.	Composition curves of completely miscible binary solutions, type I, type II and type III.	2	Draw curves of completely miscible binary solutions - type I, type II and type III.	Lecture	
	5.	Theory of fractional, azeotropic and steam distillations. Solubility of partially miscible liquid systems.	2	Knowfractional, azeotropic and steam distillations.	Lecture	
	6.	Phenol-water system, triethylamine -water system and nicotine- water system.	2	Differentiate upper and lower CST	Lecture, Discussion	
	7.	Colligative properties, definition and examples	1	Understand Colligative properties	Lecture	
	8.	Thermodynamic derivation of relation between concentration and elevation of boiling point	1	Derive the correlation between concentration and elevation of boiling point	Lecture, Discussion	

	9.	Osmosis , reverse osmosis , osmotic pressure and determination of molar mass by depression of freezing point.	3	Derive the correlation between concentration, freezing point and osmotic pressure	Question answer session Lecture	
	10.	Van't Hoff factor degree of association and dissociation.	1	Know Van't Hoff factor	Lecture, Discussion	
II	Thermo	dynamics - I				
	1.	Chemical thermodynamics, importance of system, boundary and surroundings.	2	Know fundamentals of thermodynamic s	Lecture with PPT Illustration	
	2.	Types of systems - open, closed and isolated. Types of processes - isothermal, adiabatic, isobaric and isochoric, reversible and irreversible process.	2	Differentiate isothermal, adiabatic, isobaric and isochoric, reversible and irreversible process.	Lecture, Illustration	Formative assessment, Short test, MCQs Assignment
	3.	Difference between reversible and irreversible process. First law of thermodynamics – different statements.	1	Differentiate reversible and irreversible process	Lecture - Discussion	
	4.	Internal energy and first law, mathematical derivation of first law of thermodynamics. State and path functions	2	Drive first law of thermodynamic s	Lecture	
	5.	Heat capacity of a system - heat capacity at constant volume (Cv) and heat capacity at constant pressure (Cp)	1	Relate Cp and Cv	Lecture - Discussion	

		relationship between Cp and Cv				
	6.	. Joule Thomson effect ,Joule Thomson Coefficient of ideal, real gases and real gases obeying Vanderwaal'sequatio n definition of .Inversion temperature.	2	Derive Joule Thomson Coefficient of ideal, real gases and real gases and Vanderwaal's equation	Lecture - Discussion	
	7.	Derivation of .Zeroth law of thermodynamics ,calculation of ΔE, q, ΔH and w for an ideal and real gas. Enthalpy of a system	1	Calculate of ΔE, q, ΔH and w for an ideal and real gas	Lecture - Discussion	
	8.	Enthalpy of combustion, enthalpy of neutralization and enthalpy of formation.	1	Know enthalpy of combustion, enthalpy of neutralization and enthalpy of formation	Lecture - Discussion	
	9.	Variation of enthalpy of a reaction with temperature (Kirchoff's equation).	1	Drive Kirchoff's equation	Lecture	
	10.	Hess's law of constant heat summation and its applications.	1	Know Hess's law of constant heat summation and its applications.	Lecture	
I	Therm	odynamics – II		1	1	1
	1.	Limitation of first law and need for second law of thermodynamics, second law of thermodynamics and spontaneous process	2	Know second law of thermodynamic s and spontaneous process	Lecture, Illustration	Formative assessment, Seminar,
	2.	Carnot's cycle,	1	Know Carnot's	Lecture,	Short test,

	3.	efficiency of heat engine andCarnot's theorem. Third law of thermodynamics, concept of entropy,entropy changes in reversible and irreversible processes.	2	cycle , Carnot's theorem Know Third law of thermodynamic s	Illustration Lecture	MCQs Assignment
	4.	Isothermal, isobaric and Isochoric processes. Entropy of mixing and physical significances of entropy.	2	Give thesignificance of entropy.	Lecture with PPT Illustration	
	5.	Work function (A), Gibb's Free Energy Function (G) and their significances.	1	Understand Work function (A), Gibb's Free Energy Function (G) and their significances	Lecture - Discussion	
	6.	Derivation of Gibb's Helmholtz equation and its applications.	1	Derive Gibb's Helmholtz equation and its applications.	Lecture	
	7.	Partial molar quantities, partial molar free energyand Gibb's Duhem equation – applications	2	Derive Gibb's Duhem equation and its applications.	Lecture - Discussion	
	8.	Clapeyron equation its applications, .ClausiusClapeyron equation and its applications	2	Derive Clausius – Clapeyron equation and applications	Lecture - Discussion	
IV	Thermod	lynamics – III				
	1.	Thermodynamic treatment of law of mass action Van't Hoff reaction	2	To know Van't Hoff reaction isotherm and its significance.	Lecture	

		isotherm and its significance.				Formative assessment, Short test,
	2.	Van't Hoff isochore and significance. Fugacity concept determination of fugacity of real gases	2	Understand the concept of Fugacity and its determination	Lecture, Discussion	MCQs Assignment
	3.	variation of fugacity with temperature and pressure	1	Know the variation of fugacity with temperature and pressure	Lecture	
	4.	Physical significance of fugacity, Activity and Activity coefficient.	1	To gather knowledge regarding activity and activity coefficient	Lecture, Discussion	
	5.	Nernst Heat theorem and its applications.	1	Derive Nernst heat theorem and its applications	Lecture - Discussion	
	6.	Determination of absolute entropy of solids, liquids and gases, exceptions to the third law of thermodynamics	2	Gather knowledge in the determination of absolute entropy of solids liquids and gases	Lecture	
	7.	Thermodynamic interpretation of Lechatelier principle statement	2	Able to interpret Lechatelier principle	Lecture - Discussion	
	8.	Effect of change of temperature and pressure on chemical equilibria.	2	Know the Effect of change of temperature and pressure on chemical equilibria.	Lecture - Discussion	
V	Group T	heory		L		
	1.	Symmetry elements and symmetry	2	To know different	Lecture, Discussion	

	operations. Definition of identity (E) and proper rotational axis.		symmetry operations		
2.	Mirror plane (σ),inversioncentre (i) and rotation reflection axis (Sn).	2	To gather knowledge regarding the inversion centre (i) and rotation reflection axis	Lecture	Short test, Formative assessment,
3.	Symmetry operations generated by symmetry elements-H ₂ O, NH ₃ , BF ₃ , [PtCl ₄] ²⁻ , H ₂ O ₂ (Planar, cis and trans) and CH ₄ as examples.	3	To understand Symmetry operations generated by symmetry elements- H ₂ O, NH ₃ , BF ₃ , [PtCl ₄] ²⁻ , H ₂ O ₂	Lecture, Illustration	Seminar
4	Group postulates ,abelian , non-abelian and cyclic group	2	Differentiate abelian and non abelian	Lecture, Discussion	
5.	Group multiplication table	1	Construct Group multiplication table	Lecture	
6.	Molecular point groups, assignment of point groups to simple molecules like H ₂ O, NH ₃ and CO ₂	2	To assign point groups to simple molecules like H ₂ O, NH ₃ and CO ₂	Lecture - Discussion	
7.	Determination of a point group.	1	To determine point groups for simple molecules.	Lecture - Discussion	

Course Instructor: M. Anitha Malbi HOD: G. Leema Rose

Name of the Course : Green Chemistry : CC1754

Course code

CO - No.	Course Outcome Upon completion of course students will be able to	PSO	CL
CO - 1	know the principles of green chemistry	PSO - 1	R
CO - 2	design green synthesis	PSO - 5	C
CO - 3	interpret green method for organic synthesis	PSO - 3	Е
CO - 4	synthesize various compounds by microwave and ultrasound assisted methods	PSO - 4	С
CO - 5	analyze the important techniques and directions in practicing green chemistry	PSO - 2	An
CO - 6	identify the importance of green chemistry in day to day life	PSO - 8	Ap

Unit	Module	Topics	Lecture	Learning	Pedagogy	Assessment/
		1	hours	Outcome		Evaluation
	Introduction	to green chemistry	<u> </u>	l	l	1
	1	Definition, need for	2	Know the	Lecture	
I		green chemistry and		need for	with ppt,	
		scope of green		green	Group	Short test
		chemistry.		chemistry	discussion	
	2	Concept of atom	4	Calculate	Seminar	
		economy, yield, mass		the atom		
		intensity and atom		economy,		Multiple
		economy. Calculation of		mass		choice
		atom economy, mass		intensity,		questions
		intensity, mass		mass		
		productivity and carbon		productivity		
		efficiency.		and carbon		
				efficiency		
	3	Different types of	2	Differentiate	Illustration,	
		reactions and atom		the types of	Seminar	
		economy , addition,		reactions		
		substitution, elimination				Short test
		and rearrangements.				
	4	Concept of selectivity,	2	Understand	Lecture	
		enantioselectivity and		the concept	with ppt	
		chemoselectivity		of selectivity	11	Assignment
	5	Regioselectivity and	2	Know the	Lecture,	Short test
		diastereoselectivity.		different	Group	Formative
				types of	discussion	assessment -
				selectivity		I
(Green solvent	_1	ı	L	L	<u> </u>
II	1	Super critical fluids,	4	Learn the	Question	
		Introduction, extraction		extractionan	answer	
		of super critical fluids,		d advantages	session	
		solvents of super critical		of super		
		fluid, advantages and		critical		
		applications Carbon		fluids .		Short test
		dioxide as a super				
		critical fluid				
	2	Features of technique	3		Lecture	
		1 catalog of teeninque		<u> </u>	Lectare	I .

		for using super critical carbon dioxide, advantages and application. Chemical reaction in supercritical water and Near, Critical Water (NCW), Region		Understand the features of technique for using super critical carbondioxi de		Multiple choice questions
	3	Extraction natural products, dry cleaning, supercritical polymerization, hydrogenation and hydroformylation. Ionic liquid as green solvent: Introduction, synthesis of ionic liquids, acidic ionic liquid and neutral ionic liquids, applications in organic synthesis.	4	Know the process of extraction of natural products and applications	Lecture with PPT, Group discussion	Short test Formative assessment - I
Green III	n catalyst 1	Catalysis over view, acid catalyst, basic catalyst, oxidation catalyst,, polymer supported catalyst, photosensitized super acid catalyst and Tetra AmidoMacrocylic	3	Understand the different types of catalyst	Seminar	Short test
	2	Ligand(TAML) catalyst. Biocatalyst, microbial oxidation, microbial reduction, enzyme catalyzed hydrolytic process, per fluorinated catalyst and modified biocatalyst.	4	Know the action of Biocatalyst	Assignme nt	Assignment on MO diagrams Quiz
	3	Development of mesoporous supports by liquid crystal templating, neutral templatingmethods, heterogeneous catalyst, solid supported catalyst.	5	Compare the Development of mesoporous supports by various methods	Lecture with PPT, Group discussion	Formative assessment - II

	Green synthesi	<u> </u>				
IV	1	Green synthesis of the following compounds, Adipic acid, Catechol, Benzoyl bromide, Acetaldehyde, Citral, Ibruprofen and Paracetamol	3	Synthesize different compounds by Green synthesis method	Illustration, Seminar	Multiple choice questions
	2	Microwave assisted reactions in water, Hoffmann Elimination, Hydrolysis of benzyl chloride and methyl benzoate, oxidation of toluene and alcohols.	3	Learn the different microwave assisted reactions in water	Lecture, Group discussion	Formative assessment - II
	3	Microwave assisted reactions in organic solvents, Esterification, Fries rearrangement, Clasien Rearrangement, Diels – Alder Reaction and Decarboxylation.	3	Understand the different microwave assisted reactions in organic solvents	Lecture with ppt	Quiz
	4	Ultra sound assisted reactions, Esterification, Saponification, alkylation, oxidation, reduction, coupling reactions and Cannizaro reactions	3	Learn the different Ultra sound assisted reactions	Lecture, Illustration	Short test
	Green reaction	ns involving basic princip	le of green	chemistry		
V	1	Twelve principles of green chemistry – choice of starting materials – biomimitic, multifunctional reagents, materials reagents.	3	Know the twelve principles of green chemistry	Lecture, Quiz	Short test
	2	Combinatorial green chemistry, Green Chemistry in sustainable developments.	3	Understand the importance of Green Chemistry in sustainable developments	Lecture with PPT	Quiz

3	Importance of Green	4	Learn	the	Lecture,	
	chemistry in day to day		Importance	of	Group	Assignment
	life, versatile bleaching		Green		discussion	
	agents and analgesic		chemistry	in		Formative
	drugs		day to c	day		assessment -
			life			III

Course Instructor: .S.Ajith Sinthuja HOD: G. Leema Rose

Name of the Course : Chemistry for competitive examination

Course code : CSK175

CO -	Course Outcome	PSO	CL
No.	Upon completion of course		
	students will be able to		
CO - 1	recognize and remember theories of	PSO - 1	U
	atoms		
CO - 2	predict chemical bonding	PSO - 2	C
CO - 3	analyse the composition and	PSO - 8	An
	constituents of atmospheric air		
CO - 4	measure the hardness of water	PSO - 5	Е
CO - 5	differentiate between metals and non	PSO - 2	U
	metals		
CO - 6	analyse the chemical compounds	PSO - 11	An
	present in polymers, drugs and		
	fertilizers		

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Matte	er	I	T	I		
I	1	Definition of matter, physical classification, properties of solids, liquids and gases, changes of physical state.	1	Differentiate between physical properties of solids, liquids and gases,	Lecture discussion	
	2	Chemical classifications of elements, compounds, mixtures.	1	Know the classifications of elements, compounds, mixtures	Question answer session	Short test
	3	Classifications of metals, non metal and metalloids with example. physical states of some important elements.	1	Evaluate the properties of metal and non metal	Illustration lecture method	Multiple choice
	4	Compounds, definition, classifications of inorganic and organic compounds with examples, Some important compounds and their common names and uses. Characteristics of compounds.	1	Differentiate between inorganic and organic compounds	seminar	questions Assignment
	5	Mixtures, definitions- classifications homogenous and heterogeneous examples properties of	1	Evaluate properties of compounds and mixtures.	Lecture with PPT	

		I • ,				
		mixtures,				
		differences				
		between				
		compounds and				
		mixtures.				
	6	Separation of	2	Learn the	demonstration	
		mixtures –		different		
		techniques,		techniques		
		principles and		ofseparation of		
		examples;		mixtures		
		Handpicking,				
		sieving, magnetic				
		separation,				
		sublimation,				
		sedimentation,				
		Decantation,				
		filtration,				
		evaporation,				
		Distillation,				
		Crystallization				
-	cture of A					
II	1	Atoms, definition,		Understand the	Group	Assignment,
		Dalton's atomic		atom models	discussion	
		theory, atom				
		models,				
		Rutherford, J.J.				
		Thomson and Bohr				
	2	Sub-atomic	1	Know the sub	Illustration	
		particles, charges		atomic particles	lecture	Short test
		of sub- atomic		1	method	
		particles,				Multiple
		discoveries of				choice
		subatomic				questions
		particles.				1
	3	Atomic and mass	1	Remember the	Question	
		number isotopes,		symbols for	answer	
		symbols for		elements	session	
		elements		Cicinonis	50551011	
	1		1	I come Cilling van	1	
	4	Principles	_	Learn filling up	lecture	
		governing filling		of atomic	method	
		up of electrons in		orbitals		
		the orbitals.				
		Electronic				
		configurations of				
		first twenty				

		elements.					
Cla	ssification	of Elements and Perio	odicity of	f Properties			
III	1		of 1 r,	Remember the different forms of periodic tables	Group discussion		
	2	Group and Periods	of id	Learn the classification of the elements	Lecture method	Short test, Multiple	
	3	Periodicity of properties –atomic ionic radii - ionizatio potential energy	of 1 - on	Analyse the variation in periodic properties.	Group discussion	choice questions, Online	
	4	Electron affinityand electronegativity.	1	Evaluate the variation in Electron affinity and electronegativity	Question answer session	assignment	
		ling and Non-Metals	1 2	Dicc.	T		
IV	1	Need for the chemic bond formation introduction to ion bond, covalent bond co-ordinate bond an metallic bond- ion bond formation, lattic energy- formation with example as NaCl	n- ic d, nd ic ce	Differentiate the types of bonds	Lecture with PPT	Short test,	
	2	Covalent bond definition are explanation using H O ₂ , N ₂ and CH ₄	- 1 nd I ₂ ,	Identify covalent bond	Lecture method	Multiple choice questions	
	3	Properties of ionic and covalent compound Noble gases and the applications	ds	Learn the properties of covalent bond	Seminar		
	4	Halogens and the applications preparation and uses of Hydrogen phosphorus and sulphu	on n,	Know the uses of H, P and S	Group discussion		
	5		of 1 e,	Diffferentiate the allotropes of carbon	Question answer session		

Air aı	nd Water					
V	1	Atmosphere, different layers of atmosphere and their compositions, composition of air, uses of various components of air	1	Analyse the components of air	Lecture with PPT	
	2	Air pollution, sources, effects and control measures	1	Evaluate the sources of air pollution	Group discussion	Multiple choice questions,
	3	Water, abnormal properties of water and its explanation using H-bonding- Hard and soft water, temporary and permanent hardness	1	Compare the different water sources and analyse its hardness	Demonstratio n	Formative assesment
	4	Removal of hardness – Boiling, Clarks process, Zeolite process and washing soda process, Reverse osmosis	1	Learn the methods of removal of hardness	Illustration lecture method	
	5	preparation and uses of distilled water	1	Understand the uses of distilled water	Group discussion	

Course Instructor : K. Francy HOD: G. Leema Rose