Teaching Plan (2019-2020) Semester - V

Name of the Course: Linear AlgebraSubject Code: MC1751

Number of hours per week	Number of credits	Total number of hours	Marks
6	5	90	100

Objectives:

(i)To introduce the algebraic system of Vector Spaces and the related study of various physical applications.

(ii)To equip students with the ideas of vector space, basis, inner product spaces, linear transformations to pursue their higher studies.

CO	Upon completion of this course the students will be able	PSO	CL
	to:	addressed	
CO-1	Recall and define Groups, Fields and their properties	PSO -1	R
CO- 2	Cite examples of vector spaces ,subspaces and linear	PSO -1	U
	transformations		
CO- 3	Determine the concepts of linear independence, linear	PSO -1	U
	dependence, basis and dimension of vector spaces		
CO- 4	Correlate rank and nullity ,Linear transformation and matrix	PSO-2	Ар
	of a Linear transformation		
CO- 5	Examine whether a given space is an inner product space and	PSO-3	Ap
	the orthonormality of sets		

Unit	Module	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/e
			hours			valuation
Ι	Ector Spa	ces				
	1	Vector spaces -	3	Understand the basic	Lecture with	Slip Test
		Definition and		definitions and	illustration	
		Examples		fundamental concepts		
				of Vector spaces		
	2	Sub spaces -	4	Identify the difference	Lecture	Brain
				between Vector spaces		Storming
				and subspaces		
	3	Sub spaces –solved	4	Learn to solve the	Lecture with	Assignment
		problems		problems based on sub	Group	
				Spaces.	Discussion	
	4	Linear	4	Understand the concept	Lecture with	Jigsaw

		Transformation		of Linear Transformation.	PPT	
- 11	Span of a	sot				
11	1	Span of a Set	4	Understand the definitions and basic concepts of span of a set	Lecture	Slip Test
	2	Linear Independence	4	Identify the difference between Linear Independence and dependence.	Lecture with illustration	Assignment
	3	Basis	3	Understand the concept of Basis	Lecture with PPT	Formative Exam
	4	Dimension	4	Solve the problems based on Basis and dimension.	Lecture with video	Slip Test
III	Rank and	Nullity				
	1	Rank and Nullity	3	Understand the concept of Rank and Nullity	Lecture	Quiz
	2	Matrix of a linear transformation	3	Determine the concepts of Matrix of a linear transformation	Lecture with illustration	Test
	3	Characteristic Equation	3	Solve the problems based on Characteristic Equation	Lecture with PPT	Slip Test
	4	Cayley –Hamilton theorem	3	Learn the theory of Cayley –Hamilton theorem	Blended Learning	Assignment
	5	Eigen Values and eigen vectors.	3	Solve the problems based on eigen Values and eigen vectors.	Lecture	Formative Exam
IV	Inner Pro	duct Spaces		•		
	1	Inner Product Spaces-Definition and Examples	5	Understand the definition and examples of Inner Product Spaces	Lecture with illustration	Quiz
	2	Orthogonality	5	To practice various problems on Orthogonality	Lecture , Blended Learning	Brain Storming
	3	Orthogonal Complement	5	Learn to find the Orthogonal Complement	Lecture	Assignment
V	Bilinear fo	orm				
	1	Bilinear forms	5	Understand the	Lecture	Quiz

			definition of Bilinear	with	
-		_		mustration	
2	Quadratic forms	5	Distinguish between	Lecture	Assignment
			Bilinear forms and		
			Quadratic forms		
3	Reduction of a	5	To practice various	Lecture	Formative
	quadratic form to		Problems based on		Exam
	the Diagonal form		Reduction of a		
			quadratic form to the		
			Diagonal form		

Course Instructor (Aided): Dr. L. Jesmalar Course Instructor (S.F): Ms. R.N. Rajalekshmi HoD(Aided): Dr. V.M. Arul Flower Mary HoD(Aided): Ms. J. Anne Mary Leema

Name of the Course: Real AnalysisSubject code: MC1752

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives

- 1. To introduce Metric spaces and the concepts of completeness, continuity, connectedness, compactness and uniform convergence.
- 2. To use these concepts in higher studies.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Understands the concepts of completeness, continuity and discontinuity of metric spaces	PSO- 1	U
CO- 2	Apply the metric space theorems to real life situations	PSO- 4	Ар
CO- 3	Distinguish between continuous functions and uniform continuous functions	PSO-9	An
CO -4	Use the basic concepts in the development of real analysis results	PSO-1	С
CO- 5	Understand the concepts of countable and uncountable sets, metric space, connectedness, compactness of metric spaces	PSO-7	U

CO- 6	Develop the ability to reflect on problems that are quite	PSO-8	Ар
	significant in the field of real analysis		

Unit	Module	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/
			hours			evaluation
Ι	1	Introduction to real analysis. Definitions, examples and theorems on Countable and Uncountable Sets.	4	To determine countable and uncountable sets	Lecture with PPT	Quiz
	2	Metric spaces definitions, problems and theorems	5	To explain about metric spaces	Lecture, Group discussion	Test
	3	Bounded sets definitions and problems	2	To find out a set is bounded or unbounded	Lecture	Quiz
	4	Open ball, open sets definitions, examples, problems and theorems	3	To solve problems on open sets	Lecture with PPT	Assignment
	5	Equivalent metrics, Subspace	3	To analyse about equivalent metrics	Lecture	Test
II	1	Interior of a set definitions, examples, problems and theorems	3	To analyse about interior of a set	Lecture with group discussion	Assignment
	2	Closed sets, closure definitions, examples, problems and	4	To determine the closed sets and closure of the subsets	Lecture	Formative Assessment

		theorems				
	3	Limit point definitions, examples, problems and theorems, Dense sets definitions, examples, and theorems	3	To find the limit point	Lecture	Assignment
	4	Complete metric space definitions, examples, problems and theorems	5	To analyse about complete metric space	Lecture with group discussion	Test
	5	Cantor's intersection theorem, Baire's Category theorem	3	To explain the theorems	Lecture	Test
III	1	Continuity of functions definitions, examples, problems and theorems	4	To determine the continuity of a function	Lecture	Assignment
	2	Composition of continuous functions problems	3	To analyse about composition of continuous functions problems	Lecture	Assignment
	3	Homeomorphism examples	3	To learn to prove homeomorphism	Lecture with group discussion	Test
	4	Uniform continuity definitions, examples, problems and theorems	2	To determine the uniformly continuous functions	Lecture	Assignment
	5	Discontinuous functions definitions, examples, problems and theorems	5	To test the discontinuity of a function	Lecture with PPT	Test
IV	1	Connectedness	3	To learn to prove the	Lecture	Quiz

		definitions, examples, problems and theorems		connectedness of the subsets	with group discussion	
	2	Connected subsets of R problems and theorems	3	To determine the connected subsets	Lecture	Formative Assessment
	3	Connectedness and continuity problems and theorems	3	To compare connectedness and continuity	Lecture with group discussion	Assignment
	4	Intermediate value theorem	1	To learn Intermediate value theorem	Lecture	Test
V	1	Compactness definitions, examples, and theorems	3	To explain the concept compactness	Lecture	Test
	2	Compact subsets of R theorems	2	To learn to prove the theorems	Lecture	Test
	3	Equivalent characterisations for compactness problems and theorems	5	To learn to prove the theorems	Lecture	Formative Assessment
	4	Compactness and continuity	3	To compare compactness and continuity	Lecture	Test

Course Instructor (Aided): Dr.J. Befija Minnie Course Instructor (S.F): Ms. V. Mara Narghese HoD(Aided): Dr. V.M. Arul Flower Mary HoD(Aided): Ms. J. Anne Mary Leema

Name of the Course : Graph Theory

Course code : MC1753

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

1. To introduce graphs, directed graphs and the concepts of connectedness and labeling.

2. To apply these concepts in research.

CO	Course Outcomes	PSO	CL
	Upon completion of this course the students	addressed	
	will be able to:		
CO - 1	understand the basic definitions to write the proofs of simple	PSO - 1	U
	theorems		
CO - 2	employ the definitions to write the proofs of simple theorems	PSO - 2	Ар
CO - 3	relate real life situations with mathematical graphs	PSO - 3	Ар
CO - 4	develop the ability to solve problems in graph theory	PSO - 4	An
CO - 5	analyze real life problems using graph theory both	PSO - 4	An
	quantitatively and qualitatively		

	Modul	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/e
Unit	e		hours			valuation
Ι	Graphs	and Sub graphs				
	1	Graphs and Sub graphs -	4	Understand the basic	Lecture	Brainstorming
		Definition and		definitions and	with	
		Examples - Degrees,		fundamental concepts of	illustration	
		Sub graphs,		graph theory		
		Isomorphism				
	2	Ramsey Numbers -	4	Identify the difference	Lecture	Slip Test
		Independent sets and		between Independent sets	with PPT	
		coverings - Intersection		and coverings and		
		graphs and line graphs		understand the concept of		
				Intersection graphs and		
				line graphs		
	3	Matrices - Operations on	4	Learn to form adjacency	Lecture	Assignment
		graphs		and incidence matrices of	with Group	Method
				a graph and learn	Discussion	
				different types of		
				operations on graphs		

	4	Degree Sequences -	5	Understand the concept	Lecture	Test
		Graphic Sequences.		of Degree Sequences	with Video	
				and Graphic Sequences.		
II	Conne	ctedness	_	1		
	1	Connectedness -	5	Understand the	Blended	Brainstorming
		Walks, Trails and		definitions and	learning	
		Paths		distinguish among walks,		
	2	Commente la commente	5	trails and paths	T a star us	T'
	2	Connectedness and	3	Understand the	Lecture	Jigsaw
		Components		definitions of cut point	with PP1	
				and bridge of a graph and		
				analyse the		
	2	Placks Connectivity	5	Understand the concept	Locturo	Formativa
	5	DIOCKS -Connectivity	5	of blocks and learn to	with PDT	Formative
				find the connectivity of	with I I I	Exam
				different graphs		
	4	Eulerian Graphs -	5	Understand the concept	Lecture	Test
		Hamiltonian	0	of Eulerian graphs and	with	1050
		Graphs(excluding		Hamiltonian graphs	illustration	
		theorem 5.10)		B B B B B B B B B B B B B B B B B B B		
III	Trees	,			1	
	1	Trees -	5	Understand the concept	Lecture	Quiz
		Characterisation of		of trees	with PPT	
		trees - Centre of a tree				
	2	Matchings -	5	Understand the concept	Blended	Test
		Matchings in bipartite		of Matchings and to	learning	
		graphs.		practice various		
				Theorems		
IV	Planar	ity	-		-	
	1	Definition and	5	Cite examples of planar	Lecture	Quiz
		properties		and non-planar graphs	with	
	2	Calaurahilitu	5	Learn to find the	111Ustration	Eamerative
	Z	Colourability -	5	Learn to find the	Biended	Formative
		chromatic index		different graphs	learning	EXalli
	3	The Five Colour	5	To practice various	Lecture	Dresentations
	5	Theorem - Chromatic	5	Theorems and learn to	Lecture	1 resentations
		polynomials		write the chromatic		
		porynomials		polynomial of different		
				graphs		
V	Direct	ed Graphs	1	0P	1	1
	1	Directed Graphs -	4	Understand the definition	Lecture	Quiz
		Definition and Basic		of digraphs	with	
		Properties			illustration	

2	Paths and Connections - Eulerian Trail	4	Distinguish between strongly connected and weakly connected digraphs and understand the concept of Eulerian trails	Lecture with PPT	Test
3	Digraphs and Matrices - Tournaments	5	To practice various Theorems and understand the concept of Tournaments	Lecture with group discussion	Formative Exam

Course Instructor (Aided): Sr. S. Antin Mary

HoD(Aided): Dr. V.M. Arul Flower Mary

Course Instructor (S.F): Ms. J. Anne Mary Leema

HoD(Aided): Ms. J. Anne Mary Leema

Name of the Course: Numerical Methods

Course Code : MC1755

No. of hours per week	Credits	Total No. of hours	Marks
5	4	75	100

Objectives: 1. To study Numerical differentiation and Numerical integration using different formulae.

2. To develop various methods for solving applied scientific problems.

Course Outcome

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
<u> </u>	l an danstan data haria dafinitinga and marganing afintanya lating		TT
0 - 1	understand the basic definitions and meaning of interpolation	PSO - 1	U
CO - 2	select appropriate numerical methods and apply the same to various types of problems	PSO - 1	U
CO - 3	apply numerical methods to obtain approximate solutions to mathematical problems	PSO - 3	Ар
CO - 4	employ different methods of constructing a polynomial using various methods	PSO - 2	А
CO - 5	compare the rate of convergence of different numerical formula	PSO - 4	An
CO - 6	distinguish the advantages and disadvantages of various numerical methods	PSO - 4	An

Unit	Module	Topics	Lecture	Learning Outcome	Pedagogy	Assessment/
			hours			Evaluation
Ι	Solution	s of algebraic and	l transcen	dental equations		
	1	Iteration method and problems	3	To understand the non-linear algebraic equations - Iteration method	Lecture with Illustration	Evaluation through test
	2	More problems on Iteration method	2	To understand solving techniques of Iteration method	Lecture with Illustration	Quiz and Test
	3	Newton Raphson method and problems	3	To understand the non-linear algebraic equations - Newton Raphson method	Lecture with Illustration	Quiz through Quizizz
	4	More problems on Newton Raphson method	2	To solve problems using Newton Raphson method	Lecture with Illustration	Test
	5	Finite difference	3	To understand Finite difference	Lecture with PPT Illustration	Quiz and Test
	6	Difference operators	2	To understand Difference operators	Lecture with Illustration	Formative Assessment Test
II	Interpola	ation				
	1	Newton's Interpolation formulae	4	To understand Interpolation	Lecture with PPT Illustration	Test
	2	Lagrange's Interpolation	4	To understand Lagrange Interpolation	Lecture with	Quiz and Test

		formula			Illustration	
	3	Divided difference	3	To understand Divided difference	Lecture with Illustration	Evaluation through test
	4	Newton's divided difference formula	4	To solve the problems using Newton's divided difference formula	Lecture with PPT Illustration	Formative Assessment Test
III	Numeric	al differentiation	l			
	1	Derivatives using Newton's forward difference formula	4	To recall the basic concepts of Numerical differentiation	Lecture with Illustration	Evaluation through test
	2	Numerical differentiation using interpolation formulae for equal interval and problems	3	To solve the problems using Newton's forward difference formula	Lecture with PPT Illustration	Quiz through Quizizz
	3	Derivatives using Newton's backward difference formula.	4	To learn the derivation of Newton's backward difference formula	Lecture with Illustration	Quiz and Test
	4	More problems on Newton's backward	4	To solve the problems using Newton's backward	Lecture with PPT	Formative Assessment

		difference		difference formula	Illustration	Test
		formula				
IV	Numeric	al integration				
	1	Newton cote's - quadrature formula	4	To understand Newton cote's - quadrature formula	Lecture with Illustration	Test
	2	Numerical integration by Trapezoidal rule	3	To learn the derivation of Trapezoidal rule and to solve the problems usingTrapezoidal rule	Lecture with PPT Illustration	Quiz through Quizizz
	3	Numerical integration by Simpson's (1/3) rd rule	2	To learn the derivation of Simpson's $(1/3)^{rd}$ rule and to solve the problems using Simpson's $(1/3)^{rd}$ rule	Lecture with Illustration	Formative Assessment Test
	4	Numerical integration by Simpson's (3/8) th rule	4	To learn the derivation of Simpson's (3/8) th rule and to solve the problems using Simpson's (3/8) th rule	Lecture with Illustration	Test
V	Numeric	al solution of diff	ferential e	quation		
	1	Sole the differential equation using Taylor's series method	4	To understand Taylor's series method	Lecture with Illustration	Test
	2	More problems on Taylor's series method	4	To solve the differential equation using Taylor's series method	Lecture with PPT Illustration	Quiz and Test
	3	Sole the differential	4	To understand Picard'smethod	Lecture with	Quiz through

	equation using			Illustration	Quizizz
	Picard's				
	method.				
1	Mora problems	2	To solve the differential	Locturo	Test
4	More problems	5	TO Solve the unrefential	Lecture	1051
	on		equation using Picard's	with	
	Picard'smethod		method	Illustration	

Course Instructor (Aided): Ms. A. Jancy Vini

HoD(Aided): Dr. V.M. Arul Flower Mary

Course Instructor (S.F): Ms. D. Berla Jeyanthy

HoD(Aided): Ms. J. Anne Mary Leema